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Abstract:
With this work, use of reconfigurable index modulated (IM) regions to accelerate the
performance of a multimode interference (MMI) based photonic switch is presented.
Appropriate dimension for such regions are defined to suppress the transition losses
and to optimize the area coverage. It has been noticed that by reconfiguring the IM
regions, perfect switching for test wavelengths of 1.3µ m and 1.55µ m with low inser-
tion loss (I.L.) levels, ≤ 1.2dB and excess loss (E.L.) levels, ≤ 0.17dB can be achieved
with vacillation of extremely low polarization dependent losses (PDLs), which are ≤
0.15dB. For either case of input test wavelengths, generated crosstalk (CT) levels are
found better than -21.8dB for TE and -20.2dB for TM polarization state.
Keywords: Selfimages in MMI waveguides, Reconfigurable IM regions, I.L. and E.L.,
CT levels.

1 Introduction

Image replication in the MMI waveguides strongly depends upon the refractive index chang-
ing properties of the waveguide material. Various materials such as polymers, SiO2-SiON, SOI,
LiNbO3, III-V group semiconductors and their composites have been used as a backplane to de-
velop multimode waveguides to implement optical couplers and switches. [1–9] Such waveguides
are suitable to realize many optical devices utilizing their self-imaging principle and possess var-
ious characteristics such as compactness, relaxed fabrication tolerance, large optical bandwidth,
and polarization insensitivity. [8–10] Design of ultra-short couplers and switches based on MMI
waveguides have been achieved by eliminating photonic confinement to change their behaviors
or by alteration in the imaging length with suitable index variance. [5, 6] In recent, researchers
has shown a great interest for modeling of polarization independent photonic switches for wide
wavelength spectrum, low losses and CT levels using MMI waveguiding structures. This arti-
cle deals with modeling of a 2×2 MMI-switch, which is tuned by integrated reconfigurable IM
regions with its coupling area. The channel waveguides are optimized to reduce overall switch
area coverage. The device has been evaluated for its satisfactory performance for operating test
wavelengths of 1.3 Âľm and 1.55Âľm. The contents of the article are as follows. A MMI-switch
structure and its operation with an IM region are described in Section II. The detailed modeling
and switching characteristics of the proposed structure are analyzed by finite difference beam
propagation method (FD-BPM) in Section III, and then conclusions are summarized in Section
IV.

2 MMI-switch based on self-imaging principle

The concept of self-imaging explains the replication of images of random objects in multi-
mode waveguides. [10, 11] The switching in MMI waveguides based switches can be achieved by
modifying the refractive index at specific areas within the MMI waveguide, which are collocated
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with the occurrence of multiple self-images. [8] This change in the refractive index is the prime
factor behind altering the phase relation between the self-images, which ultimately modifies the
output image and switches the light between the output waveguides. MMI structures usually
realize optical functions by tuning the refractive index of the image modulation region, located
within the MMI section. Changes in the refractive indices of the segments (IM regions) inside
the MMI section also bring variation in the effective width of the MMI region, thereby changes
occurs in the beat length (Lπ).
In configuration shown by Fig. 1, the confinement guide regions are shown, which allows the

Figure 1: Layout of 2×2 MMI-switch with IM region, ref. [8]

light to pass through the region. Distribution of the optical intensities in the MMI waveguides
occurs in accordance to the beat length, defined as follows. [12]

Lπ =
π

β0 − β1
≈

4neffW
2
eff

3λ0
(1)

Where β0 and β1 are propagation constants of the fundamental and the first-order lateral modes,
respectively, λ0 is a free-space wavelength, neff is an effective index, and Weff is an effective
width of the MMI waveguide. The use of different interference phenomena in a device allows
achieving different switching states, namely cross and bar. If the width of the MMI regions is
reduced by depressing the refractive index by means of the electro-optic (EO) or thermo-optic
(TO) effects, then the imaging locations will be changed. Though, EO-effects are highly effective
to use in this type of MMI-switch in comparison with TO-effects., as the power consumption is
bit higher which further depends upon the length of IM regions.

3 Modeling of 2×2 MMI-switch with reconfigurable IM regions

This section elaborates the design procedure for 2×2 MMI-switch, which has been tuned
by reconfigurable IM regions, while geometries of its various parts are kept very small as com-
pared to. [12–15] Index profile of the channel waveguides is chosen in the range of 2.10-2.20
in agreement with available data and the literature survey to investigate the switching charac-
teristics. Various EO/TO crystals such as Ti-indiffused or proton exchanged lithium niobate
(α : LiNbO3), lithium tantalate (LiTaO3), potassium niobate (KNbO3), barium-sodium nio-
bate (BNN), strontium-barium niobate (SBN), bismuth germinates crystals of evlitine structure
(Bi4Ge3O12), lithium iodate (α - LiIO3) etc. can be used to implement such channel waveguides.
Perfect dimensions for coupling and IM regions have been obtained using the well-known relation-
ship for general interference in MMI waveguides. [6] Combined effect of geometry and refractive
index contrast has been applied for modeling of symmetric waveguides to ensure polarization
independent propagation.

The switch characteristics are investigated with a tunable laser to generate an input light
beam (output level was fixed at 1mW and wavelengths were tuned in between 1.3 µm and 1.55
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Table 1: Tuning strategies (Structure-1)

Region Refractive index (n1 > n2)
1.55µm 1.3µm

cross bar cross bar
Reg.1 n1 n2 n1 n1
Reg.2 n1 n1 n1 n2
Reg.3 n2 n2 n1 n1

µm). The various states of the switch are simulated and analyzed using the FD-BPM. [4] Initially
we have evaluated the structure by considering less number of IM regions for its satisfactory op-
eration over a bandwidth of 50nm for either of centre wavelength (1.3 µm and 1.55 µm). Fig.2
illustrates the layout of the proposed 2×2 MMI-switch labeled as structure-1, which represents
its x-z slice cut on the wafer of the waveguide with sectional dimensions. The whole device
is 500µm long and 8µm wide including IM regions, including 2 µm width for upper and lower
straight waveguides. The wafer index assumed to be of same value as that of cladding i.e. 1.49
and the thickness of all the regions has been kept same, which is 15µm. In this structure, the

Figure 2: Layout (top view) of the proposed 2×2 MMI-switch with IM regions (structure-1)

index is modulated for three regions (1 to 3) in order to achieve it various switching states in
accordance to applied test wavelength. The IM regions represent symmetrical planner multimode
waveguides of different area coverage and refractive indices. The size of the index modulated
regions are same in terms of their width (4 µm each) but differ in lengths, which are L1 =12 µm,
L2 = 10 µm and L3 =71 µm respectively. Switching in both structures has been achieved by
varying the number and locations of reconfigurable IM regions. The refractive index, n1 is kept
fixed at 2.22, while n2 represent reduced index values (n2 = n1-δn), centered at 2.136. The switch
performance parameters (propagation losses, CT levels and PDLs) are calculated by altering the
value of δn, which has been varied in the range of 0.05-0.07.

Table 1 depicts the respective index profile for various IM regions, which are used to tune
the switch into its various states. By evaluating this structure it has been noticed that the
PDLs observed are at high level for most inputs. In particular, the switch response becomes
more sensitive to polarization state of the input for high order wavelengths, which causes image-
shifting in the specified IM regions. Therefore few more IM regions are introduced, which can
tune to get distinct but clear images for higher order wavelength inputs. Figure 3 illustrate the
modified version of previous structure (1), which consists of two additional IM regions termed (4
and 5), each of 4Âľm wide with a little difference in their length, which are 16.36µm (L4) and
16.48 µm (L5) respectively. Due to this modification, the length of the region 3 is also required
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Table 2: Tuning strategies for modified MMI-switch (structure 2)

Switch State Bar state Cross state
Mode TE TM TE TM
λ (µm) 1.55 1.3 1.55 1.3 1.55 1.3 1.55 1.3
Reg.1 n2 n1 n2 n1 n1 n1 n1 n1
Reg.2 n1 n2 n1 n2 n1 n1 n1 n1
Reg.3 n2 n1 n2 n1 n2 n1 n2 n1
Reg.4 n1 n1 n2 n1 n1 n1 n2 n1
Reg.5 n2 n1 n2 n2 n2 n1 n2 n2

to reduce by 16.8 µm (L3 = 54.2 µm).
However both regions can be made of same length, but in that case, observed PDLs are at
higher levels (≥ 1dB). Theses extra IM Regions (4 and 5) are defined in order to accommodate
TM polarized light images perfectly for either of input wavelength and to suppress the PDLs
particularly. The tuning strategies for structure 2 are mentioned in table 2 in details. However

Figure 3: Layout (top view) of the modified 2×2 MMI-switch for wider operating wavelengths
(structure 2)

both regions can be made of same length, but in that case, observed PDLs are at higher levels
(≥ 1dB). Theses extra IM Regions (4 and 5) are defined in order to accommodate TM polarized
light images perfectly for either of input wavelength and to suppress the PDLs particularly. The
tuning strategies for structure 2 are mentioned in table 2 in details.

Figures 4(a-c) and 5 (a-c) shows a comparison of calculated E.L., I.L. and corresponding CT
levels for both structures. While these are evaluated for TM polarized input of a test wavelengths
of 1.55µm and 1.3 µm. From these figures, it is clear that by introducing an extra IM region
(Region 5) within the coupling section, as in case of structure 2, switch can be made to operate
with reduced losses and better CT levels even for TM polarized optical inputs. Plots of figure
4 clearly indicate that with modified structuring, reduction in the switch losses i.e. E.L. and
I.L. of the order of 2.25 dB and 2.50 dB with a reduction in the CT levels up to 5.8 dB can be
achieved. Similarly trends in plots of figure 5, gives an indication of suppression in the switch
losses (of the order of 1 dB) at a cost of increased CT levels by 1 dB for modified structure case.

Similarly plots in figure 6 (a-c) shows a comparison of calculated E.L., I.L. and corresponding
CT levels for TE/TM polarization case for modified structure 2, while the optical test wavelength
is 1.55Âľm. From these plots, it is very clear that within modified structure, PDL of less than
0.15 in any case can be maintained, while the switch losses in worst case remains below 0.8 dB
and the best CT level of -23.5 dB can be achieved. Again with a slight variation in δn, the
switch losses unaffected at large. However CT levels are more sensitive and tends to increase to
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(a) (b)

(c)

Figure 4: Calculated variation in the (a) E.L. (b) I.L. and (c) CT levels with respect to index
variations (δn), while the switches (Struct. 1 and 2) are in bar state, while subjected to a TM
polarized optical input of the test wavelength (λ) of 1.55 µm

higher levels in case of TM polarized inputs, thereby affecting the switching performance badly.
Similar trends for test input wavelength of 1.3 µm have been noticed depicted by plots of figure
7 (a-c), which are showing a comparison of calculated E.L., I.L. and corresponding CT levels for
TE/TM polarization case for modified structure. From these plots, it is clear that with modified
structuring, PDLs of less than 0.07 in either case of test wavelength can be maintained, while
the structure possess switching losses ≤ 1.1 dB with a best value for CT of -23.8 dB.
By evaluating both structures, it has been noticed that by employing extra IM regions, the
MMI switch can be made to operate with reduced losses and better CT levels irrespective of
polarization state of the inputs. It is also noticed later that for modified structure (2), PDL
≤ 0.15 dB in any case can be maintained, while in worst case, the switch possess propagation
losses ≤ 0.8 dB with a best possible CT level of -23.5 dB. With modified structure, suppression
in the switch losses (E.L., I.L.) of 1dB approximately can be achieved. Table 3 summarizes the
performance parameters for both considered structures. With this table, one can predict that
performance of such switching structure can be optimize further by introducing more IM regions,
to generate clear, concentrated and lossless images within the coupling region. However insertion
of more IM regions will affect the design complexity, tolerance factors and cost of the operation.

4 Conclusion

MMI waveguides based small size 2×2 photonic switches are realized. Concept of self-imaging
in MMI waveguides has been used to introduce reconfigurable IM regions in a high refractive index
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(a) (b)

(c)

Figure 5: Calculated variation in the (a) E.L. (b) I.L. and (c) CT levels with respect to index
variations (δn), while the switches (Struct. 1 and 2) are in bar state, while subjected to a TM
polarized optical input of the test wavelength (λ) of 1.3 µm

contrast to tune the switch for different wavelengths. It is observed that with introduction of more
IM regions, switch losses, corresponding CT and PDL levels can be suppressed significantly. The
smaller dimensions of proposed structures shall provide an opportunity to reducing fabrication
costs and increasing the density in optical networks. Therefore such structures can be proven as
suitable to realize higher order switches due to their advantages of minimum propagation losses,
better CT levels and ease of extendibility into a multi-port configuration. Also their compact
nature with higher tolerance to avoid fabrication errors shall makes them promising elements for
photonic integrated circuits (PIC) and monolithic functional switches.
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Figure 6: Calculated variation in the (a) E.L. (b) I.L. and (c) CT levels with respect to index
variations (δn), while the switch (Structure-2) is in bar state and subjected to a TE/TM polarized
optical inputs at test wavelength (λ) of 1.55 µm

Table 3: Comparative summary of performance parameters

Performance parameters (structure 1)
λtest : 1.3µm E.L. ≤ 1.1 dB (TM) and ≤0.07 dB (TE)

I.L.≤ 2 dB (TM) and ≤ 0.8 dB (TE)
CT (best value): -23.4 dB (TE), -23.2 dB (TM)

PDLmax.: ≤ 0.1 dB
λtest : 1.55µm E.L. ≤ 2.7 dB (TM) and ≤0.12 dB (TE)

I.L.≤ 3.3 dB (TM) and ≤ 0.8 dB (TE)
CT (best value): -21.8 dB (TE) and -17.4 dB (TM)

PDLmax.: ≤ 2.6 dB
Performance parameters (structure 2)

λtest : 1.3µm E.L. ≤ 0.08 dB (TM/TE)
I.L.≤ 1.2 dB (TM/TE)

CT (best value): -23.8 dB (TE) and -20.2 dB (TM)
PDLmax.: ≤ 0.07 dB

λtest : 1.55µm E.L. ≤ 0.17 dB (TM/TE)
I.L.≤ 0.8 dB (TM/TE)

CT (best value): -21.8 dB (TE) and -23.3 dB (TM)
PDLmax.: ≤ 0.15 dB
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(a) (b)

(c)

Figure 7: Calculated variation in the (a) E.L. (b) I.L. and (c) CT levels with respect to index
variations (δn), while the switch (Structure-2) is in bar state and subjected to a TE/TM polarized
optical inputs at test wavelength (λ) of 1.3 µm
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