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Lorenz System Stabilization Using Fuzzy Controllers

Radu-Emil Precup, Marius L. Tomescu, Ştefan Preitl

Abstract: The paper suggests a Takagi Sugeno (TS) fuzzy logic controller (FLC)
designed to stabilize the Lorentz chaotic systems. The stability analysis of the fuzzy
control system is performed using Barbashin-Krasovskii theorem. This paper proves
that if the derivative of Lyapunov function is negative semi-definite for each fuzzy
rule then the controlled Lorentz system is asymptotically stable in the sense of Lya-
punov. The stability theorem suggested here offers sufficient conditions for the sta-
bility of the Lorenz system controlled by TS FLCs. An illustrative example describes
the application of the new stability analysis method.
Keywords: chaotic systems, fuzzy control, Lyapunov functions, nonlinear equations
and systems.

1 Introduction

Chaotic systems exhibit exponential sensitivity to small perturbations and also have a large variety
of distinct possible dynamical motions. These properties will be reviewed in this paper along with their
consequences and implications to active control of chaotic systems using small control signals.

Chaos control refers to a process wherein a tiny perturbation is applied to a chaotic system in order
to achieve a desirable (chaotic, periodic, or stationary) behavior [9]. The idea of chaos control was
formulated in 1990 at the University of Maryland [5]. In [5] and a method for stabilizing an unstable
periodic orbit was suggested. The basic idea is in the fact that a significant change in the behavior of a
chaotic system can be made by a very small correction of its parameters.

There exist three historically earliest and most actively developing directions of research in chaos
control: open-loop control based on periodic system excitation referred to also as nonfeedback control,
the method of Poincaré map linearization called also the Ott, Grebogi and Yorke (OGY) method [5]
and the method of time-delayed feedback (Pyragas method) [7, 8]. Lima and Pettini [3] proposed a
disturbance-based technique of stabilizing the chaotic system towards a periodic state. In this case the
periodicity is fixed by the frequency of a control signal disturbing the parameter space. Such a technique
was called "suppression of chaos" or "nonfeedback control". Its implementation can be complicated
by the fact that it needs a preliminary learning task of the system response to possible disturbances of
variable amplitude.

The OGY method [5] stabilizes unstable periodic orbits (UPOs) found in the chaotic regime via
small feedback disturbances to an accessible parameter. The control disturbance is offered when the
orbit crosses a given Poincaré section such that the trajectory will be close to the stable manifold of the
desired UPO. In this method in the limit of zero noise the orbit of the controlled system is identical to the
UPO of uncontrolled system and the feedback disturbance vanishes. A drawback of the OGY method
is that it becomes difficult to apply for very fast systems since it requires the detailed computer-aided
analysis of the system at each crossing of the Poincaré section. Also, noise can result in occasional
bursts where the trajectory moves far away from the controlled periodic orbit.

An alternative method of feedback stabilization of UPO’s, introduced by Pyragas [7], consists of a
continuous linear feedback applied at each computational time step. As in the OGY case, in this method
the controlled orbit coincides with the UPO of the uncontrolled system and the feedback vanishes for
zero noise when control is achieved. The feedback procedure can be applied without a priori knowledge
on the location of the periodic orbit for a version in which the feedback term contains a delayed variable
in which the delay corresponds to the period of the UPO. Moreover, it is expected that it can be used
for fast systems, since no parameters are changed on a fast time-scale, and the method does not require
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a computer-aided analysis of the system. For some systems this method is robust even in the presence
of considerable noise [7]. A disadvantage of Pyragas’s method is that it achieves control only over a
limited range of the parameter space i.e. a given orbit will become eventually unstable in the controlled
system as the parameters are varied more deeply into the chaotic regime. The use of delayed feedback
also increases the dimensionality of the system.

The paper is organized as follows. The accepted class of fuzzy logic control systems with Takagi-
Sugeno (TS) fuzzy logic controllers (FLCs) is described in the next Section. Section 3 is focused on
the design of stable fuzzy logic control systems based on the new stability analysis method expressed
in terms of a theorem formulated on the basis of the Barbashin-Krasovskii theorem. Then, Section 4
performs an analysis of the Lorentz equation that exhibits chaotic behavior. Section 5 is dedicated to the
stable design of a TS FLC to stabilize the Lorentz chaotic system, and Section 6 concludes the paper.

2 Accepted Class of Fuzzy Logic Control Systems

Fuzzy logic control has become an important methodology in control engineering because it can offer
superior performance indices and better trade-off to system robustness and sensitivity, which results
into handling nonlinear control better than traditional methods. Calvo and Cartwright [1] introduced
the idea of fuzzy control in chaotic systems. Hua O. Wang and Kazuo Tanaka proposed a stability
design approach to Lorenz system [10], based on TS fuzzy models using a linear matrix inequality
(LMI) technique. In [11] Oscar Calvo proposed a Mamdani FLC for control of chaos in Chua’s circuit.
Ahmad M. Harb and Issam Al-Smadi presented in [11] a Mamdani FLC to control the Lorenz equation
and Chua’s circuit to be a stable constant or periodic solution, where a single tuning parameter is chosen
in case of Lorenz system and the FLC adjusts this parameter.

In this paper the fuzzy logic control system is accepted to consist of a process and a TS FLC as shown
in Figure 1. The FLC consists of r fuzzy rules. The process of extracting the knowledge from human
operators in the form of fuzzy control rules is by no means trivial, nor is the process of deriving the rules
based on heuristics and good understanding the process and control systems theory.

Figure 1: Fuzzy logic control system structure.

Let X be a universe of discourse. Consider the nonlinear autonomous system of the following form
representing the state-space equations of the controlled process:

ẋ = f (x)+b(x)u,x(t0) = x0 (1)

where:

− x ∈ X , x = [x1,x2, ...,xn]
T is the state vector,

− f (x) = [ f1 (x) , f2 (x) , ..., fn (x)]T , b(x) = [b1 (x) ,b2 (x) , ...,bn (x)]T are functions describing the
dynamics of the plant,
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− u is the control signal applied to the process calculated by the weighted sum defuzzification
method,

− the time variable, t, has been omitted to simplify the further formulation,

− x(t0) is the initial state vector at time t0 .

The i-th fuzzy rule / fuzzy control rule in the fuzzy rule base of T-S FLC is of the form (2):

Rule i : IF xi is Xi,1 AND ... AND xn is Xi,n THEN u = ui (x) , i = 1,r,r ∈ IN∗, (2)

where Xi,1,Xi,2, ..,Xi,n are fuzzy sets that describe the linguistics terms (LTs) of input variables, u =
ui (x)is the control output of rule i, and the function AND is a t-norm and can be a single value or a
function of the state vector, x. Each fuzzy rule generates an activation degree:

αi (x(t)) = AND
(
µi,1 (x1 (t)) ,µi,2 (x2 (t)) ...µi,n (xn (t))

)
,αi ∈ [0,1] , i = 1,r (3)

It is assumed that for any x∈X in the input universe of discourse X there exists at least one αi ∈ [0,1] , i =
1,r, among all rules that is nonzero. The control signal u, which must be applied to the process, is a
function of αi and ui . Applying the weighted sum defuzzification method, the output of the FLC will
be:

u = ∑r
i=1 αiui

∑r
i=1 αi

(4)

where r is the total number of rules.

3 Stability Analysis of Fuzzy Logic Control Systems

The stability analysis presented in this Section is based on Barbashin-Krasovskii theorem presented
in [2]. This section is concentrated on the formulation and proof of Theorem 3 that ensures sufficient
conditions for the stability of nonlinear systems controlled by TS FLCs.

The function V (x) = xT Px is considered, where P ∈ IRn×n is a positive definite matrix. From this
it results that V is positive definite and has continuous partial derivatives. The derivatives of V in the
conditions (1) are:

V̇ (x) = ẋT Px+ xT Pẋ = ( f (x)+b(x)u(x))T Px+ xT P( f (x)+b(x)u(x)) = F (x)+B(x)u(x) (5)

where F (x) = f (x)T Px+ xT P f (x) and B(x) = b(x)T Px+ xT Pb(x).

Definition 1. If V (x) = xT Px is defined on domain X containing the origin containing the origin, then
for any fuzzy rule the derivative V̇i = F +Bui is defined.

Proposition 2. For any input x0 ∈ X it results that umin (x0) ≤ u(x0) ≤ umax (x0), where umin (x0) =
min(u1 (x0) , ...,ur (x0)) and umax (x0) = max(u1 (x0) , ...,ur (x0)) .

Proof. Let x0 ∈ X , than among all rules two rules can be found, with indices p and q, such that up (x0) =
umin (x0) and uq (x0) = umax (x0). Hence the following result is valid:

umin (x0) =

r
∑

i=1
αi (x0)umin (x0)

r
∑

i=1
αi (x0)

≤

r
∑

i=1
αi (x0)ui (x0)

r
∑

i=1
αi (x0)

≤

r
∑

i=1
αi (x0)umax (x0)

r
∑

i=1
αi (x0)

= umax (x0)

⇒ umin (x)≤ u(x)≤ umax (x) ,∀x ∈ X (6)

This property permits the formulation of Theorem 3 that outlines the stability analysis approach.
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Theorem 3. Let x = 0 be an equilibrium point for (1). Let V (x) = xT Px be a positive function on
domain X containing the origin, such that V̇i (x) ≤ 0, i = 1,r,x ∈ X. Let S =

{
x ∈ X

∣∣V̇ (x) = 0
}

and
suppose that no solution can stay identically in S excepting the trivial solution x(t)≡ 0. Then, the origin
is asymptotically stable.

Proof. It should be proved that V̇ is negative semidefinite in the conditions (1). From the conditions of
Theorem 3 one may write:

V̇ (x) = F (x)+B(x)ui < 0, i = 1,r,x ∈ X (7)

From Proposition 2 it is obtained that for ∀x ∈ X there exist two rules, with indices p and q, such that
up (x0) = umin (x0) and uq (x0) = umax (x0).

Three possible cases should be considered as follows:
Case 1: If B(x) is strictly positive, from Proposition 2 the result is:

up (x)≤ u(x)≤ uq (x)⇒

⇒ F (x)+B(x)up (x)≤ F (x)+B(x)u(x)≤ F (x)+B(x)uq (x)≤ 0⇒

⇒ V̇p (x)≤ V̇ (x)≤ V̇q (x)≤ 0, (8)

therefore V̇ (x)≤ 0.
Case 2: If B(x) is strictly negative, Proposition 2 yields:

up (x)≤ u(x)≤ uq (x)⇒

⇒ 0≥ F (x)+B(x)up (x)≥ F (x)+B(x)u(x)≥ F (x)+B(x)uq (x)⇒

⇒ 0≥ V̇p (x)≥ V̇ (x)≥ V̇q (x) (9)

therefore once more V̇ (x)≤ 0.
Case 3: If B(x) = 0 from (8) we have V̇ (x) = F (x) < 0.

From the above cases it is justified to conclude that, whatever the value of is, the result will be V̇ ≤ 0.
Consequently, Theorem 3 satisfies all conditions of Barbashin-Krasovskii theorem [2], so the equilibrium
point at the origin will be globally asymptotically stable.

4 Properties of Lorenz Equations

This Section presents an overview on dynamic chaotic processes with focus on the Lorenz system
referred to also as Lorenz equation or attractor [4]. Modern discussions of chaos are mainly based on the
works about the Lorenz attractor. The Lorenz equation is commonly defined as three coupled ordinary
differential equations expressed in (10) to model the convective motion of fluid cell, which is warmed
from below and cooled to above:

dx
dt = σ (y− x)
dy
dt = x(ρ− z)− y
dz
dt = xy−β z

(10)

where the three parameters σ ,ρ,β > 0 are called the Prandtl number, the Rayleigh number and the
physical proportion, respectively. These constant parameters determine the behavior of the system and
the three equations exhibit chaotic behavior i.e. they are extremely sensitive to initial conditions. A



Lorenz System Stabilization Using Fuzzy Controllers 283

small change in initial conditions leads quickly to large differences in corresponding solutions. The
classic values used to demonstrate chaos are σ = 10 and β = 8

3 . It is important to note that x,y,z are not
spatial coordinates. The variable x is proportional to the intensity of the convective motion while y is
proportional to the temperature difference between the ascending and descending currents; similar signs
of x and y denote that warm fluid is rising and cold fluid is descending. The variable z is proportional to
the distortion of vertical temperature profile from linearity, a positive value indicating that the strongest
gradients occur near the boundaries. The essential properties of Lorenz equation can be summarized as
follows:

Nonlinearity. The two nonlinearities are xy and xz.

Symmetry. Equations are invariant under (x,y) → (−x,−y). In other words, if (x(t),y(t),z(t)) is a
solution, (−x(t) ,−y(t) ,z(t)) will be also a solution.

Volume contraction. The Lorenz system is dissipative i.e. volumes in phase-space contract under the
flow.

Fixed points. In order to solve (10) for the fixed points let f (x) =




σ (y− x)
x(ρ− z)− y

xy−β z


 and it is nec-

essary to solve f (x) = 0. It is clear that one of those fixed point is s0 = (0,0,0) and with some algebraic
operations one may determine that s1,2 =

(
±

√
β (ρ−1),±

√
β (ρ−1),(ρ−1)

)
are equilibrium points

and real when ρ > 1.

Invariance. The z-axis is invariant, meaning that a solution that starts on the z-axis (i.e. x = y = 0)
will remain on the z-axis. In addition, the solution will tend towards the origin if the initial conditions
belong to the z-axis.

Solutions stay close to origin. If σ ,ρ,β > 0 then all solutions of the Lorenz equation will enter an
ellipsoid centered at (0,0,2b) in finite time. In addition, the solution will remain inside the ellipsoid once
it has entered. It follows by definition that the ellipsoid is an attracting set.

5 Design of Stable Fuzzy Logic Control System

The design of the fuzzy logic control system with TS FLC starts with rewriting the ordinary dif-
ferential equation (10) as the following form representing the state-space equations of the controlled
process:

ẋ =




σ (x2− x1)
x1 (ρ− x3)− x2

x1x2−βx3


+




1
0
0


u,x(t0) = x0 (11)

Next, the fuzzification module of TS FLC is set according to Figure 2 showing the membership func-
tions that describe the linguistic terms (LTs) of the linguistic variables x1 and x2. The LTs representing
"Positive", "Zero" and "Negative" values are noted by P, Z and N, respectively.

The inference engine employs the fuzzy logic operators AND and OR implemented by the min and
max functions, respectively. The inference engine is assisted by the complete set of fuzzy control rules
illustrated in Table 1, and the weighted sum defuzzification method is utilized. Summarizing, the only
parameters to be calculated are the consequents ui, i = 1,9 , in the 9 fuzzy control rules.
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Figure 2: Membership functions of x1 and x2.

Table 1
Fuzzy Control Rule Base

Rule Antecedent Consequent
x1 x2 u

1 P P u1
2 N N u2
3 P N u3
4 N P u4
5 P Z u5
6 N Z u6
7 Z P u7
8 Z N u8
9 Z Z u9

Theorem 3 will be applied as follows to find the values of ui for which the system (11) can be
stabilized with the above described TS FLC. Let X = [−40,40]× [−40,40]× [−40,40] that contain the
origin. The Lyapunov function candidate V (x) = 1

2

(
x2

1 + x2
2 + x2

3
)

is considered, which is a continuously
differentiable positive function on domain X . The total derivative of V with respect to time using (11) is:

V̇ (x) =−σx2
1− x2

2−βx2
3 + x1x2 (σ +ρ)+ x1u (12)

From (12) it is obvious that V̇ (0) = 0⇔ x = 0 and this implies S = {0}. Further on, each fuzzy control
rule will be analyzed here:

• For rule 1 it is obtained x1 is P and x2 is P. Then V̇1 (x) =−σx2
1− x2

2−βx2
3 + x1x2 (σ +ρ)+ x1u1.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u1 =−40(σ +ρ).

• For rule 2 it is obtained x1 is N and x2 is N. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u2.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u2 = 40(σ +ρ).

• For rule 3 it is obtained x1 is P and x2 is N. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u3.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u3 = 0.

• For rule 4 it is obtained x1 is N and x2 is P. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u4.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u4 = 0.

• For rule 5 it is obtained x1 is P and x2 is Z. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u5.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u5 =−10(σ +ρ).
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• For rule 6 it is obtained x1 is N and x2 is Z. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u6.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u6 = 10(σ +ρ).

• For rule 7 it is obtained x1 is Z and x2 is P. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u7.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u7 =−x2 (σ +ρ).

• For rule 8 it is obtained x1 is Z and x2 is N. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u8.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u8 =−x2 (σ +ρ).

• For rule 9 it is obtained x1 is Z and x2 is Z. Then V̇1 (x) =−σx2
1−x2

2−βx2
3 +x1x2 (σ +ρ)+x1u9.

In these conditions to satisfy V̇ (x)≤ 0 it is chosen u9 =−x2 (σ +ρ).

Concluding, due to Theorem 3 it results that the system composes by this TS FLC and the Lorenz
process described by (11) is globally asymptotically stable in the sense of Lyapunov at the origin. Consid-
ering the values of process parameters σ = 10, ρ = 28, β = 8

3 , the initial state x1 (0) = 1, x2 (0) =−1and
x3 (0) = 1, the responses of x1, x2 and x3 versus time in the closed-loop system are shown in Figures 3-7.

Figure 3: State variable x1 versus time of Lorenz system without FLC (a) and with FLC (b).

Figure 4: State variable x2 versus time of Lorenz system without FLC (a) and with FLC (b).

Figure 5: State variable x3 versus time of Lorenz system without FLC (a) and with FLC (b).
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Figure 6: Phase portraits of Lorenz system without control (a) and with FLC (b).

6 Conclusions

The paper has proposed a simple and efficient fuzzy logic control solution employing a TS FLC
meant for stabilizing the Lorenz system. The fuzzy logic controller design is assisted by the stability
approach stated and proved in terms of Theorem 3. Theorem 3 has general character guaranteeing suffi-
cient stability conditions for fuzzy logic control systems with TS FLCs. This approach decomposes the
stability analysis to the analysis of each rule so the complexity is reduced drastically.

The new stability analysis approach is different to Lyapunov’s theorem and allows more applications.
In particular, it is well suited to controlling processes where the derivative of the Lyapunov function
candidate is not negative definite, therefore applying Theorem 3 to nonlinear processes controlled by TS
FLCs can be successful in case of a wide area of nonlinear dynamic systems.

Digital simulations illustrated in this paper prove that the proposed stability analysis method is sim-
pler than the nonfeedback control method proposed by Lima and Pettini [3], than OGY method proposed
by Ott, Grebogi and Yorke [5] and than Pyragas method [7]. Besides, the controller structure presented
in Section 5 can be implemented as low cost automation solution [6]. Further research will be dedicated
to offering other low cost fuzzy solutions for chaotic systems.
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Ştefan Preitl
"Politehnica" University of Timisoara

Department of Automation and Applied Informatics
Bd. V. Parvan 2, RO-300223 Timisoara, Romania

E-mail: spreitl@aut.utt.ro
Received: December 24, 2006


