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Abstract: Satellite communication is regarded as a promising way to achieve
seamless global coverage with an array of advantages over the traditional ter-
restrial network. However, the non-uniform distribution of users and the highly
topological dynamics have been a matter of facts. The traditional load balanc-
ing technique is able to guarantee a better traffic distribution around the Inter
Satellite Links with heavy loads after considering the non-uniform distribution
of users, but it transmits load information passively and fails to provide a fair
traffic distribution over the entire constellation. Given the highly topologi-
cal dynamics, traditional routing protocols may experience the convergence
processes frequently or use a large amount of storage to keep the snapshots.
This paper proposes a novel routing protocol named LPR for the Satellite IP
Networks, which transmits the bottleneck link load information to upstream
satellites in a Hop-by-Hop manner actively, to guarantee a better distribution
of traffic among satellites. In response, upstream satellites select less con-
gested paths and communicate a portion of data according to the priority of
different classes of traffic. In addition, LPR applies the geographical position
when selecting the routing path to eliminate the convergence process which
may cause the routing tables invalid. Finally, various aspects of performance
of LPR have compared with other mechanisms. Our evaluations show that a
routing protocol with load-aware and position-aided leads to higher through-
put and better traffic distribution compared to the traditional routing protocol
and load balancing technique.
Keywords: satellite networks, load balancing, position, routing.

1 Introduction

Satellite networks exhibit unique features and offer an array of advantages over traditional
terrestrial networks. They are able to provide coverage to extensive geographic areas and to
interconnect among remote terrestrial networks. A satellite communicates with other satellites
via inter-satellite links(ISLs). The links between satellites in the same plane are called intra-
plane ISLs. The links between satellites in different planes are called inter-plane ISLs. Satellites
communicate with the ground stations over user data links(UDL).

LEO satellites provide short round-trip delays and have been the focus of several researches
for a period of time [1], [2]. Given recent advancements in satellite communications, researchers
find that a combination of different layers of satellites would yield a better performance than
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these layers individually. Researchers have proposed severals routing protocols for multi-layered
satellite networks, such as MLSR [3], SGRP [4], SOS [5] et. al. MLSR is a link state routing
protocol for multi-layered satellite networks. SGRP is a multi-layered satellite network routing
protocol based on snapshots. In these multi-layered satellite network routing protocols, LEO
satellites transmit data, and MEO/GEO satellites are managers and compute the routing paths.
Another type of satellite network routing protocol is based on geographical location, such as
LPDB [6]. LPDB utilizes satellites’ inherent broadcast capabilities, and predict transmission
direction according to the geographical location.

The majority of the routing protocols have convergence processes to collect information and
update routing tables when the topology changes, however satellites move rapidly relative to the
surface of the Earth and to the ground stations(LEO satellites speed at over 2500km/hour [7])
and a lot of packets may be lost during the convergence process, due to routing tables becoming
invalid. Furthermore, satellites’ rapid movements cause frequent convergence processes, which
increases the algorithms’ overhead. When satellites use routing protocols based on snapshots,
it takes a large amount of storage. If satellites’ links interrupted, routing tables of the current
snapshot and the following snapshots would be invalid, and in turn it takes a long interval for
the central control nodes, such as ground stations, GEO/MEO, to calculate new routing tables
and update routing tables for the satellites.

In addition, an important missing point in the previous designs consists in their focus on
searching for the paths without any consideration of the total traffic distribution over the entire
constellation, which leads to unfair distribution of traffic. Recently, researchers propose some
load balance mechanisms, such as CEMR [8], ELB [9] et. al. CEMR is based on a cost metric
that involves both propagation and queuing delays, however it does not reflect the congestion
state of the next hop, nor does it estimate the queuing delay a packet may experience there. ELB
is an explicit load balancing mechanism that classifies users into three classes. Neighboring satel-
lites exchange load information and reduce data forwarding rates when the queue occupancies
exceed a pre-determined threshold. However, ELB only exchanges information among neigh-
boring satellites actively and it takes a long interval to notify sources of the congestion state.
Furthermore, although ELB applies a routing metric that instantly reflects both the one-way
propagation delay and the instant queuing delay to avoid loops, the traffic forwarding may still
cause loops.

The objective of this paper is to design a novel satellite network routing protocol named
LPR (Load-aware and Position-aided Routing), which is able to guarantee fair distribution of
traffic among the entire constellation and eliminate the convergence process. LPR calculates
every link’s load information and transmits it to the upstream satellites actively. LPR calculates
the next hop set based on geographical position, and the next hop set includes a main path
and several alternative paths. LPR transmits traffic on the main path when the load on the
main path is low, and begins to communicate a portion of traffic on the alternative paths when
the load on the main path becomes high. The main path is the routing path with the shortest
distance.

2 Dissemination and Estimation of Load Information

2.1 Load Transmission

In traditional load balancing technique, the load information is exchanged among neighboring
satellites. It is able to achieve better traffic distribution than the routing protocols which do
not take traffic distribution into account, but the ISLs are expected to be heavily loaded around
the overload region and others remain underutilized, and in turn it fails to achieve fair traffic
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distribution over the entire constellation, as in Figure 1.
In LPR, each satellite calculates the load information and compares its own link load with

the received link load , and updates the link load, if the local link load is larger than the
received link load. Then satellites transmit the load information in a Hop-by-Hop manner. In
other words, each satellite transmits the bottleneck link load information to upstream satellites
actively. The upstream satellites receive the bottleneck link load, and begin to detour traffic when
the bottleneck link load is larger than the threshold, resulting that all upstream satellites on the
transmission path are able to communicate a portion of data when there is a link congested. In
turn, the traffic is distributed fairly over the entire constellation and satellites are able to return
back to free state quickly, as in Figure 2.

In addition to the fair traffic distribution, LPR is able to disseminate the load information
instantly to all upstream satellites. In traditional load balancing technique, it takes a relatively
long interval to transmit the overload information to upstream satellites, for the traditional load
balancing technique only transmits load information actively to neighboring satellites, and load
information is transmitted passively to the upstream satellites. Let I and O denote the total
input and output traffic at a given satellite. A satellite is considered to be overloaded if the
load exceeds the threshold. Let tn denote the time for satellite n becomes overloaded when I is
larger than O. Let dn denote the transmission delay between satellite n and satellite n + 1. In
traditional load balancing technique, it takes

∑j−1
n=i (tn + dn) for satellite i to know the overload

sate originated from satellite j. But in LPR, it only takes
∑j−1

n=i dn for satellite i to know the load
information of satellite j, due to the active transmission of load information in a Hop-by-Hop
manner.

Figure 1: Traditional Load Balancing

Figure 2: LPR’s Load Balancing
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2.2 Load Estimation and Setting of Thresholds

In LPR, satellites keep a virtual queue for every link and estimate link load Rl over an
appropriate interval time tR, and tR is estimated according to RTT in one hop. Rl is computed
similar to [10]:

Rl =
λl + kq · ql
γl · Cl · tR

(1)

Here the definitions of λl and ql are different from [10]. λl is the total amount of input data in a
virtual queue for one link during tR, and ql is the persistent queue length of a virtual queue for
one link during tR . kq controls how fast the persistent queue drains, γl is the target utilization
that sets close to 1, and Cl is the link capacity. The input traffic λl and the persistent queue
length ql are measured using bytes [10]. LPR sets kq to 0.8 to make full use of the limited memory
space. The persistent queue length ql is measured by using a low-pass filter that samples the
instantaneous queue size, q(t), every tR/20 .

2.3 Setting of Detouring Ratio

The objective of setting the detouring ratio is to allow the satellites’ overloaded links to
return back to light load state and keep this state for at least a period of θ.

Let It denote the total rate of traffic coming from terminals to the bottleneck link within the
coverage area of a satellite, In denote the total rate of traffic coming from neighboring satellites
to the bottleneck link, O denote the total rate of output traffic of the bottleneck link, and ld
denote the ISL delay. A satellite receives link load Rl(t) from neighboring satellites at time
(t + ld). Rl(t) is the neighboring satellite’s link load at time t, and the satellite’s link load at
time (t+ ld) is Rl(t+ ld) :

Rl(t+ ld) =
γl + kq · (ql + (It + In −O) · Id)

γl · Cl · tR
(2)

In order to ensure a prompt recovery and a residual time in the light load for at least θ, the new
rate of traffic coming from neighboring satellites Inewn should satisfy:

Rl(t+ Id + θ) =
γl + kq · (ql + (It + In −O) · Id + (It + Inewn −O) · θ)

γl · Cl · tR
< threshold (3)

threshold is the link load’s threshold. If the link load is larger than threshold, the link is
overloaded and satellites begin to detour a portion of traffic according to the detouring ratio on
the alternative paths. The traffic detouring ratio φ can be computed as:

φ = 1−min(max(0,
Inewn

In
), 1) (4)

3 Load-aware and Position-aided Routing

3.1 Path Selectioin

The key technologies required to support positioning over satellite systems have been devel-
oped, such as GPS, Galileo and GLONASS. With these advancements, satellites are able to get
the high precision orbit determination. In LPR, path selection is performed by using the position.
LPR calculates the routing path for every arriving packet, instead of maintaining routing tables
to avoid the convergence process, however, it takes a large amount of computing resources. So
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satellites cache the routing results until the topology state changes, to reduce the computation
overhead.

Step 1: Predicting transmission direction-The polar constellation networks have orbital
seams, and LPR assumes that there are no cross-seam links, for the regular hand over as satel-
lites pass. Satellites would transmit receiving packets cross seam, if the destination and current
satellites located on different side of the orbital seam. The orbital seams are located between the
fixed planes of ascending and descending satellites in the same layer and in turn LPR is able to
utilize the longitude difference between the orbital plane of current satellites and the orbital seam
to judge whether packets should cross the seams or not. Assuming that satellite A’s geographical
position is (longa, latitudea).The points of the intersections of the orbital seams and the equator
are Left(longleft_seam, 0) and Right (longright_seam, 0). The point of the intersection of the
plane of satellite A and the equator is A′(plong, 0):

plong = longa + arcsin(tan(latitudea)/ tan(inclination)) (5)

where inclination is the constellation’s inclination angle, and the constellation is composed of
satellites in one layer. Let left_seam_diff denote the longitude difference between A′ and
Left and right_seam_diff denote the longitude difference between A′ and Right.

left_seam_diff = plong − longleft_seam (6)

right_seam_diff = longright_seam − plong (7)

left_seam_diff and right_seam_diff are fixed in the same layer. Assuming that the point
of intersection of the destination and the equator is (longdest, 0). If the difference between plong
and longdest is less than left_seam_diff or right_seam_diff , packets will not be transmitted
across the orbital seams and A’s neighboring satellites set Nei(A) includes all satellites having
ISLs with A, otherwise packets will be transmitted across the orbital seams and Nei(A) only
includes satellites which are able to transmit packets across the seams by means of passing
through the poles or another satellites layer. After estimating neighboring satellites set Nei(A),
satellite A calculates the distance from x , where x ∈ Nei(A) , to the destination to get next
hop set N(x) :

N(x) = {x|D(x, dest) < D(A, dest), x ∈ Nei(A)} (8)

In multi-layered satellite networks, all satellites are projected to the surface of the Earth when
calculating the distance. If several satellites in different layers are projected in one point on the
surface of the Earth, the satellite in the same layer with the sender has the highest priority.

Step 2: Selecting next hop-After predicting transmission direction, satellite A will choose
next hop from N(x) depending on the load information collecting from the transmission paths.
LPR transmits traffic on the main path when the load is low, and begin to detour traffic when
the load of the main path becomes high. LPR classifies traffic into three types, similar to [11],
to guarantee the QoS requirements. Class A is delay-sensitive traffic, Class B is through-put
sensitive traffic, and Class C is best effort traffic. When the load increases, LPR starts detouring
traffic of Class C. If the requested detouring ratio of traffic is larger than the traffic percentage
of Class C, the traffic of Class B is detoured as well. If the requested detouring ratio of traffic
φ is larger than the traffic percentage of Class C and Class B, the traffic of A begins to detour.
Let a, b and c denote the predicted traffic ratio of class A, B and C, the traffic detouring ratio
is shown in Table 1.

3.2 Loop Avoidance

In LPR, forwarding traffic depending on the geographical position and the load information
may cause loops. To cope with this issue, LPR adds the routing path into the packet header
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Table 1: Traffic Detouring Ratio

Class A Class B Class C
φ < c 0 0 φ

c

c ≤ φ < (b+ c) 0 φ−c
b 1

φ ≥ (b+ c) φ−b−c
a 1 1

after selecting the next hop, to form the traversed link set LS. Consider satellite A sending the
set of traversed link LS to satellite B, and satellite B will not select links in the LS. However it
would take a lot of bandwidth to transmit the traversed link set information. LPR proposes a
mechanism to reduce this overhead at the expense of local mapping. Considering that satellite
A associates a traversed link set LS to labelLS , and sends the traversed link set LS and the
mapping label labelLS to satellite B. Satellite B will establish a mapping labelLS → LS and
send an acknowledgement to Satellite A. After satellite A receives the acknowledgement of the
mapping from satellite B, satellite A only includes labelLS rather than the entire traversed link
set LS in the packet header. Labels exchange among neighboring satellites do not have global
meaning. Furthermore, a time-to-live value T is associated with a mapping at the receiver and
the mapping is deleted, if no packet with the label associated with this mapping is received for T .
Then the receiver notify the sender of deleting the timeout mapping labelLS → LS. Considering
that satellite B finds that labelLS → LS is timeout, satellite B will delete the mapping and notify
satellite A that the mapping is timeout. Satellite A will delete the mapping after receiving the
notification.

4 Simulation Setup

In this section, we describe the simulation topology and parameters that have been used
to compare the performance of LPR, Dijkstra, ELB on Dijkstra and Snapshot [12]. We have
used OMNeT++ simulator [13] and developed a constellation of Iridium satellites and the main
parameters are shown in Table 2.

Table 2: Main Parameters of Satellite Topology

Parameters Values
Satellite Number 66
Orbit Altitude 780km

Inclination Angle 84.4degrees
ISLs 2 Intra-SLs, 2Inter-SLs

Polar Area Border 70degrees
Plane Number 6
Seam Links no

Constellation Type Polar

It is assumed that each satellite maintains four ISLs with its neighboring satellites. Uplinks,
downlinks and ISLs are each given a capacity equal to 25Mbps. The average packet size is set to
1KB. Lengths of drop-Tail based buffers equal to 200 KB. Simulations are all run for 2 hours, for



Load-aware and Position-aided Routing in Satellite IP Networks 169

LEO satellite constellation operates at the altitude of 780 km with the system period of about
100 minutes.

In the simulation, we consider 100 data flows. The source and destination end-terminals
are dispersed all over the world and the distribution of end-terminals is shown in Table 3. The
traffic distribution is identical to [14]. The sources send data at constant rates from 0.8 Mbps to
1.5 Mbps. The traffic percentages of delay-sensitive traffic, throughput-sensitive traffic and best
effort traffic are set to 20%,30% and 50%.

Table 3: Distribution of End Users

North America South America Europe Africa Asia Oceania
End Users Number 35 10 25 5 20 5

5 Simulation Results

In this section, we will show the performance results of LPR in the presence of different traffic
classes in terms of average transmission delay and average throughput, and will compare the load
balancing index among LPR, ELB on Dijkstra, Snapshot and Dijkstra.

5.1 Multiple Traffic Classes

The performance of LPR with multiple traffic classes is compared with Dijkstra algorithm.
Figure 3 shows the average packet transmission delay. The delay of packets belonging to the
delay-sensitive traffic is smaller compared to other types of traffic This is because the delay-
sensitive data is always sent via the paths with the shortest distance. When the traffic load
gets higher (the individual transmission rate is larger than 1.3Mbps), Dijkstra exhibits the min-
imum transmission delay, but at the expense of significant packet drops, as shown in Figure
4. LPR’s transmission delay increases higher, due to the traffic detouring which increases the
communication delay.
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Figure 3: Packets Transmission Delay

As shown in Figure 5, the average throughput of Dijkstra is always lower than other schemes,
due to the overflow of the drop-tail buffers, as shown in Figure 4. Throughput of the delay-
sensitive traffic outperforms the other two types of traffic, because of the detouring priority.
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Figure 4: Packets Drop Rate
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Figure 5: Throughput

These results demonstrate that LPR is able to guarantee QoS requirements by the effective load
balance mechanism and a routing method without the convergence process.

5.2 Load Balancing Index

To evaluate the traffic distribution of LPR, this paper compares LPR with Dijkstra, Snapshot
and ELB with the following traffic distribution index:

f =
(
∑n

i=1xi)
2

n ·
∑n

i=1x
2
i

(9)

Where n is the total number of ISLs and UDLs, xi denotes the actual number of packets that
traversed the ith link. The index ranges from zero to one and high value of this traffic distribution
index represents good distribution of traffic over the entire constellation. In the simulation, LPR’s
threshold ranges from 0.85 to 0.95 and the interval is 0.5, and LPR’s distribution index is the
average of the results of these different thresholds, in order to evaluate the performance of LPR
under different thresholds.

In Dijkstra scheme, the traffic distribution index is low (Figure 6), for packets always traverse
through paths with the smallest number of hops without taking the traffic distribution into
account. LPR scheme always try to distribute the traffic on the transmission paths when the link
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is overloaded, so the traffic distribution is higher than the plots of Dijkstra and Snapshot. ELB
on Dijkstra is higher than the plots of Dijkstra, Snapshot, for ELB searches for less congested
paths, after receiving a Busy Signal Advertisement from neighboring satellites. However, in
LPR scheme, not only neighboring satellites are able to communicate a portion of data via less
congested paths, but also the upstream satellites. Furthermore the load estimation of LPR is
more accurate than ELB, in that LPR’s granularity of load estimation is the link, but ELB is
the node. In turn, the distribution index of LPR is much higher than ELB on Dijkstra.
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Figure 6: Traditional Load Balancing

6 Conclusions

In this paper, we propose a Load-aware and Position-aided Routing protocol named LPR,
which transmits load information in a Hop-by-Hop manner and enables all the upstream satellites
to know the load information instantly and to communicate a portion of traffic on the less con-
gested paths when the load becomes high. Furthermore, LPR utilizes the geographical positions
of satellites and select the routing path to eliminate the convergence process. Finally, we evaluate
the performance of LPR in the Iridium constellation. The simulation results indicates that LPR
is capable of guaranteeing a good distribution of traffic among satellites and supporting differ-
ent QoS requirements. As future work, we intend to improve the ability of providing different
QoS by differentiating traffic, and analyze LPR’s impacts on packets reordering. Finally, we will
implement LPR in Linux kernel to assess its strengths and limitations in practice.
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