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Abstract: For real-time applications, task scheduling is a problem of
paramount importance. Several scheduling algorithms were proposed in the
literature, starting from static scheduling or cyclic executives which provide
very deterministic yet inflexible behaviour, to the so called best-effort schedul-
ing, which facilitates maximum run-time flexibility but allows only probabilis-
tic predictions of run-time performance presenting a non-predictable and non-
deterministic solution. Between these two extremes lies fixed priority schedul-
ing algorithms, such as Rate Monotonic, that is not so efficient for real-time
purposes but exhibits a predictable approach because scheduling is doing offline
and guarantees regarding process deadlines could be obtained using appropri-
ate analysis methods. This paper investigates the use of Rate Monotonic algo-
rithm by making adjustments in order to make it more suitable for real-time
applications. The factors that motivate the interest for fixed priority schedul-
ing algorithms such Rate Monotonic when doing with real-time systems lies in
its associated analysis that could be oriented in two directions: schedulability
analysis and analysis of process interactions. The analyzing process is carried
out using a previously implemented framework that allows modelling, simula-
tion and schedulability analysis for a set of real-time system tasks, and some
of the results obtained are presented.
Keywords: real-time systems, fixed priority preemptive scheduling.

1 Introduction

Real-time systems are often safety critical and require a high quality design in order to
obtain and guarantee the requested properties. The design process consists in building models
on which the required system properties are assessed; based on this previously developed models
an implementation that preserves these properties is further developed.

In order to develop a large-scale real-time system we must be able to manage both the
logical complexity and timing complexity using a highly disciplined approach [10].The problem of
dealing with logical complexity is addressed by the several existing software engineering general
methodologies [11] while timing complexity represents an issue that is addressed by specific
scheduling algorithms.

For real-time systems, two modelling approaches are known in the literature: first of it al-
lows handling of traditional, periodically sampled control systems, and is represented by the so
called timed-triggered approach; the second type of model deals with discrete event systems,
and it is known as the event-triggered approach. If the main advantage of event-driven ap-
proach is flexibility and better resource utilization, the main advantage of time-driven approach
is predictability.
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In the time-triggered approach, all communication and processing activities are initiated at
predetermined points in time: there is only one interrupt and that is the periodic clock interrupt,
which partitions the continuum time into sequences of equally spaced granules. Timed-triggered
tasks are characterized by a period and a deadline; also, knowledge about task’s Worst case
Execution Time (WCET) is generally assumed.

On the other side, event-triggered approach is dictated by the external environment: all
communication and processing activities are initiated whenever a significant change of state, i.e.,
an event other than regular event of a clock tick, is noted. The signalling of significant events
is realized by the well-known interrupt mechanism. The event-triggered based systems require a
scheduling strategy to achieve the appropriate software task that services the event.

In practice, for several real-time applications event-triggered tasks are sporadic, and exhibit a
predictable inter-arrival time. Thus, this time could be seen as task period, deadline being smaller
or equal with this [15]. In practical situations, when dealing with hard real-time issues, mixed
systems are often encountered [13]. For these, a common approach is to model the system as a
timed-triggered one, and deal with events as periodic tasks with inter-arrival times considered
as their period. Of course, if the system requires handling of urgent events, that implies a
pre-emptive scheduling strategy to be able to meet those deadlines.

Consequently, when we are modelling such real-time mixed systems, choosing the right
scheduling strategy is an important aspect, and several issues has to be considered [17]: if we
are considering time-triggered tasks, a static scheduling proves to be efficient both for scheduling
and for the communications purposes. It is important into the design phase to correctly divide
system functionality into tasks and further, tasks with long periods should be statically divided
into subtasks with shorter periods; if sporadic event-triggered tasks occur and they have shorter
deadline that execution time of another task, allowing pre-emption is mandatory and therefore
leading to a pre-emptive scheduling approach.

Therefore, using a static and pre-emptive scheduling strategy together with some initial
reasonable assumptions when constructing task’s model, could provide a solution for analysing
and developing mixed systems [8]. In this case, as the static approach, we consider that fixed
priority assignment can be adopted without loosing the benefits of the fully static approach.

2 Fixed priority pre-emptive scheduling and real-time systems

Fixed priority scheduling algorithms exhibit a predictable approach: because scheduling is
doing offline, guarantees regarding process deadlines could be obtained using appropriate analysis
methods [5]. Fixed priority scheduling has been often criticized as being too static by the
supporters of best effort scheduling and too dynamic by the supporters of cyclic executives. For
building a mixed real-time system from a number of periodic tasks and several sporadic tasks,
static priority pre-emptive scheduler implies that at run time the highest priority task is run,
this pre-empting other lower priority tasks [6].

From a historical perspective, Rate Monotonic scheduling algorithm is the most appropriate
in this sense, because it is pre-emptive and because it is known to be the optimal in their
respective classes [14].

Rate Monotonic scheduling algorithm is an example of a priority driven algorithm with static
priority assignment [2], in the sense that the priorities of all requests are known before their
arrival, the priorities for each task being the same and known a-priori (they are determined only
by the period of task).

Therefore, for the time being, Rate Monotonic is used in most practical applications [3].
The reasons for this choice are the following: easy to implement an to analyze; however, the
schedulability assessment given by Liu and Layland [12] is sufficient (all task sets that pass the
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test are guaranteed to be schedulable) but not necessary (a task set that fails to pass the test is
not necessarily unschedulable) [12]; more predictable, especially in high overloaded conditions;
this prediction is linked to several initial simplifying assumptions and restrictions that Rate
Monotonic has: all tasks are independent and periodic, deadline is equal to their period.

The factors that motivated the interest for fixed priority scheduling algorithms such Rate
Monotonic when doing with real-time systems lies in its associated analysis, which could be
oriented in two directions [3]: schedulability analysis based on worst case execution times of the
processes; one property of the early utilization schedulability analysis is its simplicity both in
concept and in computational complexity. This simplicity comes from the initial assumptions
that are based on constraints upon characteristics of all processes (all processes are periodic
and must have deadline equal to their period) and assumption that process priorities given by
their period (according to rate monotonic policy) are correctly assigned, otherwise analysis is
not efficient and inclusion of aperiodic processes by making them periodic based on estimated
inter-arrival times.

Rate Monotonic priority assignment policy [12] states that process deadlines must be equal
with their respective periods Di = Ti. This assignment could be restrictive, especially for hard
real-time sporadic tasks that have deadlines not related to their inter-arrival times, and hence
they cannot be modelled as simple periodic tasks with period equal with deadline. For this case
the following relation holds:

Ci ≤ Di ≤ Ti (1)

where: Ci represents the computation time for task i Di represents task i deadline Ti represents
task i period

A variation of original Rate Monotonic, called Deadline Monotonic assign priorities in inverse
order to the task deadlines. Deadline Monotonic algorithm is equivalent with Rate Monotonic
when, for all processes Di = Ti. Deadline Monotonic priority assignment is optimal in a similar
manner to Rate Monotonic if there is a feasible priority ordering over a set of processes, a deadline
monotonic priority ordering over those processes will be also feasible [4]. Both Rate Monotonic
and Deadline Monotonic approaches assume that all processes have a common release time: if
processes are permitted to have arbitrary offsets, then optimality could be affected [8,14]. Under
these circumstances, neither priority assignment is optimal [9]; but, if controlled offset is allowed
this property may be not significant affected.

3 Considering the overheads

Even if in most models overhead induced by scheduling is neglected and considered 0, this
is not the case in reality. Generally, implementation scheme for fixed priority schedulers implies
maintaining at least two queues: a ready queue and a waiting queue. The ready queue contains
the tasks that are ready for execution and the waiting queue contains tasks that have already
been executed and they are waiting for the next period. The queues are ordered in different
ways: the ready queue is ordered based on task priority (the most priority task first - for Rate
Monotonic the task with lower period Ti is the most priority task) and the waiting queue is
ordered based on the starting time of the task Ri.

If a task from the waiting queue becomes ready for execution, then it is moved to the ready
queue according to its priority; if the priority of the first task from the ready queue becomes
bigger than the priority of the current task, then a context switch will occur [4]. This leads to
two kinds of overheads: context switching overhead - being the time needed to pre-empt a task,
save its context and load the context of another task and scheduling overhead - the time taken
to move newly arrived or pre-empted tasks between the two queues.
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The common ways to consider these times into a system model implies adding the overhead
times to the known times according to the following [6]: for context switching times, the simplest
way to do it is to increase task computation time Ci of all tasks with the double of estimated
time needed to do of doing the context switch Csw :

Ci = Ci + 2 ∗ Csw (2)

and for scheduling overhead the same approach could be used, this time being added the schedul-
ing overhead time Csch :

Ci = Ci + Csch (3)

Generally, when considering the total of all overheads, an average could be calculated over
all tasks, denoted by Cov, and could be added to each computation time:

Ci = Ci + Cov (4)

This approach of measuring the total system overhead, averaging it and including in all
computation times is simple to be modelled and used [16]. Another way to include overheads
into the model could be considered and modelled as additional tasks, but this complicates it too
much and sometimes is unnecessarily.

When constructing a real-time system model, from the accuracy point of view, it is important
to take into consideration these overheads. But, an important aspect is represented also by the
possibilities of reducing the overheads impact on the overall system’s performance [20]. Because
most of these overheads are linked with pre-emption (both context switching and scheduling over-
heads occur after a task pre-emption), a possibility of doing this could be to reduce the number
of pre-emption over system’s task set. Generally, one of the weaknesses of Rate Monotonic algo-
rithm comes from the high level of overhead that results due to high pre-emptions. Therefore,
reducing unnecessary pre-emptions could have a significant impact on algorithm performance, in
the same time by keeping its simplicity [7].

4 Reducing the number of pre-emptions

The idea of the proposed method is based on the observations derived from Rate Monotonic
Algorithm usage for scheduling real-time tasks (tasks with deadlines), from which a high number
of pre-emptions were noticed. As it is well known, every pre-emption induce a run-time overhead
and we consider that, by reducing the number of pre-emptions in the resulting scheduling scheme,
the overall runtime overhead decreases, and this could result in an increasing efficiency when
we speak about real-time applications.In order to avoid pre-emptions, it is important to know
when they occur: generally, they take place when a higher priority task is activated during the
execution of a lower priority task. Lower priority tasks would experience more pre-emption than
high priority ones, as they stay longer in the ready queue.

To reduce the chance for pre-emption, one possible method implies to reduce the period of
time while a task stays into the ready queue. It should be possible to do this, and one method
is to delay the activation of the task, by setting Ri to a value > 0; of course, this delay should
not have implications to the overall schedulability of the task set, and, consequently, must be
done under strict control. In order to derive such a method, based on an algorithm that delays
start time for a set of tasks, the following task model is considered: every task is denoted by ζi;
each task is periodic and the method applies itself only for periodic tasks, the period of task ζi is
denoted by Ti; Ci represents the worst case execution time (WCET) for task ζi; Pi represents the
priority of task and the priority of each task is fixed; the ratio Ci/Ti represents the utilization
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factor of the task ζi and represents the fraction of processor time that is used by task ζi; the
deadline of a task Di represents a typical task constraint in real-time systems and represents
the time before which the task must complete its execution - usually, the deadline of the task is
relative, meaning that, from the moment when a task ζi arrives, it should finish within Di time
units and in particular, when using Rate Monotonic algorithm, the deadline is considered equal
with task period: Di = Ti; task ready (arrival) time denoted by Ri which represents the moment
of time when the task ζi is ready for execution.

Consequently, the algorithm for ready time modification calculates first the maximum delay
time for each task, in order not to affect the task deadline. For task ζi that is characterized by a
period (and deadline) Ti and has a worst case execution time Ci, the following relation is used:

max_delay(ζi) = Ti − Ci. (5)

Let’s denote with S a task set of size n and consider that tasks are ordered by their priority
(as they appear in the ready queue):

S = {ζ1 ζ2 . . . ζn−1 ζn} (6)

where ζ1 has the highest priority and ζn the lower one.
The algorithm picks every task from S, in the decreasing order of their priority, and verifies if

it is possible to change the ready time Ri; in order to reduce the possibility of pre-emption for the
higher priority task (ζi), the algorithm starts by delaying it as much as possible [1]. Verification
is based on the maximum delay that is possible for each task, calculated as presented in (5)
and take into consideration the computation time for tasks that were already delayed in order
not to compromise the schedulability for the given task. The algorithm tries to delay as much
as possible tasks with high priority, given to the tasks with low priority the chance to be less
pre-empted. The set of tasks that have been delayed during execution of algorithm are included
in DELAYED (corresponding to the waiting queue) and corresponding delay is calculated (Ri).
This will be used further into the simulation tool for modifying ready times. Consequently, we
obtained the following structure of the algorithm:

R1 = max_delay(ζ1) = T1 − C1;
include (ζ1) in DELAYED ;
for(i = 2; i ≤ n; i ++)
{

if ((max_delay(ζi)− Σj in DELAYED Cj) > Ci)
{

Ri = max_delay(ζi)− Σj in DELAYED Cj ;
include(ζj) in DELAYED;

}
else
{
Ri = max_delay(ζi);
}

}

5 Case study analysis and results

The idea of the above algorithm is illustrated considering the case study shown in Figure 1.
Each task is represented by its computation time C, period T and deadline D, and it is assumed
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that release time R for all tasks is null. So, we considered a task set consisting of three tasks ζ1,
ζ2, and ζ3 with the following characteristics:

C1 = 10; T1 = 30; C2 = 30; T2 = 90; C3 = 20; T3 = 120.
We simulated the execution of these tasks using the framework developed in [18, 19] and

the results obtained are presented in Figure 1. The simulation is carried out using a developed
framework which allows modelling, simulation and schedulability analysis for a set of real-time
systems tasks. The tool has a graphical user interface for introducing tasks parameters, such
as: deadline, execution time, priority (as presented in the left panel) permitting that all these
parameters to be saved in a (text) file for each given task, in a specific format. Also, several
scheduling algorithms are implemented into the tool, and the user could choose from a list of
implemented algorithms. These algorithms are grouped into two categories: for periodic and
non-periodic tasks.

For our case study, we consider to work only with Rate Monotonic. The framework uses a
built-in simulator that illustrates a graphical representation of the generated trace of execution
for the set of tasks, according to the chosen scheduling algorithm (as presented in the right panel).
From these results we noticed that task ζ1 exhibits no pre-emption, ζ2 exhibits maximum one pre-

Figure 1: Set of 3 tasks scheduled with Rate Monotonic without modifying start (ready) times

emption and task ζ3 maximum 2 pre-emptions. By applying start times modifications according
to the proposed algorithm, the following release times for the considered tasks were calculated:

i = 1;
R1 = T1 − C1 = 30− 10 = 20;
S = {ζ1};
i = 2; max_delay(ζ2) = T2 − C2 = 90− 30 = 60;
60− 20 = 40⇒ R2 = 40;
S = {ζ1 ζ2};
i = 3; max_delay(ζ3) = T3 − C3 = 120− 20 = 100;
100− 40 = 60 => R3 = 60;
S = {ζ1 ζ2 ζ3};

We modified the release times for our tasks accordingly; consequently, as it is shown into the
new simulation presented in Figure 2, we observed that the number of pre-emption for task ζ3 is
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reduced to maximum one. It is obvious that the number of pre-emptions for task ζ3 is reduced
by this modification.

Figure 2: Set of 3 tasks scheduled with Rate Monotonic with modifying start (ready) times

One thing about our resulting model is no concluding is the delay of the least priority task:
based on the algorithm idea, it should not be delayed at all, because so it has a chance to run
when other tasks have not, due to their delays, and, therefore, the chance for pre-empting it
decreases in these conditions. But, in many cases, an overall lower pre-emption rate is achieved.

6 Conclusions

Starting from the premises that Rate Monotonic algorithm is simpler to implement and ex-
hibits a predictable behaviour resulted from its associated analysis, in this paper, a possible
adaptation of Rate Monotonic algorithm is proposed, in order to overcome some of its disadvan-
tages when using it in real-time applications.

One aspect that has impact on the model overall accuracy takes into consideration the over-
heads implied by the scheduling process by including them into the task’s computation times,
and a possible way of considering this is proposed. Another aspect, with impact on scheduling
overall performance focuses on reducing the number of pre-emptions, accrediting the idea that
by doing this, the performance of the algorithm increases. Pre-emptions were reduced based on
tasks start times modifications, and an algorithm that controls these start time adjustments was
proposed.

The algorithm was tested using several use cases (one example presented in the paper),
pseudo-randomly generated and the same conclusion was reached: by controlling tasks release
times according to the proposed algorithm, in most cases the number of pre-emptions decreases.
Thus, the proposed algorithm together with the implemented tool provides a very powerful
analysis framework that can be used in real-time application modelling and further development.
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