
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 1 (March), pp. 72-80

Evaluation Measures for Partitioning based Aspect Mining
Techniques

G. Czibula, G. S. Cojocar, I. G. Czibula

Gabriela Czibula, Grigoreta Sofia Cojocar, Istvan Gergely Czibula
Babeş-Bolyai University
1, M. Kogălniceanu Street, 400084, Cluj-Napoca, Romania
E-mail: {gabis, grigo, istvanc}@cs.ubbcluj.ro

Abstract: Aspect mining is a research direction that tries to identify cross-
cutting concerns in already developed software systems, without using aspect
oriented programming. The goal is to identify them and then to refactor them
to aspects, to achieve a system that can be easily understood, maintained and
modified. In this paper we propose two new evaluation measures for evaluating
the results of partitioning based aspect mining techniques. A small example
on how to compute them is provided. The applicability of these measures to
different aspect mining techniques is also discussed.
Keywords: partitioning, aspect mining, crosscutting concern, evaluation.

1 Introduction

Nowadays, software systems have become more and more complex and large. A software
system is usually composed of many core concerns and (some) crosscutting concerns (like logging,
exception handling). If core concerns can be cleanly separated and implemented using existing
programming paradigms, this is not true for crosscutting concerns, as a crosscutting concern
has a more system-wide behaviour that cuts across many of the core concerns implementation
modules. The aspect oriented paradigm is one of the approaches proposed, so far, for the design
and implementation of crosscutting concerns. Aspect oriented techniques allow crosscutting
concerns to be implemented in a new kind of module called aspect, by introducing new language
constructs like pointcuts and advices [13].

Kiczales et al. introduce for the first time aspect oriented programming (AOP) in [11]. Since
1997 the aspect oriented paradigm has been slowly adopted by the industry, too, leading to
the appearance of new research problems like software reverse engineering, reengineering, and
refactoring to use the aspect-oriented paradigm in order to benefit from the advantages it brings.

Aspect mining is a research direction that tries to identify crosscutting concerns in already
developed software systems, without using AOP. The goal is to identify them and then to refactor
them to aspects, to achieve a system that can be easily understood, maintained and modified.
The task of crosscutting concerns identification cannot be successfully done using only a manual
approach, as it is a difficult and error-prone process due to the complexity of software systems,
their size, the lack of documentation, etc. As a consequence researchers have focused on devel-
oping tools and techniques that help developers to identify the crosscutting concerns in already
developed software systems. The tools and techniques proposed, so far, try to discover the symp-
toms that an inadequate solution for a crosscutting concern implementation has over a software
system: duplicated code, scattering of concerns throughout the entire system and tangling of
concern-specific code with that of other concerns.

Although aspect mining is a relatively new research domain, many aspect mining techniques
have been proposed. Some use metrics [14], some use formal concept analysis [2, 24, 25], or
execution relations [1]. There are also a few approaches that use clone detection techniques

Copyright c⃝ 2006-2011 by CCC Publications



Evaluation Measures for Partitioning based Aspect Mining Techniques 73

[3, 22] or natural language processing [18]. A few techniques use clustering in order to identify
crosscutting concerns [8, 15,20,23].

There are very few comparisons made between the aspect mining techniques proposed so
far [4,10,16,17], and even less comparisons based on the obtained results [4,17]. One important
cause is the lack of measures for evaluating the results obtained and the quality of the results (i.e.
how well did the technique manage in separating crosscutting concerns from non-crosscutting
concerns, and in separating one crosscutting concern from other crosscutting concerns).

The main contribution of this paper is to propose two new evaluation measures for comparing
partitioning based aspect mining techniques.

The paper is structured as follows. The context in which the measures are defined is intro-
duced in Section 2. The new evaluation measures are defined in Section 3. A small example on
how two compute the measure is given in Section 4. The applicability of the newly introduced
measures is studied in Section 5. Some conclusions and further work are given in Section 6.

2 Formal Model

In [5] Cojocar and Şerban have proposed a formal model for partitioning based aspect mining.
The measures that we proposed in this paper are based on their model. In the following we briefly
introduce this model.

A software system S is viewed as a set of elements from the system: S = {s1, s2, . . . , sn},
where si, 1 ≤ i ≤ n. An element can be a statement, a method, a class, a module, etc. The
number of elements of the system is denoted by n (n = |S|).

A crosscutting concern is considered as a set of elements C ⊂ S, C = {c1, c2, ..., cm}, elements
that implement this concern. CCC denotes the set of all crosscutting concerns that exist in the
system S, CCC = {C1, C2, ..., Cq}, and q denotes the number of crosscutting concerns in the
system S, q = |CCC|. It is considered that two different crosscutting concerns do not have
elements in common, meaning that Ci ∩ Cj = ∅,∀i, j, 1 ≤ i, j ≤ q, i ̸= j.

The problem of aspect mining is viewed as the problem of identifying a partition K of the
software system S, such that CCC ⊂ K.

Definition 1. Optimal partition of a system S.
Being given a partition K = {K1,K2, ...,Kp} of the system S, K is called an optimal partition
of the system S with respect to the set CCC = {C1, C2, ..., Cq} of all crosscutting concerns, iff:
(1) p ≥ q;
(2) ∀C ∈ CCC, ∃KC ∈ K such that C = KC .

From the aspect mining point of view, K is an optimal partition of the system S if and only
if the components of each crosscutting concern C ∈ CCC are in the cluster KC and KC contains
only the elements of C.

3 Evaluation measures

In this subsection we propose two measures for evaluating a partition of a software system
from the aspect mining point of view. Such a partition can be obtained using a partitioning
algorithm, such as a clustering algorithm.

In the following, let us consider a partition K = {K1, . . . ,Kp} of a software system S and
CCC = {C1, C2, ..., Cq} the set of all crosscutting concerns from S. We assume that each
crosscutting concern consists of a set of elements, i.e., Ci = {ci1 , ci2 , . . . , cimi

}.
Definitions 2 and 6 introduce evaluation measures for a partition of a software system from

the aspect mining point of view.



74 G. Czibula, G. S. Cojocar, I. G. Czibula

Definition 2. Cohesion of Recovered Crosscutting Concerns - CORE.
Let K be a partition of a software system identified by a partitioning based aspect mining

technique.
The cohesion of crosscutting concerns CCC recovered in partitionK, denoted by CORE(CCC,K),

is defined as: CORE(CCC,K) = 1
q

q∑
i=1

core(Ci,K). core(Ci,K) is the cohesion of crosscutting

concern Ci in partition K and is defined as: core(Ci,K) =

∑
k∈MCi

|Ci ∩ k|
|Ci ∪ k|

|MCi
| , where MCi is defined

as: MCi = {k | k ∈ K, Ci ∩ k ̸= ∅}.

For a given crosscutting concern C ∈ CCC, core(C,K) defines the degree to which the
components of C belong together.

Lemma 3. If K is a partition of the software system S and CCC is the set of crosscutting
concerns in S, then the following inequality holds: 0 ≤ CORE(CCC,K) ≤ 1.

For lack of space, we will not give the proof of Lemma 3.

Remark 4. Larger values for CORE indicate better partitions with respect to CCC, meaning
that CORE has to be maximized.

In the following we give a necessary and sufficient condition for a partition K to be an optimal
partition, with respect to the set of crosscutting concerns from the software system S.

Lemma 5. If K = {K1,K2, . . . ,Kp} is a partition of the software system S, and CCC is the
set of crosscutting concerns in S, then K is an optimal partition iff CORE(CCC,K) = 1.

For lack of space, we will not give the proof of Lemma 5.
The next measure determines the percentage of elements that must be analyzed in order to

discover all the crosscutting concerns from the system. Usually, partitioning based aspect mining
techniques return the clusters to be analyzed in a specific order.

Let σ be a permutation of the set {1, 2, . . . p}. σ denotes the order in which the clusters
from a partition of the software system are analyzed: Kσ(1) is the first analyzed cluster, Kσ(2)

is the second, etc. The permutation σ is particular to each partitioning based aspect mining
technique.

Definition 6. Complexity of Crosscutting Concerns Discovery - CODI. Let σ be
a permutation of the set {1, 2, . . . p}. The complexity of crosscutting concerns CCC dis-
covery in partition K, denoted by CODI(CCC,K, σ), is defined as: CODI(CCC,K, σ) =

1
q

q∑
i=1

Codi(Ci,K, σ). Codi(Ci,K, σ) is the percentage of the elements that need to be ana-

lyzed in the partition K in order to discover the crosscutting concern Ci, and it is defined

as: Codi(Ci,K, σ) = 1
mi

mi∑
j=1

codi(cij ,K, σ). codi(cij ,K, σ) is the percentage of the elements that

need to be analyzed in the partition K in order to discover the element cij of crosscutting concern

Ci, and it is defined as: codi(cij ,K, σ) = 1
n

r∑
l=1

|Kσ(l)|., where r ∈ {1, , 2, . . . , p} and it has the

property that cij ∩Kσ(r) ̸= ∅.



Evaluation Measures for Partitioning based Aspect Mining Techniques 75

In our view CODI(CCC,K, σ) gives the complexity of crosscutting concerns discovery, and
defines the percentage of the number of elements that need to be analyzed in the partition in
order to discover all the crosscutting concerns that are in the system S. We consider that a
crosscutting concern was discovered when all the elements that implement it were analyzed.

Lemma 7. If K is a partition of the software system S, σ is a permutation of K and CCC is the
set of crosscutting concerns in S, then the following inequality holds: 0 < CODI(CCC,K, σ) ≤ 1.

For lack of space, we will not give the proof of Lemma 7.

Remark 8. Smaller values for CODI indicate shorter time for analysis, meaning that CODI has
to be minimized.

Based on the evaluation measures defined above, the comparison of the results obtained by
different aspect mining techniques can be made from two different criteria:

1. Partitioning. The degree to which each crosscutting concern is well placed in the partition
(using measure CORE ).

2. Ordering. How relevant is the order in which the clusters are analyzed (using measure
CODI ).

In order to compare two partitions obtained by partitioning based aspect mining techniques,
we introduce Definition 9. The definition is based on the properties of the evaluation measures
defined above and considers both criteria presented above.

Definition 9. If K1 and K2 are two partitions of the software system S, CCC is the set of
crosscutting concerns in S, and σ1 and σ2 are permutations of K1 and K2 respectively, then K1

is better than K2 iff the following inequalities hold: CORE(CCC,K1) ≥ CORE(CCC,K2),
CODI(CCC,K1, σ1) ≤ CODI(CCC,K2, σ2).

For the above definition we can remark the following:

Remark 10. If at least one of the inequalities from Definition 9 is not satisfied, we cannot decide
which of the partitions K1 or K2 is better from the aspect mining point of view (considering
simultaneously both criteria).

Remark 11. However, the importance of the above mentioned comparison criteria may depend
on the user of the aspect mining technique. In our view, the most important criterion is Par-
titioning (how well the crosscutting concerns are grouped) and the last one is Ordering (how
quickly the crosscutting concerns are discovered).

4 Example

In the following, a small example showing how to compute CORE and CODI measures is
presented.

Let S = {s1, s2, ..., s17} be a software system with 17 elements, and let C1 = {s2, s3, s17} and
C2 = {s1, s4, s8} be the crosscutting concerns that exist in the system S (CCC = {C1, C2}).

Let K = {K1,K2,K3,K4,K5} be a partition of the software system S, where: K1 = {s2, s16};
K2 = {s3, s7, s8, s9, s17}; K3 = {s1, s4, s5, s12}; K4 = {s6, s10, s13}; K5 = {s11, s14, s15}.



76 G. Czibula, G. S. Cojocar, I. G. Czibula

CORE

Using Definition 2, we have to compute core(C,K) for each C ∈ CCC.

C1 First we have to determine the set MC1 . It consists of two elements: MC1 = {K1,K2}.

The value of core(C1,K) = 1
2

∑
k∈MC1

|C1 ∩ k|
|C1 ∪ k|

. We obtain that core(C1,K) = 1
2(

|C1∩K1|
|C1∪K1| +

|C1∩K2|
|C1∪K2|) =

1
2(

1
4 + 2

6) =
7
24 .

C2 The set MC2 also consists of two elements: MC2 = {K2, K3}. Based on Definition 2

core(C2,K) = 1
2

∑
k∈MC2

|C2 ∩ k|
|C2 ∪ k|

. We obtain that core(C2,K) = 1
2(

|C2∩K2|
|C2∪K2| +

|C2∩K3|
|C2∪K3|) =

1
2(

1
7 + 2

5) =
19
70

Based on the Definition 2, CORE(CCC,K) = 1
2(core(C1,K) + core(C2,K)) = 1

2(
7
24 +

19
70) =

473
1680 .

CODI

We consider the permutation σ in which the partition K is analyzed to be the identity
permutation.

Using Definition 6, we have to compute Codi(C,K, σ) for each C ∈ CCC.

C1 Based on the definition, Codi(C1,K, σ) = 1
3 [codi(s2,K, σ)+codi(s3,K, σ)+codi(s17,K, σ)] =

1
3 [

|K1|
17 + |K1|+|K2|

17 + |K1|+|K2|
17 ] = 1

3(
2
17 + 2+5

17 + 2+5
17 ) = 16

51

C2 Based on the definition, Codi(C2,K, σ) = 1
3 [codi(s1,K, σ)+codi(s4,K, σ)+codi(s8,K, σ)] =

1
3 [

|K1|+|K2|+|K3|
17 + |K1|+|K2|+|K3|

17 + |K1|+|K2|
17 ] = 1

3(
2+5+4

17 + 2+5+4
17 + 2+5

17 ) = 29
51

Based on the definition, CODI(CCC,K, σ) = 1
2 [Codi(C1,K, σ)+Codi(C2,K, σ)] = 1

2(
16
51+

29
51) =

45
102 .

For this example, an optimal partition is: K1 = {s6, s9, s10}; K2 = {s2, s3, s17}; K3 =
{s11, s12, s14, s15}; K4 = {s5, s7, s13, s16}; K5 = {s1, s4, s8}.

5 Applicability

In this section we present some of the existing approaches in aspect mining. For each approach
we analyze the applicability of the evaluation measures proposed in this paper.

Marin et al [14] have proposed an aspect mining technique that uses the fanin metric [9].
Their idea is to search for crosscutting concerns among the methods that have the value of the
fanin metric greater than a given threshold. The result obtained by this technique can be viewed
as a partition of the software system to be mined. The partition contains two clusters: the first
one contains the methods that have the fanin greater than the given threshold and the second
contains the remaining methods. So, the evaluation measures CORE and CODI can be applied
for the result of this technique.

A graph based approach in Aspect Mining is introduced in [19]. The basic idea of this
technique is to determine methods that are similar. The approach is to construct a graph
between the methods of the software system, to determine the connex components of this graph,
called clusters, and then to identify crosscutting concerns in the obtained clusters. As the set of
connex components determined by this technique represents a partition of the analyzed software



Evaluation Measures for Partitioning based Aspect Mining Techniques 77

system, the evaluation measures CORE and CODI can also be applied for the result of this
technique.

There are a few aspect mining techniques proposed in the literature that use clustering in
order to identify crosscutting concerns [8, 20,23].

He and Bai [8] have proposed an aspect mining technique based on dynamic analysis. They
obtain execution traces for each use case, but they apply clustering and association rules to
discover aspect candidates.

Shepherd and Pollock [23] have proposed an aspect mining tool based on clustering. They
use hierarchical clustering to find methods that have common substrings in their names. The
obtained clusters are then manually analyzed to discover crosscutting concerns.

A clustering approach for identifying crosscutting concerns is proposed and a partitional
clustering algorithm named kAM is introduced in [20].

An evolutionary approach in aspect mining is introduced in [21] and two genetic clustering
algorithms used to identify crosscutting concerns are proposed. The clustering approach proposed
in [21] is based on the use of genetic algorithms [6].

As all the above presented clustering techniques provide a partition of the software system,
the applicability of CORE and CODI evaluation measures is assured.

There are in the literature some aspect mining techniques, briefly presented in the following,
that do not provide a partition of the entire analyzed software system, but a subset of it. CORE
and CODI measures cannot be applied for these techniques, as they require a partition of the
entire system. However, the proposed measures can be extended in order to also consider these
kind of situations. In the future we plan to tackle these particular cases.

Breu and Krinke [1] have proposed an aspect mining technique based on dynamic analysis.
The mined software system is run and program traces are generated. From program traces,
recurring execution relations that satisfy some constraints are selected. Among these recurring
execution relations they search for aspect candidates. This approach is adapted to static analysis
in [12]. In this approach the recurring execution relations are obtained from the control flow graph
of the program.

Tonella and Ceccato [24] have also proposed an aspect mining technique based on dynamic
analysis. An instrumented version of the mined software system is run and execution traces for
each use case are obtained. Formal concept analysis [7] is applied on these execution traces and
the concepts that satisfy some constraints are considered as aspect candidates.

Tourwé and Mens [25] have proposed an aspect mining technique based on identifier analysis.
The identifiers associated with a method or class are computed by splitting up its name based
on where capitals appear in it. They apply formal concept analysis on the identifiers to group
entities with the same identifiers. The groups that satisfy some constraints and that contain a
number of elements larger than a given threshold are considered as aspect candidates.

Bruntink et al [3] have studied the effectiveness of clone detection techniques in aspect mining.
They did not propose a new aspect mining technique, but they tried to evaluate how useful clone
detection techniques are in aspect mining.

Shepherd et al [22] have proposed an aspect mining technique based on clone detection.
They search for code duplication in the source code using the program dependency graph. The
obtained results are further analyzed to discover crosscutting concerns.

Breu and Zimmermann [2] have proposed an history based aspect mining technique. They
mine CVS repositories for add-call transactions on which they apply formal concept analysis.
Concepts that satisfy some constraints are considered aspect candidates.

Sampaio et al [18] have proposed an aspect mining technique to discover aspect candidates
early in the development lifecycle. They use natural language processing techniques on different
documents (requirements, interviews, etc.) to discover words that are used in many sentences.



78 G. Czibula, G. S. Cojocar, I. G. Czibula

The words that have a high frequency and have the same meaning in all the sentences are
considered aspect candidates.

6 Conclusions and further work

In this paper we have proposed two new measures (CORE and CODI) for evaluating the
results of partitioning based aspect mining techniques. We have also proved three important
lemmas related to the proposed evaluation measures. A small example on how to compute these
measures was provided. We have also discussed the applicability of these measures to different
aspect mining techniques.

Further work may be done in the following directions: to adapt the measures to consider the
case in which the crosscutting concerns have overlapping elements (the same element belongs
to different crosscutting concerns); to evaluate some of the existing aspect mining techniques
using the proposed measures; to extend the proposed evaluation measures in order to consider
the situation in which the result obtained by an aspect mining technique is not a partition of
the entire software system.

Acknowledgements

This work was supported by CNCSIS -UEFISCSU, project number PNII - IDEI 2286/2008.

Bibliography

[1] S. Breu and J. Krinke. Aspect Mining Using Event Traces. In Proceedings of International
Conference on Automated Software Engineering (ASE), pages 310–315, 2004.

[2] S. Breu and T. Zimmermann. Mining Aspects from Version History. In S. Uchitel and
S. Easterbrook, editors, 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006). ACM Press, September 2006.

[3] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the use of clone detec-
tion for identifying crosscutting concern code. IEEE Transactions on Software Engineering,
31(10):804–818, 2005.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A Qualitative
Comparison of Three Aspect Mining Techniques. In IWPC ’05: Proceedings of the 13th
International Workshop on Program Comprehension, pages 13–22. IEEE Computer Society,
2005.

[5] G. S. Cojocar(Moldovan) and G. Serban. A Formal Model for Partitioning based Aspect
Mining. INFOCOMP Journal of Computer Science, Brazil, 6(3):19–26, 2007.

[6] C. Cubillos, E. Urra and N. Rodríguez. Application of Genetic Algorithms for the DARPTW
Problem. International Journal of Computers, Communication and Control, Vol. IV, No.
2:127-136, 2009.

[7] B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg, New
York, 1996.

[8] L. He and H. Bai. Aspect Mining using Clustering and Association Rule Method. Interna-
tional Journal of Computer Science and Network Security, 6(2):247–251, February 2006.



Evaluation Measures for Partitioning based Aspect Mining Techniques 79

[9] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996.

[10] A. Kellens, K. Mens, and P. Tonella. A Survey of Automated Code-level Aspect Mining
Techniques. Transactions on Aspect-Oriented Software Development, Special Issue on Soft-
ware Evolution, VI(LNCS 4640):145–164, 2007.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win. Aspect-Oriented Programming. In Proceedings European Conference on Object-Oriented
Programming, volume LNCS 1241, pages 220–242. Springer-Verlag, 1997.

[12] J. Krinke. Mining control flow graphs for crosscutting concerns. In 13th Working Conference
on Reverse Engineering: IEEE International Astrenet Aspect Analysis (AAA) Workshop,
pages 334–342, 2006.

[13] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions Co., 2003.

[14] M. Marin, A. van, Deursen, and L. Moonen. Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004)., pages
132–141. IEEE Computer Society, 2004.

[15] G. S. Moldovan and G. Serban. Aspect Mining using a Vector-Space Model Based Clustering
Approach. In Proceedings of Linking Aspect Technology and Evolution (LATE) Workshop,
pages 36–40, Bonn, Germany, March, 20 2006. AOSD’06.

[16] B. Nora, G. Said, and A. Fadila. A Comparative Classification of Aspect Mining Approaches.
Journal of Computer Science, 2(4):322–325, 2006.

[17] C. K. Roy, M. G. Uddin, B. Roy, and T. R. Dean. Evaluating Aspect Mining Techniques: A
Case Study. In ICPC ’07: Proceedings of the 15th IEEE International Conference on Program
Comprehension, pages 167–176, Washington, DC, USA, 2007. IEEE Computer Society.

[18] A. Sampaio, N. Loughran, A. Rashid, and P. Rayson. Mining Aspects in Requirements.
In Early Aspects 2005: Aspect-Oriented Requirements Engineering and Architecture Design
Workshop (held with AOSD 2005), Chicago, Illinois, USA, 2005.

[19] G. Serban and G. S. Moldovan. A Graph Algorithm for Identification of Crosscutting
Concerns. Studia Universitatis Babes-Bolyai, Informatica, LI(2):53–60, 2006.

[20] G. Serban and G. S. Moldovan. A New k-means Based Clustering Algorithm in Aspect
Mining. In Proceedings of 8th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC’06), pages 69–74, Timisoara, Romania, September, 26-29
2006. IEEE Computer Society.

[21] G. Serban and G. S. Moldovan. Aspect Mining using an Evolutionary Approach. WSEAS
Transactions on Computers, 6(2):298–305, 2007.

[22] D. Shepherd, E. Gibson, and L. Pollock. Design and Evaluation of an Automated Aspect
Mining Tool. In 2004 International Conference on Software Engineering and Practice, pages
601–607. IEEE, June 2004.

[23] D. Shepherd and L. Pollock. Interfaces, Aspects, and Views. In Proceedings of Linking
Aspect Technology and Evolution Workshop(LATE 2005), March 2005.



80 G. Czibula, G. S. Cojocar, I. G. Czibula

[24] P. Tonella and M. Ceccato. Aspect Mining through the Formal Concept Analysis of Execu-
tion Traces. In Proceedings of the IEEE Eleventh Working Conference on Reverse Engineering
(WCRE 2004), pages 112–121, November 2004.

[25] T. Tourwé and K. Mens. Mining Aspectual Views using Formal Concept Analysis. In SCAM
’04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE International
Workshop on (SCAM’04), pages 97–106, Washington, DC, USA, 2004. IEEE Computer So-
ciety.


