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Abstract: It is well known that any irreducible and aperiodic Markov chain has
exactly one stationary distribution, and for any arbitrary initial distribution, the se-
quence of distributions at time n converges to the stationary distribution, that is, the
Markov chain is approaching equilibrium as n → ∞.
In this paper, a characterization of the aperiodicity in existential terms of some state is
given. At the same time, a P system with external output is associated with any irre-
ducible Markov chain. The designed system provides the aperiodicity of that Markov
chain and spends a polynomial amount of resources with respect to the size of the in-
put. A comparative analysis with respect to another known solution is described.
Keywords: Markov chain, P Sytems, Membrane Computing

1 Introduction

A discrete-time Markov chain is a stochastic process such that the past time is irrelevant to predict the
future, given knowledge of the present time. That is, given the present time, the future does not depend
on the past time: the result of each event depends only on the result of the previous event.

In order to study the evolution in time of a Markov chain as well as the existence of the stationary
distribution, it is suitable to classify its states. This classification depends on the path structure of the
chain.

One of the central issues in Markov Theory is the study of the asymptotic behavior of Markov chains.
It is well known that for any irreducible and aperiodic Markov chain: (a) there exists at least one station-
ary distribution (that is, a probability distribution on the state space which is an invariant for the transition
matrix associated with the chain), and (b) for any initial distribution, µ() and for any stationary distri-
bution π for the Markov chain, the sequence (µ(n))n∈NNN converges to π in total variation as n → ∞ (that
is, the Markov chain is approaching equilibrium as n → ∞).

Copyright c© 2006-2009 by CCC Publications
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In paper [2], a classification of states of a finite and homogeneous Markov chain is provided by
using P systems. Moreover, the period was calculated for recurrent classes. The design of the P systems
was inspired in properties used in classic algorithms that deal with the problem of the classification.
Especially, this solution allows us to decide whether an irreducible Markov chain is aperiodic or not.

The main goal of this paper is to design a P system associated with an irreducible Markov chain
which provides an answer to the aperiodicity of the chain. If the answer is negative, then the system
provides the period of the chain. The solution presented is based on a characterization of the aperiodicity
in existential terms of some state and a natural number, and it is semi–uniform, in the sense that for each
Markov chain, a P system associated with it is constructed. Besides, the solution spends a polynomial
amount of resources in the sense of the computational complexity theory in Membrane Computing.

The solution presented in the paper improves the solution obtained in [2], because less computational
resources are used.

The paper is organized as follows. In the following section, we recall some basic notions and results
that we use in the paper. In Section 3, a P system associated with an irreducible Markov chain is con-
structed in order to study the periodicity of that class. In Section 4, the solution presented is compared
with another solution given in [2]. Finally some conclusions are presented.

2 Preliminaries

A discrete Markov chain is a sequence {Xt | t ∈N} of random variables whose values are called states,
that verifies the following property:

P(Xt+ = j/X = i,X = i, . . . ,Xt = it) = P(Xt+ = j/Xt = it).

Without loss of generality, we can suppose that the state space is the set of nonnegative integers.
The value of variable Xt is interpreted as the state of the process at instant t. In this paper we work

with Markov chains having a finite state space S = {s, . . . ,sk}.
A discrete Markov chain is characterized by the transition probability

pi j(t) = P(Xt = s j/Xt− = si), ∀t ≥ ,

where pi j(t) provides the transition from state si to state s j at time t −.
The matrix of transition probabilities

P(t) = (pi j(t))≤i, j≤k ,

is a stochastic matrix, that is, is nonnegative for all t and the sum of each row is equal to 1,
∑k

j= pi j(t) =

.
We say that the chain is time homogeneous or stationary if pi j(t) = pi j for each t and it verifies the

Kolmogorov-Chapman equation:

p()
i j = pi j, p()

i j =

k∑

l=

pil pl j, . . . , p(n)
i j =

k∑

l=

pil p(n−)
l j ,

where p(n)
i j is the transition probability of state si to state s j at time n.

We denote the initial distribution by means of the vector

µ() = (µ()
 , . . . ,µ

()
k ) = (P(X = s),P(X = s), . . . ,P(X = sk)),

and the distribution of the Markov chain at time n is

µ(n) = (µ(n)
 , . . . ,µ

(n)
k ) = (P(Xn = s),P(Xn = s), . . . ,P(Xn = sk)).
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Then, µ(n) = µ() ·P(n), where P = (pi j) is the transition matrix of the homogeneous Markov chain.
Next, we introduce some concepts and results related to the states of a homogeneous Markov chain.
We say that a state s j communicates with another state si (and we denote it by si → s j), if there exists

a natural number n >  such that p(n)
i j >  (that is, if the chain has a positive probability of ever reaching

s j when we start from si. We say that the states si and s j intercommunicate (and we denote it by si ↔ s j)
if si → s j and s j → si.

In the finite state space S = {s, . . . ,sk} of a Markov chain, the relation ↔ is an equivalence relation
and we can consider the corresponding quotient set {s, . . . ,sk}/ ↔ whose elements are the classes of
equivalence by ↔.

A Markov chain with state space S = {s, . . . ,sk} is said to be irreducible if there exists only equiva-
lence class with respect to ↔; that is, if for all si,s j ∈ E we have si ↔ s j. Otherwise, the chain is said to
be reducible.

We say that a state si is recurrent or essential if for each natural number m and for each state s j

verifying p(m)
i j >  there exists a natural number n such that p(n)

ji > . Otherwise, the state is said to be
transient. A recurrent class is the equivalence class determined by a recurrent state.

It is easy to prove that from a recurrent state, only recurrent states belonging to the same class are
reachable.

A recurrence time of si is a natural number n >  such that p(n)
ii > . The period of a state si is

defined as d(i) = g.c.d. {n ≥  | p(n)
ii > }, that is, it is the greatest common divisor of the recurrence

times associated with it. All states belonging to the same class have the same period.
Then, we can define the period of a class of a given Markov chain in a natural manner: it is the period

of any state of the class (see [3] and [4] for more details).

Definition 1. A Markov chain is said to be aperiodic if all its states are aperiodic; that is, their periods
are equal to 1. Otherwise, the chain is said to be periodic.

Next, we provide a method to compute the period of a recurrent class and a characterization of the
periodicity of a class.

Theorem 2. Let A = {s, . . . ,sr} be a recurrent class. The period of A is

d = g.c.d. {n | p(n)
ii > ;  ≤ i,n ≤ r}.

Proof. As all states have the same period d, we have

d = d() = d() = . . . = d(r) = g.c.d. {n ≥  | p(n)
ii > ;  ≤ i ≤ r}.

Let d ′ = g.c.d.{n| p(n)
ii > ; ≤ i,n ≤ r}. Let us see that d = d ′. For that, let n > r be a time of recurrence

associated with a state si ∈ A, that is, p(n)
ii > . There exists a state si such that p(n)

ii ≥ p(n ′)
ii

· p(n)
ii

· p(n ′′)
ii >

, where n = n ′ + n + n ′′. Thus, n and n ′ + n ′′ are also times of recurrence. If n > r or n ′ + n ′′ > r,
then we repeat the process until we obtain a decomposition

p(n)
ii ≥ p(n ′)

ii
· p(n)

ii
· p(n)

ii
. . . p(nt)

it it
· p(n ′′)

it i
> ,

with  ≤ i, . . . , it ≤ r, n = n ′ +n + . . .+nt +n ′′ verifying n ′ +n ′′ ≤ r and n, . . . ,nt ≤ r.
Finally, let us notice that substituting p(n)

ii , with n > r, by a suitable sequence of p(m)
ii , with m ≤ r, the

g.c.d. is the same.

Lemma 3. Let A = {a, · · · ,ar} be a set of natural numbers. Let us suppose g.c.d. {a, · · · ,ar} = . Let
us denote by A+ the set of all positive linear combinations

λa + · · ·+λrar, with λi ∈ Z+, ≤ i ≤ r.

Then, there exists a natural number N such that n ∈ A+ for all n ≥ N.
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Proof. See, e.g., the appendix of [1]

Next, we characterize the aperiodicity of a recurrent class of a finite Markov chain through the exis-
tence of a state s j reachable from each state si.

Theorem 4. Let {Xt | t ∈ N} be a Markov chain with state space S = {s, . . . ,sk} and transition matrix
P = (pi j).

(1) If {Xt | t ∈ N} is aperiodic, then there exists a natural number N such that p(n)
ii > , for all i

( ≤ i ≤ k) and all n ≥ N.

(2) If {Xt | t ∈ N} is irreducible and aperiodic, then there exists a natural number M such that p(n)
i j > ,

for all i, j ( ≤ i, j ≤ k) and all n ≥ M.

Proof. See, e.g., Chapter 4 from [3]

Theorem 5. Let A = {s, . . . ,sr} be a recurrent class of a finite Markov chain. The following are equiv-
alent:

(1) Class A is aperiodic.

(2) There exists a state s j ∈ A and a natural number m ∈ N such that p(m)
i j >  for all state si ∈ A.

Proof. Let us suppose that class A is aperiodic. Then all states in A have the same period d = . From
Theorem 4 there exists a natural number N such that p(n)

ii > , for all i ( ≤ i ≤ r) and all n ≥ N. Given

j ( ≤ j ≤ r), we define ni( j) = min{n | p(n)
i j > }, for each si ∈ A, n( j) = max{n( j), . . . ,nr( j)}, and

m = N + n( j). Let us see that p(m)
i j > , for each i ( ≤ i ≤ r). We have p(m)

i j ≥ p(ni( j))
i j p(m−ni( j))

j j > 

because of p(ni( j))
i j >  by definition of ni( j), and p(m−ni( j))

j j >  by Theorem 4.
Conversely, let us suppose that there exists m ≥  and a state s j ∈ A such that ∀ si ∈ A we have

p(m)
i j > . In particular, p(m)

j j >  so m is a recurrence time. On the one hand, if d is the period of
the class, then m is a multiple of d. On the other hand, if si ∈ A is a state such that p ji > , then

 < p(m)
i j p ji ≤ p(m+)

ii , so m + is a multiple of d. Hence, d = .

3 A P System Associated with an Irreducible Markov Chain

The goal of this paper is to study the aperiodicity of an irreducible Markov chain with state space
S = {s, . . . ,sk}, k ≥ , by using P systems. In the affirmative case, the answer of the system is Y ES, on
the contrary, the system sends an object encoding the period of the class to the environment.

3.1 The Design of the P System

Let Pk = (pi j)≤i, j≤k be a Boolean matrix associated with a class with a finite and homogeneous
Markov chain of order k such that pi j =  if the transition from si to s j is possible, and pi j =  otherwise;
that is, Pk is the adjacency matrix of the directed graph associated with the recurrent class.

The solution presented in this paper is a semi–uniform one in the following sense: we give a family
ΠΠΠ = {Π(Pk) | k ∈ NNN}, associating with Pk a P system with external output, such that (a) there exists a
deterministic Turing machine working in polynomial time which constructs the system Π(Pk) from Pk;
and (b) the output of the P system Π(Pk) provides the classification of the recurrent class of the Markov
chain as well as the period of the states.

We associate with the matrix Pk the P system of degree 4 with external output,
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Π(Pk) = (Γ (Pk),µ(Pk),M,M,M,M,R)

defined as follows:

• Working alphabet:

Γ (Pk) = {si j, ti j, τi j |  ≤ i, j ≤ k} ∪ {si jr |  ≤ i, j,r ≤ k} ∪ {Tr |  ≤ r ≤ k} ∪
{βl |  ≤ l ≤ k −}∪ {bi, pi |  ≤ i ≤ k} ∪ {ci, di |  ≤ i ≤ α}∪ {yes,Y ES,σ }

where α = k + ⌈ k
⌉.

• Membrane structure: µ(Pk) = [ [ [ [ ] ] ]].

• Initial multisets:

M = {t
pi j

i j |  ≤ i, j ≤ k}∪ {β}; M = {sii |  ≤ i ≤ k}

M = {bi |  ≤ i ≤ k}∪ {d}; M = /0

• The set R of evolution rules consists of the following rules:

r = [ti j → τi jtk
i j],  ≤ i, j ≤ k

r = [βi → βi+],  ≤ i ≤ k −

r = [βk−] → ck


r = [crsi jτ
p j

j . . .τ
p jk

jk ] → [s
p j

i . . .s
p jk

ik c
γ j
r+]s

p j

ir+ . . .s
p jk

ikr+T
p ji

r+,

 ≤ i, j ≤ k,  ≤ r ≤ α −,γ j =
∑k

l= p jl

r = [σ ] → σ

r = [s jr . . .sk jr] → [σ ] yes,  ≤ j ≤ k,  ≤ r ≤ α

r = [Trbr → pr],  ≤ r ≤ k

r = [pi pi+l → pi pl],  ≤ i ≤ k,  ≤ l ≤ k − i

r = [p
i → pi],  ≤ i ≤ k

r = [di → di+],  ≤ i ≤ α −

r = [dα pr] → pr[ ],  ≤ r ≤ k

r = [dα p] → yes[ ]

r = [yes] → Y ES[ ]

r = [pr] → pr[ ],  ≤ r ≤ k

3.2 An Overview of Computations

Initially, membrane 1 contains objects ti j that codify the elements pi j of the Boolean matrix associ-
ated with the transition matrix of the Markov chain, together with the counter β. This counter allows
us to dissolve membrane 1 at a certain instant. Membrane 2 contains initially objects sii that codify the
states si of the chain. Membrane 3 contains objects bi that will be used in order to avoid that repeated
recurrence times smaller than or equal to k appear. The counter d in membrane 2 will be used to trigger
the answer at the suitable instant.

The design of the P system Π(Pk) implements a process that is structured by stages. The first one
consists of k steps which allow the production of sufficiently many new copies τi j of objects ti j. This is
done by applying rules of type r and r in membrane 1 at k − first steps and applying at step k rule r

that dissolves membrane 1.
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At the second stage, all paths between states with length at most k, as well as recurrence times smaller
than or equal to k, are generated. This stage starts at step k + and it spends at most k steps. First, rules
of type r are applied producing objects si jr in membrane 3 that codify the existence of a path with length
r from state si to state s j, as well as the objects Tr codifying the existence of a recurrence time equal to

r. Simultaneously, it is checked if there exists a state s j and a natural number m such that p(m)
i j > , for

all states si. In that case, an object σ is produced in membrane 2 and the system expels an object Y ES to
the environment.

The third stage is only applied if an object Y ES has not been expelled to the environment. At this
stage, the period of the class is computed and it takes k + ⌈ k

⌉ steps. By applying rules of type r,
objects pr encoding recurrence times smaller than or equal to k, are obtained. Such recurrence times
are different from each other. By applying rules of types r and r, the greatest common divisor of
these times is computed. If the period of the class is equal to , then the system sends an object Y ES
to the environment, otherwise, the system expels an object pn that encodes the period of the class to the
environment.

4 Results and Discussions

In [2] a P system was constructed which allows us to classify the states of a Markov chain. Thus, that
P system can be adapted to characterize the aperiodicity of such a chain. Specifically, if Pk = (pi j)≤i, j≤k

is the Boolean matrix associated with the states of a recurrent class of a finite and homogeneous Markov
chain of order k, then we define the system

Π ′(Pk) = (Γ ′(Pk),µ ′(Pk),M
′
,M

′
,M

′
,M

′
,R

′,ρ ′),

as follows:

• Working alphabet:

Γ ′(Pk) = {A, Ri, ti j |  ≤ i, j ≤ k} ∪ {cr |  ≤ r ≤ k +} ∪
{ti jur |  ≤ i, j,u ≤ k,  ≤ r ≤ k} ∪ {βi |  ≤ i ≤ γ +} ∪
{si jr |  ≤ i, j ≤ k,  ≤ r ≤ k} ∪ {di |  ≤ i ≤ (k −)}

where γ = k ++ ⌈lgk⌉+
(k−)(k+)

 .

• Membrane structure: µ ′(Pk) = [ [ [ [ ] ] ] ].

• Initial multisets:

M ′
 = /0; M ′

 = {β}; M ′
 = {c}; M ′

 = {sii t
pi j(k−)

i j |  ≤ i, j ≤ k}.

• The set R of evolution rules consists of the following rules:

– Rules in the skin membrane labeled by 1:

r = {dp → (Rp,out) |  < p ≤ k}

r = {d → (A,out)}

– Rules in the membrane labeled by 2:

r = {βi → βi+ |  ≤ i ≤ γ} ∪ {βγ+ → λ }.

r = {d
j → d j |  ≤ j ≤ k}

r = {d jd j+l → d jdl |  ≤ j ≤ k,  ≤ j + l ≤ k}
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– Rules in the membrane labeled by 3:

r = {ti jur → (ti jsu j(r+), in) | pi j = ,u 6= j, ≤ i, j,u ≤ k, ≤ r < (k −)}

r = {ti ju(k−) → (ti j, in) | pi j = ,u 6= j, ≤ i, j,u ≤ k}

r = {ti j jr → (ti j, in) dr+ | pi j = , ≤ i, j ≤ k, ≤ r < (k −)}

r = {ti j j(k−) → (ti j, in) | pi j = , ≤ i, j ≤ k}

r = {cr → cr+ |  ≤ r ≤ (k −)+} ∪ {c(k−)+ → λ }

– Rules in the membrane labeled by 4:

r = {suirt
pi
i . . . t pik

ik → (t pi
iur . . . t pik

ikur,out) |  ≤ u, i ≤ k,  ≤ r ≤ (k −)}.

• There is only a priority relation in the membrane labeled by 2: {r > r}.

In order to study the efficiency of the P system Π(Pk) constructed in this work, we will compare the
results with those obtained by the P system Π ′(Pk) described above. For that purpose, a comparative
analysis of the computational resources required in both P systems is given first. Secondly, an analysis
of the times of execution obtained on designed simulators for both P systems with some case studies is
presented.

4.1 Computational Resources Required

The resources required initially to construct the systems Π(Pk) and Π ′(Pk), and the number of steps
taken by the systems, are the following:

Π(Pk) Π ′(Pk)

Size of the alphabet Θ(k) Θ(k)

Initial number of membranes 4 4
Sum of the sizes of initial multisets Θ(k) Θ(k)

Number of rules Θ(k) Θ(k)

Maximal length of a rule Θ(k) Θ(k)
Number of priority relations 0 Θ(k)

Number of steps Θ(k) Θ(k)

In the previous table, let us notice that the amount of resources requested by Π(Pk) is smaller than
the ones requested by Π ′(Pk). Indeed, the size of the alphabet and the number of rules pass from power 3
to power 4, and the system Π(Pk) has no priority relation. The number of steps is of the same asymptotic
order.

4.2 Case Studies

We have realized a simulator for each system Π(Pk) and Π ′(Pk). These simulators have been written
in C++ language and they have been executed on a Pentium 4 computer with 512 Mb RAM and 3.20
GHz.

In both simulators objects ti j have been represented by means of arrays of dimension 2; objects si j

have been represented by vectors of dimension 2 and recurrent times have been represented by one-
dimensional vectors.

The simulator of the system Π(Pk) generates the trajectories with a length at most k + ⌈k/⌉ in a
sequential way, keeping the times of recurrence smaller than or equal to k. If assertion () in Theorem
5 is fulfilled, the simulator halts displaying the time of execution and the aperiodicity of the Markov
chain. Otherwise the simulator computes the g.c.d. of the recurrence times obtained where all of them
are different.
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Similarly, a simulator for the system Π ′(Pk) has been implemented. The main difference with respect
to the previously mentioned one is that it can keep more than a copy of the times of recurrence. All
trajectories of the Markov chain with a length smaller than or equal to (k −) and their recurrence time
are computed. Then the g.c.d. of these times is obtained.

When the Markov chain is aperiodic, the P system Π(Pk) can finish before all trajectories with a
length k + ⌈k/⌉ are computed. In case it is necessary to calculate the period, bearing in mind that all
recurrence times are different, system Π(Pk) is faster than Π ′(Pk) in computing the g.c.d. of these times.

When the Markov chain is periodic the length of the trajectories computed by Π(Pk) are longer than
those computed by Π ′(Pk). Nonetheless, in order to compute the period, recurrence times used in Π(Pk)

are all different.
The simulators designed have been executed on eight recurrent Markov chains with 100 states. Four

of these Markov chains are periodic and the others are aperiodic. Table 1 shows the values equal to 1 of
the adjacency matrix of the graph associated with the recurrent Markov chains. The execution times are
described in Table 2.

Example
1 pi,i+ =   ≤ i ≤ 

p, = 

2 pi,i+ =   ≤ i ≤ 
pi, =   ≤ i ≤ 

3 p j+i, j+i+ =   ≤ i ≤   ≤ j ≤ 
p j, j− =   ≤ j ≤ 
p j+, j+ =   ≤ j ≤ 
p, = 

4 p j+i, j+i+ =   ≤ i ≤   ≤ j ≤ 
p j, j− =   ≤ j ≤ 
p j+, j+ =   ≤ j ≤ 
p, = 
p, = 

5 p j+i, j+i+ =   ≤ i ≤   ≤ j ≤ 
p j, j− =   ≤ j ≤ 
p j+, j+ =   ≤ j ≤ 
p, = 
p, = 

6 p j+i, j+i+ =   ≤ i ≤   ≤ j ≤ 
p j, j− =   ≤ j ≤ 
p j+, j+ =   ≤ j ≤ 
p, = 

7 pi,i+ =   ≤ i ≤ 
pi+,i =   ≤ i ≤ 
p+i,+i =   ≤ i ≤ 

8 pi,i+ =   ≤ i ≤ 
pi+,i =   ≤ i ≤ 
p+i,+i =   ≤ i ≤ 
p, = 

Table 1. Adjacency values of the examples

5 Conclusions

Markov chains have applications in different fields such as physics, economics, biology, statistics, so-
cial sciences, etc. In these applications it is important to know whether the Markov chain associated with
the process is convergent or not. When the Markov chain is aperiodic, the transition matrix converges
and the process becomes stable. In other cases, the process does not reach an equilibrium.

In this work, a characterization of the aperiodicity of a Markov chain has been given in terms of the
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Example period Π ′(Pk) Π(Pk)

1 100 0 0
2 1 146 0
3 10 0 0
4 1 122 35
5 1 1 2
6 5 11 20
7 2 381 169
8 1 1101 104

Table 2. Observed run times

existence of a state reachable from any other state. Based on this property, a computational P system has
been constructed that allows us to know whether the Markov chain is aperiodic and calculate its period
if not.

In [2], every finite and homogeneous Markov chain has associated a P system that provides a clas-
sification of its recurrent classes. That P system can be adapted to study the aperiodicity of a Markov
chain and then its period can be calculated. The solution presented in this work improves the solution
derived from the P system described in [2]. For that purpose, simulators have been constructed for these
P systems and the respective times of execution on eight examples have been analyzed.

For the computational study of the aperiodicity of a Markov chain it would be interesting to design
new P systems that incorporate additional features such as electrical charges, active membranes, etc. and
that improve quantitatively the amount of computational resources used.
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