
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 9(5):570-583, October, 2014.

Trust Model in Cloud Computing Environment Based on Fuzzy
Theory

L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

Lichuan Gu, Chengji Wang, Youhua Zhang
School of Computer and Information, Anhui Agricultural University
No.130 ChangJiang Road, Hefei, Anhui, 230036 China
glc@ahau.edu.cn, wang_chengji@qq.com, yhzhang@ahau.edu.cn

Jinqin Zhong
University School of International Business
No.420 Linquan road, Hefei, Anhui, 230031 China.
jinqinzhong@163.com

Zhiwei Ni, Lichuan Gu
School of Management, Hefei University of Technology
No.9 Tunxi Road, Hefei, Anhui, 230009 China
gdnzw@hfut.edu.cn

Abstract: Recent years have witnessed the development of cloud computing. How-
ever, there also come some security concerns in cloud computing environment, such
as emerging network attacks and intrusions, and instable cloud service provision due
to flexible cloud infrastructure and resources. To this end, we research on the trusted
computing in cloud computing environment. Specifically, in this paper, we propose
a trust model based on virtual machines, with two considerations. First, we intro-
duce timeliness strategy to ensure the response time and also minimize the idle time
of servers. Second, we extend the linear trust chain by differentiating the trust of
the platform domain and user domain. Besides, we develop a fuzzy theory based
method to calculate the trust value of cloud service providers. We also conduct some
experiments to evaluate our method.
Keywords: Trust model, fuzzy theory, cloud computing.

1 Introduction

Recent years have witnessed the development of cloud computing, which is an integration of
parallel computing, grid computing and distributed computing [1, 2]. With massive computing
and storage capability, cloud computing provides various resources to end users through trusted
and reliable services. In this way, users can be relieved from trivial management routines and
stay focused on the interesting business only. For example, cloud services can help to reduce the
complexity of enterprise informatization process, improve the efficiency of companies’ operation,
and facilitate the utilization of computer resources [3].

However, although cloud computing brings us extremely convenience, there also comes some
security concerns [4, 5]. The security flaws are growing ever since the complexity of system
softwares increases. Also, the increasingly development of internet, as well as emerging net-
work attacks and intrusions [6], leads to more security events. Besides, the flexibility of cloud
infrastructure and resources increases the difficulty of management and brings instability. More-
over,there might be single point failure in demanding for high quality trusted service, and thus
the cloud service delivery could be delayed or failed. For example, suitable authentication is re-
quired for access to bank accounts, healthrecords, intellectual property and business or politically
sensitive information to reduce the security risks of cloud computing infrastructure [7].

Copyright © 2006-2014 by CCC Publications

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 571

To this end, trusted computing [8,9] is proposed by the Trusted Computing Group (TCG) [10].
With trusted computing technologies, computers can be safer and less prone to viruses and mal
ware, and therefore hardware and software can consistently behave in expected manner. One
way to ensure the functionality of cloud infrastructure through trusted computing is to leverage
the idea of chains of trust.

In this paper, we propose a trust model and its evaluation method in cloud computing envi-
ronment. Specifically, (1) the trust model in this study is built in cloud computing environment
instead of traditional scenarios; (2) since time factor is significant for both QoS in requesting
cloud services and also maximizing the utilization of cloud resources, we consider timeliness
strategy in choosing trusted cloud services; (3) we extend the traditional linear trust chain as a
tree-like structure to differentiate the trust of the platform domain and user domain; and (4) the
evaluation of trusted computing is based on the fuzzy theory.

The remains of this paper are organized as follows. In Section 2 we provide some related
work. Section 3 presents our proposed trust model and the fuzzy theory based evaluation method.
Then experiments are conducted in Section 4. Finally, the paper is concluded in Section 5.

2 Related work

In this section, we present some related work. Generally, there are three categories: theo-
retical research on trusted computing (TC),architecture and implementation of TC, and TC for
virtual machines environment.

The first category is theoretical efforts on trusted computing. Blaze et al. [11] first proposed
the concept of trust management in 1996. Then, Josang et al. [12–14]proposed a trust model
based on subjective logic, and introduced evidence space and opinion space to measure the trust
relationship. Beth et al. [15] classified trust into direct trust and indirect trust, and proposed to
measure the trust based on the degree of task completion. Fault tolerance capability in trusted
computing within the whole life cycle of software development was also discussed [16–18]. Smith
et al. [19] developed a outbound authentication model using IBM secure coprocessors. Abadi et
al. [20] provided a formal description of the access control process in NGSCB system using secure
logical language. Chen et al. [21]described the process of secure bootstrap in trusted computing
using predicate logic.

There are also many efforts on the architecture and implementation of TC. IBM 4758 secure
coprocessors [22] are one of the most earliest secure hardware. The design of IBM 4758 is to
provide an isolated running environment to ensure the computing and storage capability even
when something happens to the operating system or the main processors. Stanford University
developed an architectural support for copy and tamper resistant software, called XOM [23].
Suh et al. [24] developed AEGIS, an architecture for a single-chip aegis processor which can be
used to build computing systems secure against both physical and software attacks. Chen et
al. [25] designed another secure processor Cerium. BEAR [26, 27] constructs trusted computing
in commercial trusted platforms in Linux, and extends trust chain to the folder layer by checking
the integrity of folders when they are first opened. Also, IBM proposed an architecture for
trusted computing called IMA [28].

The last category of related work is trusted computing for virtual machines. Garfinkel et
al. [29] developed a virtual machine-based platform for trusted computing, called Terra. It allows
applications with a wide range of security requirements to run simultaneously on commodity
hardware. Also, IBM implemented vTPM [30] to support trusted computing for multiple virtual
machines, by introducing a virtual layer and extending the trust chain for virtual machines based
on typical trusted platform module (TPM).

572 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

3 Proposed trust model

In typical cloud computing environment, the service model is multi-layered. That is, the cloud
service provider (CSP) not only provides services to end users, but also to the upper layer CSPs,
which forms a trust chain of service providers and consumers. As shown in Figure 1, the arrow
denotes from providers to consumers. For example, the service of end users might be provided
by a SaaS CSP directly, or first PaaS CSP then SaaS CSP, or from IaaS CSP downstream to
end users.

Figure 1: Trust transitivity service providers and consumers

There are two kinds of trust in cloud computing environment: direct and indirect trust.
Direct trust means the impression of consumer users on the service quality of CSP, while indirect
trust denotes the aggregated impression of all other previous consumers who have used the service
or other CSPs who have connections with current CSP.

Suppose user ua wants to use the cloud service from CSP X .The objective is to calculate
the trust value of X and determine if X is trusted. Denote Imp(a, b) as the impression of b on
a. Therefore, the trust value of X for ua can be calculated as:

Imp(X,ua) = C1

∑
ui∈U

αiImp(X,ui) + C2

∑
Y

βiImp(X,Y) (1)

where Imp(X,ui) is the impression value of ui on CSP X , Imp(X,Y) is the impression of other
CSPs on X, and C1, C2, αi, βi are coefficients.

3.1 Timeliness strategy

In a cloud computing environment, host data nodes provide trusted services with high credible
and stable resources, where timeliness is a significant indicator. Generally, the process of trusted
cloud services is as follows. First, if there exist idle host data nodes, then evaluate the timeliness
of the node. Second, calculate the trust value of data node based on the timeliness and trust
model. If the trust value is satisfactory, then the node is assigned for cloud services; otherwise,
repeat the process for the next service request.

We assume that the trust value is related to time, and the more recent the evaluation is, the
more contribution it has to the current trust calculation. Let Imp(X,ui)L be the trust value
at time L Therefore, the trust value of X for ua can be represented by rewriting Equation (1)
through introducing timeliness strategy:

Trust(X,ua) = Imp(X,ua)L −∆Imp · F (t− L) (2)

where Imp(X,ua)L is the current impression value at time L , and ∆Imp ·F (t−L) indicates the
affect of previous trust value.

Suppose there are k historical impression values before L, and Imp(X,ua)L is defined as:

Imp(X,ua)L =
k∑
i=1

Imp(X,ua)iwi (3)

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 573

where
k∑
i=1

wi = 1.

Since the history impression evaluation happens randomly, we equally split the history time
period into m segments in order to differentiate the importance of each historical evaluation.
Historical impressions within the same time window W are assigned an identical weight ωW .
Therefore, inspired by [31], weight wi can be calculated as:

wi =

n∑
j=1

m−1
√
ωW1(m− j)ωWm(j − 1)

n
(4)

where n is the number of values within i-th historical impression. Substitute Equation (4) into
(3), we get

Imp(X,ua)L =

k∑
i=1

Imp(X,ua)i
n∑
j=1

m−1
√
ωW1(m− j)ωWm(j − 1)

n
(5)

Suppose the experience distribution of ∆Imp follows Gumbel distribution [32]. Therefore the
estimate of ∆Imp is:

Ĝ(Impi) = exp

{
− exp

{
− Impi − û

δ̂

}}
(6)

where û, δ̂ is the maximum likelihood estimates for Gumbel distribution.
Time based function F (t− L) follows exponential distribution:

F (t− L) =
∫ +∞

L
(t− L)f(t)dt = exp(−λL)

λ
(7)

3.2 Tree structured trust chain

In this section, we consider the trust between a specific CSP and users. The objective is to
measure the trust value from the CSP hardware to user defined software.

Trust relationship in cloud environment is more complicated than the traditional scenarios.
For example, the services are typically running in virtual machines with larger management and
user domain, which is hardly measured by the traditional linear structure. Moreover, for some
business requirements, services are assembled across multiple user domains, which also increase
the difficulty of measuring the trust. Note that by management domain, we mean the set of
objects, typically refers to the component in traditional trust chain; by user domain, we mean
that different users that request for the service.

Typically, cloud users don’t have controls over the hardware devices, and thus the safety
is only ensured by service-level agreement (SLA). However, users wish to somehow control the
virtual computing resources, i.e., virtual machines (VM), so that user-defined security strategy
can be passed over VM and therefore ensure the safety of cloud resources.

One popular solution is to use trusted platform module (TPM), which is a specialized chip
that can securely store information, such as passwords and encryption keys, with independent
execution CPU unit. The typical architecture of TPM is shown in Figure 2. TPM provides
trusted computing by ensuring security to operating systems and TCG Software Stack (TSS).
TSS is a support software of TPM, and its architecture is shown in Figure 3.

In cloud computing environment, trusted computing is typically implemented by virtualizing
the Trusted Platform Module (vTPM). However, vTPM is only a virtual instance of physical
TPM in user domain, which calls the physical TPM resource to provide TPM service, as shown

574 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

Figure 2: TPM component architecture

Figure 3: Architecture of TSS

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 575

in Figure 4. There are some limitations of this simple structure. First, the whole structure is
dependent on limited physical TPM, which is not scalable for large scale virtual machines in
cloud platform. Second, evaluation of each individual vTPM is sequential due to the limited
physical resource, and therefore it is not dynamic and elastic. Last, vTPM relies on physical
TPM, that is, the trusted capability is ensured by the cloud infrastructure only. Accordingly,
users cannot specify their personalized security strategies on demand. Moreover, we observe that
existing trust models, where the evaluation is all performed by one single node, are inappropriate
especially in cloud computing environment [33].

Figure 4: Illustration of user virtual machine

To this end, in this section, we propose a tree structured trust model by distributing the
evaluation work to multiple nodes. Specifically, we combine the trust evaluation from physical
platform and user domain. As shown in Figure 5, there are two stages in the evaluating of trust
value. First, there is a chain of trust in physical TPM, i.e., CRTM’BIOS’GRUB’VMM. The
integrity and security of the system is ensured by the isolation mechanism of physical TPM and
cloud infrastructure. Second, TPM controller creates TPM for each user, i.e., uTPM, which is
responsible for the evaluation and security of software components in the user domain. Each
uTPM is created for a user virtual machine, and holds the results of integrity evaluation and
reports to users.

There are two kinds of trust transitivity in this model. (1) Pass the trust from physical TPM
to TPM controller, from hardware to user virtual machine. In this way, we can combine the trust
of platform and the trust of user virtual machine together, to provide a complete trust chain.
(2) Pass the trust from user to virtual machine. By virtualizing TPM, an independent vTPM is
created for each user virtual machine, i.e., uTPM. In Figure 5, each node in the upper physical
trust chain is responsible for evaluating trust, and the evaluation is performed for each user in
parallel in the lower user domain trust chain.

Theorem 1. The tree structured trust model in Figure is trusted.

576 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

Figure 5: Illustration of tree structured trust model

Proof: For ease of description, we simplify the tree structured trust model in Figure 6. Denote
the trust value of node A for B as T (A,B) . Inferred by the trust transitivity principle, we
have T (A,B) = min{T (A,B), T (B,C), . . . , T (N − 1, N)} . As proved in [24], the left part chain
A→ B → C → · · · → N is trusted.

Now we consider the right part chain. Each node Ui represents a trust chain of each
user virtual machine, and therefore Ui itself is trusted. There are multiple direct paths, i.e.,
T1(N,U1), T2(N,U2), . . . , TN (N,UN). The final trust value T (N,U) is no less than

max
{
T1(N,U1), T2(N,U2), . . . , TN (N,UN)

}
.

Therefore the right part chain is trusted. 2

Figure 6: Illustration of tree structured trust model

3.3 Fuzzy theory based trust model

As used in many Suppose the confidence level for trust is U = {U1, U2, U3, U4} = {‘not
trusted’, ‘somehow trusted’, ‘normal trusted’, ‘complete trusted’}, and the confidence vector
V = {v1, v2, v3, v4}, where vi(i = 1, 2, 3, 4) denotes the degree of membership of each level Ui.

Figure 7: Illustration of trust transitivity

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 577

The trust between initial entity and target entity is evaluated through the stepwise evaluation
and the transitivity between them. As shown in Figure 7, where A is observed entity, B is
evaluation entity, and R1, R2, . . . , Rn are the intermediate entities. The corresponding trusts
between nodes are Vt1, Vt2, . . . , Vtn, Vd , and the trust vector from A to B is Vt . The integrity
of direct measurement is mainly affected by the measuring capability of the current evaluation
node.

Now we consider the timeliness factor. Let DT (Ri, Rj, t) be the direct trust of Rj in Ri at
time t , and it can be calculated as:

DT (Ri, Rj , t) =
SRjRi

SRjRi + FRjRi

δ(t, t0) (8)

where SRjRi denotes the number of successful historical integrity evaluation of Rj on Ri, FRjRi

is the number of failure evaluation, and t, t0 denote the current and first evaluation time respec-
tively. δ(t, t0) is the time decay function, defined as:

δ(t, t0) = 1− t− t0
t

ξ (9)

where ξ ∈ [0, 1] is the adjustment factor of the decay.
The value of direct trust DT (Ri, Rj , t) can be transformed into a fuzzy vector V (i, j) =

(v1, v2, v3, v4) , where

v1 =

1− 2

(
DT
0.5

)2
, 0 ≤ DT ≤ 0.25;

2
(
0.5−DT

0.5

)2
, 0.25 < DT < 0.5;

0, 0.5 < DT < 1.

(10)

v2 =

0, 0 ≤ DT ≤ 0.25;

1− 2
(
DT−0.25

0.5

)2
, 0.25 < DT ≤ 0.25;

2
(
0.75−DT

0.5

)2
, 0.5 < DT ≤ 0.75;

0, 0.75 < DT ≤ 1.

(11)

v3 =

0, 0 ≤ DT ≤ 0.25;

2
(
DT−0.25

0.5

)2
0.25 < DT ≤ 0.5;

1− 2
(
0.75−DT

0.5

)2
0.5 < DT ≤ 0.75;

0 0.75 < DT ≤ 1.

(12)

v4 =

0, 0 ≤ DT ≤ 0.5;

2
(
DT−0.5

0.5

)2
0.5 < DT ≤ 0.75;

1− 2
(
DT−1
0.5

)2
0.75 < DT ≤ 1.

(13)

Suppose there are n evaluation metrics Z = {z1, z2, . . . , zn}, we get the evaluation matrix for
entity Ri :

Vi =

v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n

v3,1 v3,2 · · · v3,n

v4,1 v4,2 · · · v4,n

 (14)

578 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

Therefore, the indirect trust of Ri is calculated as:

ITi =Wi · Vi (15)

where Wi = (w1, w2, w3, w4) is the weights of each metric, and wi ∈ [0, 1],
4∑
i=1
wi = 1. We employ

a fuzzy reasoning method based on similarity. Suppose there exist a rule:

R : If A Then B, λ,W (16)

where A is the antecedent component, B is the consequent component of the rule, and λ is a
threshold which decides the rule to be executed or not.

The similarity between two entities is calculated as:

S(A′i, Ai) =

M(A′i∩Ai)

M(A′i)∨M(Ai)
, if A′i ⊆ Ai or A′i ⊇ Ai

A′i∩Ai
M(A′i) , else.

(17)

where A′i, Ai are fuzzy set, M(Ai) =
∑
x∈Xi

µAi(x), Xi is the mathematical domain of discourse

for A′i, Ai.
As shown in Figure, in our case, the antecedent components are Vt1, Vt2, . . . , Vtn, and the

consequent component is Vt. That is, the rule is:

R : If the measurement of A for R1 is Vt1
AND the measurement of R1 for R2 is Vt2
AND · · ·
AND the measurement of Rn for B is Vd
Then the measurement of A for B is Vt

(18)

Given the observed values are V ′t1, V ′t2, . . . , V ′tn, the goal is to calculate the observed V ′t. The
process of inference is as follows.

Step 1: Calculate the similarity between observed S(V ′ti, Vti), i = 1, 2, · · · , n;
Step 2: If S(V ′ti, Vti) > λ , calculate the overall similarity:

SW (V ′ti, Vti) =
n∑
i=1

S(V ′ti, Vti)∗
wi
n∑
j=1

wj

(19)

Step 3: Compute the inference results:

θ1 =

k1∑
i=1

S(V ′ti, Vti)∗wi
k1∑
i=1
wj

(20)

where j ∈ {i :M(V ′ti) ≥W (Vti)} , and

θ2 =

k2∑
i=1

S(V ′ti, Vti)∗wi
k2∑
i=1
wj

(21)

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 579

where j ∈
{
i :M(V ′ti) < W (Vti)

}
.

If θ ̸= 0 and θ2 ̸= 0, then

V ′t =

Vt∗θ1
θ2

, θ1 ≤ θ2;

min
{
1, Vt∗θ1θ2

}
, otherwise.

(22)

If θ1 = 0 or θ2 = 0, then

Vt =

Vt∗SW , θ1 ≤ θ2;

min
{
1, VtSW

}
, otherwise.

(23)

To sum up, in this section we presented the proposed trust model, which works as follows.
When user a wants to use some service, for each qualified candidate CSP X, he/she first inquires
the information from other users and CSPs who have interactions with X. Then, for each X, a
tree structured trust chain is constructed, where the upper part is the trust chain for physical
TPM of X, and the lower part is built for each possible user. After that, an evaluation method
based on fuzzy theory is performed to calculate the trust value of a for X. Once all the trust
value is learned, user a can determine if a CSP X is trusted or not.

4 Experiment

In this section, we evaluate the efficiency of our proposed tree structured trust model. The
configuration of PC is as follows. Intel Core i5 2.8 GHz CPU with four cores, 4 GB memory, 500 G
hard disk. We use Xen virtualization platform for virtualization implementation, CloudSim [34]
for cloud computing platform simulation, and Matlab for fuzzy system implementation.

4.1 Evaluating trusted cloud service selection

Figure 8 shows the trust value of four types of CSPs with different number of transactions. We
have the following observations. First, for complete trusted and normal trusted CSPs, the trust
value is near linearly growing since they are offering real trusted services. Second, for somehow
trusted CSPs, the trust value is unstable. Third, the value of not trusted CSPs decreases quickly,
and they would not be selected as the cloud service provider.

4.2 Evaluating timeliness

We compare our method with traditional Dynamic Level Scheduling (DLS) algorithm [35]
for scheduling cloud services with the consideration of timeliness factor. The results are reflected
as the average of 100 executions.

Figure 9 shows the ratio of successful execution with different numbers of tasks. We can
observe that the successful execution tends to increase when the number of tasks is growing.
However, for DLS algorithm, the maximum success ratio is around 0.65. The reason is that it
does not consider the node failure at specific time. By contrast, our method performs better
because we consider the timeliness factor in all historical evaluations.

Figure 10 shows the average schedule length with different numbers of tasks. The average
schedule length grows when there are more tasks. Also, the average schedule length of DLS is
smaller than that of our method. Therefore, we can see that our method achieves larger success
ratio by sacrificing the scheduling time. Although the time cost increases, our method can help
to select more successful trusted cloud services.

580 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

Figure 8: Trust value of four types with different number of transactions

Figure 9: The ratio of successful execution with different numbers of tasks

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 581

Figure 10: Average schedule length with different numbers of tasks

5 Conclusion

In this paper, we proposed a trust model in cloud computing environment. Specifically, the
trust model is designed for virtual machines with the consideration of timeliness factor. Moreover,
we employ a fuzzy theory based method to calculate the trust value of specific CSP.

In our experiments, we exhibit the trust value of four pre-defined confidence levels, and also
evaluate the efficiency of the timeliness consideration. We find that our method can improve the
successful response of selecting cloud services at the expense of average schedule length.

However, in future works, we might want to explore a more optimal balance between efficiency
and effectiveness.

Acknowledgements

This work was supported by the National Natural Science Foundation of china (Grant
No.313715
33, Grant No. 71271071), National Science and Technology Support Program (Grant No.
2013BAJ10B12), the Key Technologies R & D Program of AnHui Province (Grant No.1301032169)
and by the Natural Science Foundation of AnHui Province (Grant No.1308085MF89).

Bibliography

[1] Armbrust, Michael, et al. (2010); A view of cloud computing, Communications of the ACM,
53(4): 50–58.

[2] Mell P., Grance T. (2011); The NIST definition of cloud computing, http://csrc.nist.

gov/publications/nistpubs/800-145/SP800-145.pdf, 1-7.

[3] Lin C., Pervan G. (2001); A review of IS/IT investment evaluation and benefits management
issues, problems and processes, in Information technology evaluation methods and manage-
ment, ISBN:1-878289-90-X, 2-24.

582 L. Gu, J. Zhong, C. Wang, Z. Ni, Y. Zhang

[4] Brodkin J. (2008); Gartner: Seven cloud-computing security risks. Infoworld (2008): 1–3.

[5] Zissis D., Lekkas D. (2012); Addressing cloud computing security issues. Future Generation
Computer Systems, 28(3): 583–592.

[6] Lonea A.M., Popescu D.E., Tianfield H.(2012); Detecting DDoS Attacks in Cloud Computing
Environment, International Journal of Computers Communications & Control, 8(1): 70–78.

[7] Popescu D.E, , Lonea A.M. (2013); An Hybrid Text-Image Based Authentication for Cloud
Services, International Journal of Computers Communications & Control, 8(2): 263–274.

[8] Pearson S., Balacheff B., eds. (2003); Trusted computing platforms: TCPA technology in
context, Prentice Hall Professional.

[9] Mitchell C. ed.(2005), Trusted computing, Institution of Electrical Engineers.

[10] Sumrall N., Novoa M. (2003); Trusted Computing Group (TCG) and the TPM 1.2 Specifi-
cation. Intel Developer Forum. Vol. 32.

[11] Blaze M., Feigenbaum J., Lacy J. (1996); Decentralized trust management. Security and
Privacy, 1996 IEEE Symposium on, 164-173.

[12] Josang A. (2001); A logic for uncertain probabilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 9(3): 279–311.

[13] Knapskog, S. J.(1998); A metric for trusted systems, Proc. of the 21st National Security
Conference, Available at http://folk.uio.no/josang/papers/JK1998-NSC.pdf, 1-14.

[14] Josang A. (1999); Trust-based decision making for electronic transactions, Proc. of the
Fourth Nordic Workshop on Secure Computer Systems, 1-21.

[15] Beth T., Borcherding M., Klein B. (1994); Valuation of trust in open networks, Springer
Berlin Heidelberg.

[16] Meyer J. F. (1980); On evaluating the performability of degradable computing systems.
Computers, IEEE Transactions on, 100(8): 720–731.

[17] Isermann R. (1984); Process fault detection based on modeling and estimation methods, a
survey. Automatica, 20(4): 387–404.

[18] Arlat J. et al.(1993); Fault injection and dependability evaluation of fault-tolerant systems,
Computers, IEEE Transactions on, 42(8): 913–923.

[19] Smith S. W. (2002); Outbound authentication for programmable secure coprocessors. Com-
puter Security, ESORICS, 2002. Springer Berlin Heidelberg, 72–89.

[20] Abadi M., Wobber T. (2004); A logical account of NGSCB. Formal Techniques for Networked
and Distributed Systems, CFORTE 2004. Springer Berlin Heidelberg, 2004. 1–12.

[21] Chen S., Wen Y., Zhao H. (2007); Formal analysis of secure bootstrap in trusted computing,
Autonomic and Trusted Computing, Springer Berlin Heidelberg, 352–360.

[22] Dyer J. G., et al. (2001); Building the IBM 4758 secure coprocessor. Computer, 34(10):
57–66.

Trust Model in Cloud Computing Environment Based on Fuzzy Theory 583

[23] Lie, David, et al.(2000); Architectural support for copy and tamper resistant software, ACM
SIGPLAN Notices , 35(11): 168–177.

[24] Suh G. E. et al. (2003); AEGIS: architecture for tamper-evident and tamper-resistant pro-
cessing. Proc. of the 17th annual international conference on Supercomputing. ACM, 1-18.

[25] Chen B., Morris R. (2003); Certifying Program Execution with Secure Processors, HotOS,
Available at http://pdos.csail.mit.edu/papers/cerium:hotos03.pdf, 1-6.

[26] MacDonald R. et al. (2003); Bear: An open-source virtual secure coprocessor based on
TCPA. Computer Science Technical Report TR2003-471, Dartmouth College.

[27] Marchesini J. et al.(2003); Experimenting with TCPA/TCG hardware, or: How I learned to
stop worrying and love the bear. Computer Science Technical Report TR2003-476, Dartmouth
College .

[28] Sailer R. et al. (2004); Design and Implementation of a TCG-based Integrity Measurement
Architecture. USENIX Security Symposium, 13:223-238.

[29] Garfinkel T. et al.(2003); Terra: A virtual machine-based platform for trusted computing,
ACM SIGOPS Operating Systems Review. 37(5):193-206.

[30] Berger S. et al. (2006); vTPM: virtualizing the trusted platform module, Proc. 15th Conf.
on USENIX Security Symposium, 305-320.

[31] Fullér R., Majlender P. (2001); An analytic approach for obtaining maximal entropy OWA
operator weights, Fuzzy Sets and Systems, 124(1): 53–57.

[32] Saure D. et al. (2010); Time-of-use pricing policies for offering cloud computing as a service,
Service Operations and Logistics and Informatics (SOLI), 2010 IEEE International Confer-
ence on, 300-305.

[33] Bo Z. et al.(2010); The system architecture and security structure of trusted PDA, Chinese
Journal of Computers, 33(1): 82–92.

[34] Calheiros R. N. et al.(2011); CloudSim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1): 23–50.

[35] Wang W. et al. (2012); Dynamic trust evaluation and scheduling framework for cloud com-
puting. Security and Communication Networks, 5(3): 311–318.

