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Abstract

We evaluate the performance of a convergence style capital structure arbitrage 
trading strategy using Australian CDS spreads estimated by the Credit Grades 
model. By comparing a number of volatility inputs, we find that although 
option-implied volatility inputs produce biased spreads compared to historical 
measures, their correlation with medium-term changes in market spreads 
generate significantly more profitable trades during the financial crisis, even 
after the inclusion of transaction costs. While the strategy is risky at both the 
individual obligor and the iTraxx Index level, combining positions into an 
equally-weighted index of arbitrage trades reduces risk. 
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1. Introduction

Using Credit Default Swap (CDS) spread estimates derived from the CreditGrades 
model, we develop a convergence-style capital structure arbitrage trading 
strategy to exploit possible mispricing between each obligor’s estimated spreads 
and market spreads. If the model and market CDS spreads diverge significantly, 
a position is taken in the CDS market and a corresponding position is taken in 
the equity market as a hedge. The trade will be profitable if the model and the 
market spreads subsequently converge. While loosely based on Yu (2006), we 
make a number of modifications in the implementation of the strategy. Firstly, 
we analyse a range of volatility inputs. Secondly, while still conducting all 
estimation out-of-sample, we set aside a longer in-sample period from which 
to estimate each firm’s default boundary level. Thirdly, we include additional 
stop loss and profit taking trading rules to terminate trades. Finally, in contrast 
to previous work, we retain financial firms in the sample to test the arbitrage 
strategy at both the individual obligor’s level and the CDS index level.
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A CDS is a credit derivative under which the buyer of protection makes a series 
of payments to the seller of protection and, in return, receives payment if the 
reference entity over which the CDS is written experiences a credit event such 
as bankruptcy, failure to pay or restructuring. CDS contracts allow parties to 
isolate and trade credit risks, with buyers able to reduce counterparty exposure 
and sellers able to enhance returns (Skinner and Townend, 2002). While the 
risk profile of a CDS is similar to that of a corporate bond, it offers numerous 
advantages; both long and short positions can be taken relatively easily without 
payment of any initial capital and the bond of the reference entity does not need 
to be liquidly traded. By transferring risk off balance sheets, they can also allow 
financial institutions to reduce capital requirements (Batten and Hogan, 2002)).

While mainly used for risk management throughout the 1990s, the 
global CDS market grew significantly in the 2000s as the derivatives became 
increasingly used for speculation. Through 2007 alone, the notional value 
of outstanding CDS contracts increased by 36% to US$58 trillion (Baba and 
Gallardo, 2008). However, following a period of severe strains in the credit 
market and increased multilateral netting of offsetting positions by market 
participants, the outstanding values of contracts fell to US$42 trillion by the end 
of 2008 and to US$33 trillion by the end of 2009 (Mallo & Kleist, 2010). 

Notwithstanding recent market contractions, the International Swaps and 
Derivatives Association (2010) estimates that credit default swaps alone still 
make up approximately 8% of the entire global derivatives market. In Australia, 
the notional turnover of single name credit default swaps has grown from $45 
billion in 2004-2005 to $186 billion in 2008-2009 (Australian Financial Markets 
Association, 2010). Given its recent growth and the lack of capital structure 
literature on Australian data, we focus on the Australian CDS market.

We estimate the CDS spreads using the CreditGrades model, developed 
by Finger et al. (2002). Bedendo, Cathcart and El-Jahel (2009) claim the model 
has become an industry standard for pricing CDS contracts and is used by most 
capital structure arbitrage professionals (Yu, 2006). In the original specification, 
and probably a consequence of the benign economic conditions throughout their 
estimation sample from May 2000 to August 2001, Finger et al. (2002) restricted 
their volatility inputs to estimators that rely solely on historical equity prices. 
However, Stamicar and Finger (2005) and Blanco, Brennan and Marsh (2005) 
find that credit spread risk volatility can be decomposed not only to a component 
linked to equity prices but also to one driven by equity option volatility. Using 
a Markov switching model, Alexander and Kaeck (2008) show that although 
CDS spreads are usually more sensitive to stock returns, in times of market 
turbulence, they become extremely sensitive to stock volatility. While the use 
of historical volatility allows the CreditGrades model to be applied to firms 
which may not have options liquidly traded, Benkert (2004) and Cao, Yu and 
Zhong (2010) show that option-implied volatility is a timelier and more efficient 
forecast of future realised volatility. These findings combined with the recent 
significant equity and debt market volatility, provide a rationale to examine the 
performance of the CreditGrades model using timelier volatility inputs.
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The remainder of this paper is structured as follows: Section 2 reviews previous 
literature on CDS spreads and capital structure arbitrage. Section 3 introduces 
the CreditGrades model, while section 4 describes the dataset. Section 5 presents 
the results while section 6 concludes the paper.

2. Capital structure Arbitrage

2.1	 Credit Instruments

While few papers deal specifically with the CreditGrades model or capital 
structure arbitrage, vast amounts of literature examine credit instruments and 
the pricing of credit risk. From the early work of Jones, Mason and Rosenfeld 
(1984), researchers have struggled to model bond default premiums. Elton et 
al. (2001) show that expected default only accounts for a small fraction of the 
premium in corporate bond rates over treasury rates while Collin-Dufresne, 
Goldstein and Martin (2001) show that bond spread changes are impacted by 
local demand and supply shocks which are independent of credit risk. 

Literature demonstrates that the CDS market provides a timelier measure 
of credit risk than the bond market. In particular, Zhu (2006) finds that deviation 
of CDS and bond spreads is largely due to the higher responsiveness of CDS 
spreads to credit conditions. According to Norden and Weber (2009), the CDS 
market contributes more to price discovery than the bond market. As well as 
suggesting that CDS is a cleaner indicator of credit risk than bond spread, 
Blanco, Brennan and Marsh (2005) show that in firms where CDS spreads and 
bond spreads form a valid equilibrium relationship, the CDS market contributes 
around 80% of price discovery. Furthermore, even in the few cases where they 
do not, CDS spreads are still more likely to Granger-cause bond spread changes 
than the reverse. Similarly, Longstaff, Mithal and Neis (2005) suggest that 
CDS spreads provide a relatively precise measure of the default component of 
corporate spreads while a significant non-default component relates to bond-
specific and macroeconomic measures of bond market liquidity. Considering 
other financial instruments, Norden and Wagner (2008) demonstrate that changes 
in CDS spreads are the dominant determinants of loan spreads, explaining loan 
rates much better than bonds of the same rating and other traditional explanatory 
factors. 

2.2	 CDS Pricing Models

From the initial work of Altman (1968) which identified firm characteristics 
associated with corporate bankruptcy, a great deal of empirical work has 
focussed on methods of predicting default probabilities. One approach to credit 
assessment involves reduced form models, first introduced by Litterman and Iben 
(1991), which assume market participants hold the same level of information, 
and default time is thus unpredictable. Further development undertaken by a 
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number of researchers, including Jarrow and Turnbull (1995), aimed to provide 
a methodology for pricing and hedging derivatives involving credit risk. While 
reduced form models can compare credit risk, they do not specify the economic 
medium behind the default process (Zhou, 2001) or explicitly explain structural 
elements of firms which contribute to default.

The CreditGrades model belongs to a different class of models known as 
structural models. These models are generally based on the Black and Scholes 
(1973) and Merton (1974) contingent claims framework, under which equity 
and debt represent an option on the firm’s assets with default probabilities 
predominantly estimated from market and balance sheet parameters. Although 
originally specified so that default occurs at maturity, both Black and Cox 
(1976) and Longstaff and Schwartz (1995) extended the analysis such that a 
firm defaults when its value first crosses an exogenous default threshold. This 
principle also underlies the dynamics of the CreditGrades model.

By introducing uncertainty into the default barrier, the CreditGrades 
model matches the observed CDS spreads more closely than the Merton (1974) 
model which underestimates short-dated spreads given its assumption that 
changes in asset values follow a geometric Brownian- motion diffusion process. 
Modelling uncertain default barriers is consistent with Duffie and Lando’s 
(2001) argument that around the time of default, accounting information updates 
revealed to the market create uncertainty in the value of the assets. The authors 
also use the notion that investors are unable to directly a observe firm’s assets 
to provide a link between reduced form and structural-based models. While the 
use of an uncertain default barrier offers one solution, jumps can also explain 
sudden changes in market values (Zhou, 2001). Upward and downward jumps 
are often modelled asymmetrically, for example, Hilberink and Rogers (2002), 
use a L´evy process which only permits downward jumps in a firm’s value.

An alternative structural model proposed by Leland (1994) and Leland 
and Toft (1996) considers an endogenous default threshold where the optimal 
capital structure for each firm and the value of long-term risky debt is explicitly 
linked to each firm’s risk, taxes, bankruptcy costs, interest rates, payout rates 
and bond covenants. For example, Fan and Sundaresan (2000) assume that 
shareholders and creditors of distressed firms negotiate to avoid inefficient 
liquidation and may inject new equity before debt maturity. 

By comparing a reduced-form model to two structural models, Arora, 
Bohn and Zhu (2005) show that a Hull-White reduced-form model largely 
underperforms sophisticated structural models in default prediction and 
estimation of CDS spread levels. Using the CreditGrades model with lagged 
stock returns, Byström (2006) shows that structural models are also effective 
at predicting CDS spread changes. This is consistent with Norden and Weber 
(2009) who consider monthly, weekly and daily co-movements between markets 
and conclude that stock returns tend to lead changes in both CDS spreads and 
bond spreads.

Ericsson, Jacobs and Oviedo (2009) find that by regressing structural-
model inputs such as firm volatility, firm leverage and the risk-free rate on CDS 
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spreads, they can explain approximately 60% of the levels and 23% of the daily 
changes in CDS spreads of investment grade obligors. Pu’s (2008) results are 
broadly consistent with 22% of the variation of the changes in CDS spreads of 
investment grade and 35% of speculative grade obligors being explained by a 
set of market factors.

2.3	 Capital Structure Arbitrage Trading Strategies

Our capital structure arbitrage strategy is a form of fixed-income arbitrage that 
exploits mispricing between firm’s debt and equity. Duarte, Longstaff and Yu 
(2007) note that it is one of the five most widely used-fixed income arbitrage 
strategies used by market participants. However, the ability of traders to profit 
from relative mispricing has been previously restricted by the difficulties in 
taking short positions in a firm’s debt and a lack of liquidity in parts of the bond 
market. While not focussing specifically on the CreditGrades model, Ericsson, 
Reneby and Wang (2007) show that the emergence of the CDS market overcomes 
many of these difficulties. They show that Leland’s (1994), Leland and Toft’s 
(1996) and Fan and Sundaresan’s (2000) structural models fit market CDS 
spreads much more closely than bond spreads with any difficulties encountered 
in estimating default risk caused by illiquidity in the bond market.   

Although Currie and Morris (2002) note that many market participants see 
capital structure arbitrage strategies as the most significant development since the 
invention of the CDS itself, Yu (2006) notes a complete lack of prior academic 
research providing evidence either for or against capital structure arbitrage 
strategies. Using the 5-year North American daily CDS spreads from 2001 to 
2004, he implements a convergence-style strategy which uses the CreditGrades 
model to identify trades in the CDS market and hedges the positions in the equity 
market. His results indicate that while substantial losses can occur at individual 
trades level, an equally weighted portfolio of arbitrage trades produces returns 
similar to other fixed-income hedge fund benchmarks. Duarte, Longstaff and Yu 
(2007) extend the work of Yu (2006) and conduct a review of the risk and return 
of a number of widely used fixed-income strategies using a larger dataset. They 
conclude that the potential profitability of a convergence-style capital structure 
arbitrage strategy is the highest of all fixed-income strategies considered, yet it 
also involves the highest level of risk. 

Extending the analysis of Yu (2006) and Duarte, Longstaff and Yu 
(2007), Cserna and Imbierowicz (2009) consider the profitability of a similar 
capital structure arbitrage strategy, but utilise the models of Leland and Toft 
(1996) and Zhou (2001) in addition to the CreditGrades model. Once transaction 
costs were taken into account, they found that the strategy produced significant 
positive returns over the sample period from 2002 to 2006 when CDS spreads 
were estimated using the CreditGrades or the Leland and Toft model, but not 
the Zhou model. They do, however, concede that their analysis was conducted 
over a period of low volatility and suggest it would be interesting to analyse the 
strategy in a more volatile market.
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Byström (2006) also exploits inefficiencies in the CDS market using the 
CreditGrades model. However, his trading strategy is based on the autocorrelation 
in the CDS data and thus ignores fundamental changes in the obligor’s assets. 
Furthermore, his study is predominantly based on short-term autocorrelation and 
not medium-term relative mispricing, with positions only held for a single day 
and not hedged in the equity market.

3. Model Description

To compute theoretical CDS spreads, the CreditGrades model requires equity 
price (S), debt per share (D), the mean global recovery rate      , the standard 
deviation of the global recovery rate (λ), a bond-specific recovery rate (R), 
equity volatility (σ

S
) and a risk-free rate (r). The asset value (V

t
) is assumed to 

follow geometric the Brownian motion such that:

		
(1)

where σ is the asset volatility and the asset drift μ
D
 is assumed to be zero. 1 
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where    represents the cumulative normal function and: 

                                                 
1 The asset value has a zero drift because it is not the drift itself, but the drift relative to the default boundary that is 
relevant to the calculation of default probabilities. By issuing debt and paying dividends, the model assumes that 
each firm will maintain a steady leverage ratio such that the drift of the assets relative to the default boundary will 
be zero. 
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Given that default is defined as the first passage of V
t
 below LD, a closed-form 

solution is then obtained for the survival probability, P(t), up until time t:

						      (5)

where         represents the cumulative normal function and:
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P(t), can then be used to obtain a theoretical CDS spread (c*) such that the initial 
CDS price equals zero:
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where:
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3.1	 Model Implementation and Calibration

3.1.1	 Calibration and model inputs

The CreditGrades model requires the estimation of three parameters. As 
recommended by Finger et al. (2002), we set λ to 0.3 and R to 0.5 with the 
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then obtained for the survival probability, P(t), up until time t: 
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where    represents the cumulative normal function and: 

                                                 
1 The asset value has a zero drift because it is not the drift itself, but the drift relative to the default boundary that is 
relevant to the calculation of default probabilities. By issuing debt and paying dividends, the model assumes that 
each firm will maintain a steady leverage ratio such that the drift of the assets relative to the default boundary will 
be zero. 
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optimal     value of each firm determined by minimising the mean squared error 
(MSE) between the estimated and the actual spreads in the in-sample period. 
Consequently, the expected default boundary ( LD ) for each firm depends 
on both the level of the firm’s debt and an implied estimate of L . Given the 
importance of an accurate estimation of each firm’s L , we extend Yu’s (2006) 
10-day calibration period to two-months. 

We focus on the 5-year CDS as they offer the highest level of liquidity 
(Ericsson, Jacobs and Oviedo, 2009). Consistent with previous research 
conducted in other markets, such as Finger et al. (2002), we use the 5-year 
Australian interest rate swap as a risk-free proxy as it matches the maturity of 
the contracts. Moreover, derivative traders regard the swap zero curve as the 
risk-free rate (Hull, Predescu and White, 2004).

While Finger et al. (2002) suggest using all of the short-term and long-
term debts and half of all other liabilities except accounts payable as a proxy of 
the firm’s debts, recent studies on capital structure arbitrage including Yu (2006), 
Duarte, Longstaff and Yu (2007) and Cserna and Imbierowicz (2009) use total 
liabilities. We also choose total liabilities as it represents a more parsimonious 
input and is consistent with Vassalou and Yuhang’s (2004) argument that total 
liabilities affect the ability of firms to refinance short-term debts. Moreover, the 
calibration steps detailed above ensure that firm defaults when its asset value 
drops below a market-implied proportion of total liabilities, not its entire value.

3.1.2	 Equity volatility measures

Extending the 1000-day volatility (1000_VOL) input used by most researchers, 
we examine the effect of the 250-day volatility (250_VOL), exponentially-
weighted moving average (EWMA) volatility (EW_VOL) and option-implied 
equity volatility (IMP_VOL) measures on the accuracy of the CreditGrades 
model and its subsequent profitability when used in the context of a capital 
structure arbitrage strategy.

The EW_VOL measure follows the approach of Ericsson, Jacobs and 
Oviedo (2009)2. For a more generalised result we fix the weighting parameter in 
the EWMA equation across all firms in the estimation. The MSE is minimised 
such that only a 0.07% weighting is placed on the most recent observation. 
Similarly, weights on the most recent 250 observations and the most recent 1000 
observations sum to only approximately 16% and 50%, respectively, resulting in 
an extremely long-term historical volatility measure.

Stamicar and Finger (2005) argue that using the forward-looking IMP_
VOL instead of historical volatility may provide a timelier credit signal during 
market turmoil. Similarly, Cao, Yu and Zhong (2010) choose the 30-day at-the-
money put option volatility over historical volatility to value CDS contracts. 
However, as our objective is to estimate the 5-year volatility, we use a longer-
dated measure. Constrained by the relative illiquidity of the Australian options 

2	 While not used in the context of the CreditGrades model, the authors use an average EWMA 
volatility measure as a determinant of CDS spreads.

7 

Extending the analysis of Yu (2006) and Duarte, Longstaff and Yu (2007), Cserna and 

Imbierowicz (2009) consider the profitability of a similar capital structure arbitrage strategy, but 

utilise the models of Leland and Toft (1996) and Zhou (2001) in addition to the CreditGrades 

model. Once transaction costs were taken into account, they found that the strategy produced 

significant positive returns over the sample period from 2002 to 2006 when CDS spreads were 

estimated using the CreditGrades or the Leland and Toft model, but not the Zhou model. They 

do, however, concede that their analysis was conducted over a period of low volatility and 

suggest it would be interesting to analyse the strategy in a more volatile market. 

Byström (2006) also exploits inefficiencies in the CDS market using the CreditGrades model. 

However, his trading strategy is based on the autocorrelation in the CDS data and thus ignores 

fundamental changes in the obligor’s assets. Furthermore, his study is predominantly based on 

short-term autocorrelation and not medium-term relative mispricing, with positions only held for 

a single day and not hedged in the equity market. 

 

 

3 Model Description 

To compute theoretical CDS spreads, the CreditGrades model requires equity price (S), debt 

per share (D), the mean global recovery rate ( L ), the standard deviation of the global recovery 

rate (λ), a bond-specific recovery rate (R), equity volatility (σS) and a risk-free rate (r). The asset 

value (Vt) is assumed to follow geometric the Brownian motion such that: 

t t t D tdV V dW V dt     (1) 

ht
tp

://
ijb

f.u
um

.e
du

.m
y



Real Exchange Rate Misalignt and Trade Flows in Nigeria (1960-2013): 49-65 	    75

market, our IMP_VOL measure is a combination of the 30-day, 90-day and 200-
day at-the money option implied volatility measures, with the greatest weight 
placed on those with around 90 days to expiry.3

4. Data

The data set consisted of the daily CDS spreads, equity prices, equity volatility, 
swap rates and financial statements information covering a period from 1 
November 2005 to 31 December 2009. The first two months between 1 November 
2005 and 30 December 2005 were used to estimate the model parameter L  
for each firm over each volatility input. Long-term historical equity volatility 
was estimated over 5 years between 1 July 2000 and 31 December 2005. The 
remaining four years from 3 January 2006 and 30 December 2009 were used to 
evaluate the model and test the capital structure arbitrage. 

The firms used in the analysis comprised the iTraxx Australia Series 13 
CDS Index. The constituents and their GIGS (Global Industry Classification 
Standard) Sectors and Industry Groups are listed in Table 1.4 The Index is 
compiled and published by the Markit Group and comprises 25 investment 
grade entities listed on the Australian Securities Exchange (ASX). The CDS 
quotes are collected from a number of contributors and filtered by Markit to 
validate that spreads are reflective of possible trades on each day. Inclusion in 
the Index is determined predominantly based on the liquidity of each obligor’s 
CDS contracts, with the Markit Group aggregating volume-ranked lists from 
market makers to compute liquidity rankings for each entity. The index, based 
on 5-year credit default swaps, is itself tradable and is rolled every six months. 
Option-implied volatilities and 5-year interest rate swap rates were sourced from 
IRESS, equity closing prices and the number of shares on issue from Bloomberg 
and liabilities from Aspect Huntley.

Table 1: Sample Firms

Reference Entity GIGS Sector GIGS Industry Group
Amcor Limited Materials Materials

AMP Limited Financials Insurance

Australia and New Zealand Banking 
Group

Financials Banks

3	 The weighted average is calculated daily by IRESS. In the very few cases where this information 
was not available a shorter-dated, 30-day at-the-money option-implied volatility was used.

4 	 The iTraxx Australia Series 13 Index was released in March 2010. The list of constituents is 
available from the Markit website (http://www.markit.com). We omitted Crown Limited from 
the analysis as it was only listed in mid- 2007 and therefore long-term historical volatility esti-
mates were not available.	

(continued)
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Reference Entity GIGS Sector GIGS Industry Group
BHP Billiton Limited Materials Materials

Coca-Cola Amatil Limited Consumer Staples Food, Beverage & 
Tobacco

Commonwealth Bank of Australia Financials Banks

CSR Limited Industrials Capital Goods

Foster’s Group Limited Consumer Staples Food, Beverage & 
Tobacco

GPT Group Financials Real Estate

Lend Lease Group Financials Real Estate

Macquarie Group Limited Financials Diversified Financials

National Australia Group Limited Financials Banks

QANTAS Airways Limited Industrials Transportation

QBE Insurance Group Limited Financials Insurance

Rio Tinto Limited Materials Materials

Singapore Telecommunications 
Limited

Telecommunication 
Services

Telecommunication 
Services

Tabcorp Holdings Limited Consumer 
Discretionary

Consumer Services

Telecom Corporation of New Zealand 
Limited

Telecommunication 
Services

Telecommunication 
Services

Telstra Corporation Limited Telecommunication 
Services

Telecommunication 
Services

Wesfarmers Limited Consumer Staples Food & Staples 
Retailing

Westfield Group Financials Real Estate

Westpac Banking Corporation Financials Banks

Woodside Petroleum Limited Energy Energy

Woolworths Limited Consumer Staples Food & Staples 
Retailing

We addressed potential illiquidity of contracts with the Lesmond, Ogden 
and Trzcinka’s (1999) simple Zeroes measure, which identifies the proportion 
of days with zero returns. We based our selection on the evidence of Goyenko, 
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Holden and Trzcinka (2009) that securities with lower liquidity are characterised 
by a greater number of zero-return days. The results showed that liquidity 
increased throughout the sample with most zero-return days occurring in the first 
half of the sample with relatively low and stable spreads. In the more volatile 
second-half of the sample, following the deterioration of credit conditions 
in March 2008, the number of zero-return days did not exceed 2%. We also 
collected the number of contributors to Markit’s composite spreads to verify the 
quotes were indicative of the overall market. The mean number of contributors 
in our sample was ten, with more than 90% of the quotes compiled by at least 
seven contributors. 

While many studies such as Yu (2006), Bajlum and Larsen (2008) and 
Bedendo, Cathcart and El-Jahel (2009) exclude financial firms from structural 
models due to difficulties in interpreting their capital structure, we elected to 
include financial firms, in accordance with Cserna and Imbierowicz (2009).

To ensure a consistent barrier across the three models in their analysis, 
Cserna and Imbierowicz (2009) base the default boundary of financial firms 
on the capital adequacy requirements, that is, 8% of total liabilities. As their 
approximation only explicitly considers the capital structure of banks, and may 
not hold for other non-bank financials in the sample (Real Estate, Diversified 
Financials and Insurance Industry Groups), we did not specify a fixed default 
boundary. Instead, we utilised the CreditGrades model to calibrate the default 
boundary of each firm based on actual market spreads. As a robustness check, 
we also considered a sample of 14 firms which excluded those comprising the 
GIGS Financial Sector.

5. Trading Strategy Results

5.1	 Model Performance

An effective trading strategy ensures that model spreads do not lag actual CDS 
spreads and are generally close fitting and correlated with the market spreads so that 
significant deviations can be attributed to potentially profitable trading opportunities 
and not simply a badly specified and calibrated model. The differences between actual 
and model spreads determine market-entry decisions while the sensitivity of model 
spreads to changes in the equity price determine the equity hedge ratios. We split 
the hold-out sample into two periods – a low volatility ‘pre-crisis’ period with stable 
spreads from January 2006 to December 2007 and a high volatility ‘crisis’ period 
from January 2008 to December 2009 with elevated spreads caused by the Global 
Financial Crisis. The performance is presented in Table 2. We used three accuracy 
measures, mean error (ME), root mean squared error (RMSE) and mean absolute 
deviation (MAD) consistent with Bowerman, O’Connell and Koehler (2005).5 

5	 Mean Absolute Percentage Error (MAPE) was not utilised, given that it imposed a significantly 
heavier penalty on positive errors than negative errors and had an extremely skewed distribution 
if the actual series was close to zero (Hyndman and Koehler (2006)), which was the case with 
the CDS spread data.

ht
tp

://
ijb

f.u
um

.e
du

.m
y



78    	 The International Journal of Banking and Finance, Vol. 12, No. 1, 2016: 49-65

Table 2: Model Performance

Cross-sectional averages of accuracy measures across sample firms. ME signifies 
the average mean-error, RMSE the average root-mean-square-error and MAD 
the average mean-absolute-deviation. 1000_VOL, 250_VOL, EW_VOL and 
IMP_VOL represent CreditGrades model spreads based on 1000-day historical, 
250-day historical, exponentially-weighted historical and option-implied 
volatilities, respectively.

  ME RMSE MAD

Panel A: Entire Sample

1000_VOL -7.3 93.5 62.8

250_VOL -90.5 167.3 109.3

EW_VOL 17.0 83.3 57.0

IMP_VOL -80.6 128.7 101.3

Panel B: Jan 2006 – Dec 2007

1000_VOL -1.9 26.1 19.1

250_VOL -11.8 29.9 22.8

EW_VOL -3.9 28.0 21.1

IMP_VOL -16.0 36.7 27.1

Panel C: Jan 2008 – Dec 2009

1000_VOL -12.7 127.5 106.5

250_VOL -169.3 232.8 195.9

EW_VOL 37.9 111.5 92.9

IMP_VOL -145.2 220.6 175.6

In the pre-crisis period, estimated spreads using the conventional 1000_
VOL deviated from actual spreads by an average of approximately 19 basis points 
(bps). This was a closer fit than many previous international studies, with Cserna 
and Imbierowicz (2009), for example, finding that CreditGrades model spreads 
deviated from actual spreads by an average of 32 bps across a range of countries 
between January 2002 and December 2006. The MAD for the 1000_VOL rose to 
107 bps during the crisis period, a substantial increase over the previous period. 
Comparing the range of volatility inputs across the sample, spreads estimated 
using the two long-term historical volatility inputs (1000_VOL and EW_VOL) 
were most accurate, with MAD of 63 bps and 57 bps, respectively. In contrast, 
spreads estimated using IMP_VOL and 250_VOL had a MAD of 101 and 109 
bps, respectively. The conclusions using RMSE, which more heavily penalises 
large deviations, were broadly similar. The 250_VOL and IMP_VOL performed 
substantially worse as they overestimated the actual spreads by approximately 
91 and 81 bps, respectively. In contrast 1000_VOL and EW_VOL measures were 
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largely unbiased with ME of -7 bps and 17 bps, respectively. Average cross-
sectional accuracy measures calculated without financials in the sample yielded 
similar conclusions.

5.2	 Correlation analysis

The Spearman rank correlations between daily changes in actual CDS spreads, 
equity prices, volatility inputs and estimated CDS spreads for each firm are 
presented in Table 3. As expected, CDS spread changes have a significant 
negative correlation with equity price changes, with an average correlation of 
-0.21. Consequently, we anticipated that equity should provide a reasonable 
hedge against changes in CDS spreads driven by market sentiment. Although 
increases in equity volatility signal increased risk and should be associated with 
a greater probability of default, we observed that only changes in IMP_VOL had 
a significant positive relationship with changes in CDS spreads, with an average 
correlation of 0.13. Changes in historical volatility inputs were only correlated 
with changes in CDS spreads by 0.03 to 0.05, on average, depending on the 
calculation method. Finally, we found a significant positive correlation between 
changes in the CreditGrades model CDS spreads and the changes in actual CDS 
spreads, confirming the model had explanatory power. The average correlation 
ranged between 0.19 and 0.22, but interestingly, the IMP_VOL correlation 
coefficient was smaller than the historical volatility coefficients.

Table 3: Daily correlations

Cross-sectional average Spearman rank correlations between daily changes in 
estimated CDS spreads, daily changes in equity volatilities and daily changes 
in actual CDS spreads. We used the non-parametric Spearman rank correlation 
coefficient instead of the Pearson product-moment correlation coefficient due to 
heteroscedasticity and the presence of non-linear relationships between changes 
in many of the variables of interest. CDS represents actual CDS spreads, 1000_
VOL, 250_VOL, EW_VOL and IMP_VOL represent 1000-day historical, 250-
day historical, exponentially-weighted historical and option-implied volatilities, 
respectively. Cross-sectional average t-statistics are reported in brackets with 
1% and 5% significance levels indicated by ** and *, respectively. Given 
strong a-priori expectations regarding the interaction between the variables, the 
reported statistics are based on one-tail tests.

Correlation ΔEquity 
price

ΔEquity Volatilities ΔEstimated CDS spreads using 

(t-statistic) 1000_VOL 250_VOL EW_VOL IMP_VOL 1000_VOL 250_VOL EW_VOL IMP_VOL

ΔCDS
-0.21 0.04 0.03 0.05 0.13 0.22 0.21 0.22 0.19

(-7.10)** (1.39) (1.07) (1.57) (4.32)** (7.25)** (7.04)** (7.23)** (6.38)**
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Given the substantial noise present in the daily equity, CDS and option data, we 
also considered differences using weekly, monthly and two-monthly data. As 
expected, the correlations between the estimated and the actual spreads increased 
as the sampling frequency decreased. While this is observed across all volatility 
inputs, it was most evident for IMP_VOL. Over the two-month periods, changes 
in actual spreads had a correlation of 0.56 with spreads estimated using IMP_
VOL, compared to correlations of between 0.41 and 0.47 for spreads estimated 
using historical volatility. Excluding financial firms from the sample did not 
influence the results.

5.3	 Granger causality analysis

The Granger causality tests examine whether actual spreads lead or lag estimated 
spreads. 6 Our lag structure was guided by Norden and Weber (2009) who 
suggest that two lags for weekly data and five lags for daily data are appropriate 
in capturing the overall information processing and aggregation time across 
the CDS, bond and stock markets. However, given that correlations between 
the actual and the CDS spreads increased substantially as sampling frequency 
decreased, we also considered monthly data with two lags.

The results presented in Table 4 provide little evidence of a lead-lag 
relationship. Although at the monthly level, estimates using IMP_VOL were 
more likely to lead actual spreads than estimates using historical volatility, the 
reverse was true at the daily and weekly level. As with previous sections, analysis 
was also conducted without financial firms, with results largely unchanged. 

Table 4: Granger causality tests

Proportion of firms for which changes in estimates spreads Granger-cause 
changes in actual spreads, changes in actual spreads Granger-cause changes in 
estimated spreads, changes in actual and estimated spreads Granger-cause each 
other and no Granger-causality in either direction at the 5% level of significance. 
1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades model 
spreads based on 1000-day historical, 250-day historical, exponentially-weighted 
historical and option-implied volatilities, respectively. Figures may not add up to 
100% due to rounding errors.

6	 To avoid spurious Granger-causality conclusions, we tested for stationarity of differenced actual 
CDS spreads, stock price returns, volatility inputs and the estimated differenced CreditGrades 
model CDS spreads using the  Augmented Dickey-Fuller (ADF) and the Kwiakowski-Phillips-
Schmidt-Shin (KPSS) tests. We tested each firm using differences over daily, weekly and 
monthly intervals. All series were stationary across all frequencies using both the KPSS and the 
ADF tests, except the ADF test at the monthly frequency which founds 88% of the series to be 
stationary. 
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  1000_VOL 250_VOL EW_VOL IMP_VOL

Daily changes (5 lags)

Estimate causes actual 17% 42% 13% 13%

Actual causes estimate 21% 8% 21% 38%

Bidirectional 42% 25% 38% 38%

No granger causality 21% 25% 29% 13%

Weekly Changes (2 lags)

Estimate causes actual 17% 21% 21% 13%

Actual causes estimate 13% 13% 17% 13%

Bidirectional 13% 13% 13% 13%

No granger causality 58% 54% 50% 63%

Monthly Changes (2 lags)

Estimate causes actual 8% 8% 8% 25%

Actual causes estimate 25% 17% 21% 17%

Bidirectional 4% 0% 8% 17%

No granger causality 63% 75% 63% 42%

5.4	 Trading Strategy Implementation

Without a clear lead-lag relationship between the equity and the CDS markets, 
we implemented a relatively simple convergence-style trading strategy to profit 
from any mispricing between the two securities. The strategy involved taking 
a simultaneous position in both the equity and the CDS markets to profit from 
medium-term relative mispricing between the markets. Although similar to the 
strategy implemented by Yu (2006), we made a number of modifications.

5.4.1	 Entering Positions

A position is taken in the CDS market if the model and the market spreads differ 
by more than a threshold percentage difference. Denoting α as the trading trigger, 
c

t
 as the observed market spread and c

t
* as the estimated CreditGrades model 

spread, a long position was taken in the CDS market if the model estimated 
spreads lie significantly above the observed market spreads, i.e. ( )* 1t tc cα> +
. Simultaneously, based on the negative correlation between the equity and the 
CDS markets, a long position was taken in the equity market as a hedge. The 
trade would become profitable if the market and the model spreads converged 
due to an increase in the market spreads or a decrease in the model spreads. 
Conversely, a short position was taken in the CDS market, and hedged with a 
short position in the equity market, if the observed spreads lie significantly above 
the model estimated spreads, i.e. ( ) *1t tc cα> + . This trade would be profitable 
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if the market and the model spreads converged due to a fall in the market spreads 
or an increase in the model spreads. For robustness and to prevent data mining 
we considered α values of 0.5, 1 and 2 in the strategy.

To compute trading returns, we specified an initial capital level of $0.50 
per trade per $1 nominal position taken either long or short in the CDS market. 
This capital was assumed to cover margin and financing costs for the CDS 
position and equity hedge and was consistent with previous capital structure 
arbitrage literature. To ensure its adequacy, we monitored the number of trades 
where the initial capital on a trade was completely depleted by losses.

5.4.2	 Equity Hedging

Consistent with previous literature, and to reduce transaction costs associated 
with the size of a dynamic equity hedging on a daily basis, the size of the 
equity hedge was determined when a position was taken in the CDS market and 
maintained until the position was exited. While some studies such as Cserna and 
Imbierowicz (2009) use a rolling regression between CDS spreads and equity 
prices to estimate hedge ratios, such an approach disregards the current market 
conditions or recent structural changes which may impact the sensitivity of the 
equity price to changes in the firm’s CDS spread. It also requires an arbitrary 
horizon to be specified over which the regression is estimated. Following the 
earlier work of Yu (2006) and the findings of Schaefer and Strebulaev (2008) 
that structural models can produce hedge ratios which are relatively accurate 
and cannot be rejected in empirical tests, we used the CreditGrades model to 
calculate the appropriate hedge ratio for each firm when a position was entered.

						    

				  

(13)

Where π
t
 represents the model CDS spread and S

t
 represents the equity 

value for the firm in question, the hedge ratio,
       

, is determined by numerically 
solving the following differential equation for each sample firm at each point in 
time:

Since falling equity prices are associated with increases in model CDS 
spreads, 

     
 is negative and represents the dollar value of shares to be purchased 

per dollar notional value in the CDS. Given that the average correlation between 
the daily changes in CDS spreads and the daily changes in equity prices from 
Table 3 is only -0.21, the effectiveness of the hedge would be reduced over 
short horizons. Nevertheless, such a hedging strategy should, in theory, allow 
for arbitrage profits, even in the face of significant changes in market sentiment. 
In particular, if a long position is taken in the CDS market and both the actual 
and the model spreads fall, the long equity position should provide some degree 
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Similarly, if a short position is taken in the CDS market and the both 
actual and the model spreads rise, the short equity position should provide 
protection. This ensures that given the volatility of the CDS market over the 
sample period, any profits are a result of identifying relative mispricing and 
implementing a capital structure arbitrage trading strategy, not simply a result 
of timing the entry into the CDS market. However, it should be noted that while 
changes in the two markets may offset one another, the use of an equity hedge 
increases leverage. The computation of the hedge ratio is also reliant on other 
variables in the CreditGrades model, so, as well as differing across each firm 
and each point in time, it also differs depending on the volatility input used to 
estimate the CDS spreads.

5.4.3	 Exiting Positions

Both Yu (2006) and Duarte, Longstaff and Yu (2007) formulated a trading 
strategy that assumes trades will be terminated when the market and the model 
spreads converge, or in the case that this does not occur, after a set time period. 
Yu (2006) further concludes that the use of a maximum holding period of 180 
days produces more converging trades and is more profitable than those of 
shorter time periods. However, given the leverage inherent in a capital structure 
arbitrage strategy, the use of these arbitrary rules alone could generate losses 
which are significantly greater than the initial capital invested in each trade.
To reduce risk and more accurately represent traders’ behaviour, Cserna and 
Imbierowicz (2009) instead stipulate that positions are closed if the market and 
the model spreads converge, if losses on an individual trade amount to 50% of 
the initial capital or returns on an individual trade represents five times the initial 
capital. However, provided the model and the market spreads do not converge 
and significant profits or losses are not generated, these rules do not preclude 
trades from remaining open indefinitely. Recognising the problems associated 
with ignoring either the length or profitability of trades when determining the 
exit criteria, we combined the timing limit of Yu (2006), and Duarte, Longstaff 
and Yu (2007), the stop-loss and profit-taking rules of Cserna and Imbierowicz 
(2009) and the convergence rule common to all three papers. Consequently, 
individual trades are closed out if any of the following conditions hold; market 
and model spreads converge, losses amount to 50% of the initial capital, returns 
reach five times the initial capital, positions are open for 180 days, or positions 
are open at the end of the sample period. For completeness, we report the trading 
strategy without the use of the stop-loss and profit-taking rules in Section 5.8.1. 

5.4.4	 Transaction costs

Consistent with Yu (2006), Duarte, Longstaff and Yu (2007) and Cserna and 
Imbierowicz (2009), we assumed a 5% spread when trading credit default 
swaps, meaning that trades occur 2.5% away from Markit’s composite midpoint 
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CDS spread on both the entry and the exit. For example, a CDS with a spread of 
100 bps assumes a buyer purchases the CDS at 102.5 bps while a seller receives 
97.5 bps. While Cserna and Imbierowicz (2009) note that such an assumption is 
conservative, it allows our results to be compared with prior research.

Unlike Cserna and Imbierowicz’s (2009), dynamic hedging strategy 
that requires equity transaction costs to be considered, the cost of establishing 
static hedges are relatively small in comparison. Consistent with other capital 
structure arbitrage literature utilising a static hedging strategy such as Yu (2006) 
and Duarte, Longstaff and Yu (2007), we ignored these costs.

5.5	 Results of individual CDS Arbitrage

We identified trading opportunities for all firms using three trading triggers (α) 
across four volatility inputs. Although increasing the size of α translates to fewer 
open trades, the number of trades for each α remains relatively constant through 
time. The summary statistics of holding period returns for α=0.5, 1 and 2 across 
the four volatility inputs are presented in Table 5. The total number of trades 
executed differs significantly across the simulations, ranging from 105 trades 
(250_VOL with α=2) to 541 trades (IMP_VOL with α=0.5). The trading strategy 
is profitable across all simulations before transaction costs are considered, on 
average, with returns for each trade ranging from a mean of 0% (1000_VOL 
with α=2) to a mean of 44% (IMP_VOL with α=2). However, with transaction 
costs, a third of the simulations produce a loss. Furthermore, using only $0.50 
of the initial capital to cover each $1 nominal position in the CDS market results 
in transaction costs of approximately 10% of the initial capital per trade where 
the spread at entry and exit is relatively similar but can exceed 10% if spreads 
increase significantly while positions are held. 

Nevertheless, trades based on the IMP_VOL input (average holding period 
return ranging from 17% to 27% depending on α) and to a lesser extent 250_
VOL input (average holding period returns ranging from 9% to 13% depending 
on α) are still profitable. Although smaller α results in a larger number of trades; 
the effect on profitability is unclear with enhanced profitability under some 
volatility inputs and reduced profitability under others. The IMP_VOL input 
generated a greater number of trades for each α, consistent with conclusions 
from section 5.1 that market CDS spreads lie further away from the estimated 
spreads using IMP_VOL input than those estimated spreads using the historical 
volatility inputs. 

It is evident that regardless of the volatility input or α, the capital structure 
arbitrage strategy can be very risky at the individual trade level. In each of the 
simulations detailed in Table 5, there is at least one trade in which losses exceed 
the amount of initial capital allocated as collateral for that trade. Such losses 
can result from the continuing divergence between CDS and equity markets 
following the identification of a trading opportunity and an inadequate hedge to 
offset changes in CDS spreads. However, the number of trades in each simulation 
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in which the initial capital was completely depleted was relatively low (1 to 16 
before ,and 4 to 23 after transaction costs were incorporated) compared to the 
total number of trades made (148 to 541).  

Table 5: Summary of returns on individual trades

1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades 
model spreads based on 1000-day historical, 250-day historical, exponentially-
weighted historical and option-implied volatilities, respectively. α represents the 
trading trigger, N1 represents the total number of trades and N2 represents the 
number of trades in which the initial capital was completely depleted. Mean, 
Min and Max represent the average, minimum and maximum holding period 
returns, respectively.

Returns before transaction costs Returns after transaction costs

Volatility α N1 N2 Mean Min Max N2 Mean Min Max

1000_VOL 0.5 365 10 13% -225% 694% 17 2% -241% 668%

  1 255 6 15% -188% 694% 12 3% -206% 668%

  2 148 2 0% -188% 518% 10 -12% -206% 500%

250_VOL 0.5 332 5 27% -222% 567% 14 13% -238% 526%

  1 222 4 29% -222% 577% 9 12% -238% 555%

  2 105 5 31% -222% 607% 11 9% -238% 554%

EW_VOL 0.5 359 16 8% -224% 525% 23 -3% -240% 503%

  1 243 10 2% -187% 542% 15 -9% -202% 520%

  2 156 4 2% -167% 711% 9 -9% -186% 688%

IMP_VOL 0.5 541 9 31% -193% 700% 20 17% -206% 677%

  1 362 5 36% -232% 740% 13 21% -245% 716%

  2 203 1 44% -167% 573% 4 27% -182% 532%

5.6	 Results of Index Arbitrage

Given the riskiness of individual trades, we followed the lead of Yu (2006) in 
creating a capital structure arbitrage index consisting of an equally weighted 
portfolio of all the individual trades across all obligors open each day. The 
portfolio returns, compounded and analysed at the monthly frequency are 
presented in Table 6. While it would be difficult to invest in such an index, it 
allows us to analyse the risk and return in a portfolio context and determine how 
closely returns are linked to common market risk factors. Given the substantial 
number of trades across the entire sample, trades occurred in all 48 months. 
While still risky, returns are substantially less volatile compared to the previous 
section, with the capital allocated to the index not depleted in any individual 
month in any of the simulations.
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Table 6: Summary of monthly index returns

1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades model spreads 
based on 1000-day historical, 250-day historical, exponentially-weighted historical and 
option-implied volatilities, respectively. α represents the trading trigger, N1 represents 
the total number of months with non-zero returns, N2 represents the number of months in 
which the initial capital was completely depleted and N3 represents the number of months 
which generated positive returns. Mean, Min and Max represent the average, minimum 
and maximum monthly returns, respectively. Stdev represents the standard deviation of 
monthly returns. The Sharpe Ratio is the annualised Sharpe Ratio for the index returns.

Model spreads α N1 N2 N3
Monthly returns

Stdev Sharpe Ratio
Mean Min Max

1000_VOL 0.5 48 0 24 3% -39% 113% 27% 0.39

  1.0 48 0 22 1% -37% 120% 28% 0.17

  2.0 48 0 20 -3% -74% 103% 33% -0.35

250_VOL 0.5 48 0 30 9% -43% 111% 29% 1.05

  1.0 48 0 29 8% -61% 93% 31% 0.87

  2.0 48 0 30 11% -81% 234% 48% 0.83

EW_VOL 0.5 48 0 24 2% -38% 107% 27% 0.21

  1.0 48 0 19 0% -41% 111% 29% -0.06

  2.0 48 0 22 -2% -46% 129% 34% -0.16

IMP_VOL 0.5 48 0 36 17% -38% 190% 37% 1.63

  1.0 48 0 30 14% -41% 146% 33% 1.43

  2.0 48 0 28 12% -54% 94% 31% 1.31

Consistent with the analysis of individual trades, simulations based on 
IMP_VOL (average monthly returns of 12% to 17% depending on α) and to a 
lesser extent those based on 250_VOL (average monthly returns of 8% to 11% 
depending on α) were significantly more profitable than those based on long-
term historical volatility. Interestingly, those based on the 1000_VOL input, as 
recommended by Finger et al. (2002) and used by Yu (2006), Duarte, Longstaff 
and Yu (2007) and Cserna and Imbierowicz (2009) in testing capital structure 
arbitrage trading strategies in more stable market conditions, performed 
relatively poorly. Taking into account the variability of returns and considering 
the annualised Sharpe Ratios for each strategy led to similar conclusions, with 
Sharpe Ratios of between 1.31 and 1.63 using the IMP_VOL input and between 
0.83 and 1.05 using the 250_VOL input. Again, the effect of the particular α used 
was uncertain, with the use of smaller α leading to enhanced profitability under 
some volatility inputs and reduced profitability under others.

The distribution of the daily index returns follow a similar distribution, 
with 11 of the 12 series exhibiting positive skewness. This mitigates some of 
the common criticism of fixed income arbitrage strategies described in Duarte, 
Longstaff and Yu (2007) that arbitrage returns frequently have negative skewness 
such that small positive returns are often completely eroded by a few dramatic 
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losses. All simulations exhibited positive kurtosis, suggesting dramatic profits 
and losses might occur.

Finally, to determine whether index returns are driven by common market 
risk factors, the series of monthly returns for each volatility input and α was 
regressed on a set of common market factors. Changes in the iTraxx Australia 
and S&P/ASX 200 Indices were used to proxy for credit and equity market risk, 
respectively. Given the use of IMP_VOL in the estimation of spreads in this 
study, changes in the implied volatility of the S&P/ASX 200 Index were also 
used to proxy for market-wide volatility risk.7 

As shown in Table 7, changes in the three market factors account for 
between 0% and 46% of the variation in returns on the capital structure arbitrage 
index, depending on α. It should be noted that neither the coefficient for the S&P/
ASX 200 Index nor its implied volatility was significant in any of the scenarios. 
While the coefficient for the iTraxx Australia Index was significant in half the 
returns series, its sign fluctuated, with positive capital structure index returns 
associated with increases in the level of the iTraxx Index in some scenarios 
and decreases in others. We thus conclude that a significant proportion of the 
arbitrage profits cannot be explained by changes in market risk factors. Adjusting 
for such factors and considering the intercepts for each of the regressions also 
left the relative profitability of the trading strategy between different trading 
triggers and volatility inputs largely unchanged from previous results.

Table 7: Regression of monthly index returns on market variables

Coefficients and Adjusted R2 statistics for regressions of monthly index returns 
on changes in market variables. 1000_VOL, 250_VOL, EW_VOL and IMP_VOL 
represent CreditGrades model spreads based on 1000-day historical, 250-day historical, 
exponentially-weighted historical and option-implied volatilities, respectively. α 
represents the trading trigger. iTraxx represents the iTraxx Australia CDS Index, ASX200 
represents the S&P/ASX 200 Index and ASX200 IV represents the implied volatility of 
the S&P/ASX 200 Index. t-statistics are reported in brackets. Without any strong a-priori 
expectations regarding the interaction of each variable and arbitrage profits, the 1% and 
5% significance levels indicated by ** and *, respectively, assume a two-tailed test.

Model spreads α Adj R2 Intercept iTraxx ASX200 ASX200 IV

1000_VOL 0.5 0.0199 0.0300 -0.0019 0.0001 -0.0025

      (26.65)** (-1.27) (0.42) (-0.21)

  1.0 0.1780 0.0200 -0.0025 0.0001 -0.0108

      (26.74)** (-1.76) (0.04) (-0.92)

  2.0 0.2732 0.9753 -0.0046 0.0001 -0.0131

      (24.21)** (-3.02)** (0.26) (-1.05)

7	  Similarly to individual stock IMP_VOL, the S&P/ASX 200 Index vol was supplied by IRESS.

(continued)

ht
tp

://
ijb

f.u
um

.e
du

.m
y



88          	 The International Journal of Banking and Finance, Vol. 12, No. 1, 2016:  67-97

Model spreads α Adj R2 Intercept iTraxx ASX200 ASX200 IV

250_VOL 0.5 0.0376 0.0800 0.0026 0.0001 0.0086

      (26.39)** (1.69) (0.53) (0.68)

  1.0 0.0280 0.0700 0.0029 0.0002 0.0084

      (24.06)** (1.71) (0.79) (0.43)

  2.0 0.0019 0.1100 0.0038 0.0001 0.0042

      (15.98)** (1.46) (0.19) (0.20)

EW_VOL 0.5 0.2668 0.0200 -0.0035 0.0000 -0.0138

      (31.14)** (-2.85)** (0.08) (-1.36)

  1.0 0.3330 0.0000 -0.0043 0.0000 -0.0152

      (28.89)** (-3.28)** (0.25) (-1.41)

  2.0 0.4582 0.0000 -0.0070 -0.0002 -0.0178

      (27.21)** (-5.09)** (-1.04) (-1.57)

IMP_VOL 0.5 0.1494 0.1700 0.0032 0.0000 0.0250

      (23.61)** (1.74) (0.17) (1.64)

  1.0 0.2134 0.1300 0.0042 0.0001 0.0211

      (26.35)** (2.61)* (0.62) (0.12)

  2.0 0.3339 0.1100 0.0050 0.0001 0.0166

      (30.12)** (3.59)** (0.30) (1.46)

5.7	 Performance of iTraxx Index Arbitrage

Given that we can identify relative mispricing between equity and CDS markets 
on an individual obligor basis, we extended this analysis to the index level. 
According to Byström (2006) the iTraxx CDS Indices are highly tradable and 
more liquid than contracts for individual obligors. Although they represent 44% 
of the turnover in the credit derivatives market (Australian Financial Markets 
Association (2010)), to the best of our knowledge no previous study has 
modelled CDS Indices using estimates of the constituents. We focused on the 
equally-weighted iTraxx Australia Index with 25 constituents.8

We found that the estimated index fits the actual index levels relatively 
well across all volatility inputs. For example, MAD between estimated and 
actual iTraxx levels was only 30 bps with the conventional 1000_VOL input, 
which compared favourably to the 63 bps average cross-sectional MAD between 
the estimated and actual spreads of individual obligors documented in Table 2. 
Interestingly, due to the accurate fit, using α from the previous sections and in 
much of the earlier literature only identified extremely few (if any) trades. As 
such, and given the lack of any guidance from previous studies, we chose α of 
0.1, 0.2 and 0.3 for the index analysis. As previously, to minimise data snooping, 
we did not optimise these values.

8	 We estimated the iTraxx Australia Index from 24 equally-weighted firms. Recently listed 
Crown Limited was omitted from the sample as long-term historical volatility was not available. 
However, its spreads were relatively close to that of the index.
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Considering the proportion of the S&P/ASX 200 index capitalisation that the 
sample firms constituted, and the ease of taking futures positions in this index, 
we selected this index as an equity hedge to the iTraxx Index. The appropriate 
hedge ratio for the iTraxx Index at each point in time was calculated as an average 
of the model-estimated hedge ratios for each individual sample firm. Although 
the index bid-ask spread was lower than the spread for individual contracts, we 
maintained a 5% bid-ask spread to ensure consistency with previous sections.

Table 8 presents a summary of the holding period returns across each 
α and volatility input. Even after transaction costs, the strategy led to positive 
average returns across the majority of scenarios. Consistent with section 5.5, 
strategies using the timelier IMP_VOL and 250_VOL inputs were significantly 
more profitable than those based on the EW_VOL and 1000_VOL inputs. 
Interestingly, while the IMP_VOL input was most profitable before transaction 
costs, CDS spreads increased significantly while many of the positions were 
open, increasing transaction costs relative to initial capital and resulting in the 
250_VOL input generally being the most profitable after transaction costs. 

Table 8. Summary of returns on iTraxx Australia Index trades

1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades model 
spreads based on 1000-day historical, 250-day historical, exponentially-weighted 
historical and option-implied volatilities, respectively. α represents the trading 
trigger, N1 represents the total number of trades implemented and N2 represents 
the number of trades in which the initial capital was completely depleted. Mean, 
Min and Max represent the average, minimum and maximum holding period 
returns, respectively.

Returns before transaction costs Returns after transaction costs

Volatility α N1 N2 Mean Min Max N2 Mean Min Max

1000_VOL 0.1 21 0 5% -76% 138% 0 -5% -89% 126%

  0.2 13 0 19% -63% 136% 0 8% -76% 123%

  0.3 12 0 22% -77% 136% 0 11% -90% 123%

250_VOL 0.1 15 0 42% -80% 565% 0 31% -93% 549%

  0.2 13 0 42% -52% 442% 0 31% -62% 428%

  0.3 9 0 49% -57% 280% 0 38% -66% 267%

EW_VOL 0.1 19 0 22% -65% 138% 0 12% -78% 126%

  0.2 12 0 20% -65% 136% 0 10% -78% 123%

  0.3 10 0 15% -79% 136% 0 4% -92% 123%

IMP_VOL 0.1 12 0 51% -49% 272% 0 35% -69% 257%

  0.2 12 0 44% -52% 260% 0 27% -75% 244%

  0.3 11 0 51% -49% 294% 0 32% -83% 278%
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However, it is important to note that the index analysis was based on a smaller 
number of trades (9 to 21 depending on α and volatility input) compared to 
the analysis conducted on the individual obligor level (between 105 and 541 
trades). While trading individual contracts may create a market neutral position 
with simultaneous long/short CDS trades (with an associated long/short equity 
position), in an index trade only one CDS position (and associated equity hedge) 
can be open at each point in time. Consequently, trading the iTraxx Index may be 
seen as being much closer to speculative trading than capital structure arbitrage. 
Nevertheless, the results were largely consistent with the findings of previous 
sections. 

5.8	 Sensitivity Analysis

5.81	 Effectiveness of stop-loss and profit-taking trade out rules

We carried out a number of robustness checks to verify the sensitivity of our 
results to modifications in the trading strategy. To test the effectiveness of our 
additional stop-loss and profit-taking trade out rules, the trading profits were 
recalculated using only the convergence and timing trade-out rules of Yu (2006) 
and Duarte, Longstaff and Yu (2007). Table 9 contains a summary of the 
individual trade and index profitability, respectively.

Table 9: Trading Strategy Performance Without Stop-Loss and Profit Taking 
Trade-Out Rules

1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades model 
spreads based on 1000-day historical, 250-day historical, exponentially-weighted 
historical and option-implied volatilities, respectively. α represents the trading 
trigger, N1 represents the total number of trades implemented and N2 represents 
the number of trades in which the initial capital was completely depleted. Mean, 
Min and Max represent the average, minimum and maximum holding period 
returns, respectively.

Summary of returns on individual trades (without stop-loss and profit-
taking trade-out rules)

Returns before transaction costs Returns after transaction costs

Volatility α N1 N2 Mean Min Max N2 Mean Min Max

1000_VOL 0.5 172 30 13% -1327% 2397% 32 -1% -1370% 2328%

  1.0 116 19 11% -3213% 2397% 26 -5% -3309% 2328%

  2.0 60 13 21% -913% 2445% 14 5% -947% 2347%

(continued)
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Returns before transaction costs Returns after transaction costs

Volatility α N1 N2 Mean Min Max N2 Mean Min Max

250_VOL 0.5 177 25 45% -1069% 2409% 28 27% -1111% 2339%

  1.0 111 19 59% -1069% 2409% 27 35% -1111% 2339%

  2.0 58 6 118% -312% 2455% 11 87% -328% 2357%

EW_VOL 0.5 174 32 -18% -3272% 1097% 34 -32% -3370% 1087%

  1.0 104 24 -47% -3272% 1097% 27 -61% -3370% 1087%

  2.0 65 17 -45% -3272% 1097% 19 -60% -3370% 1087%

IMP_VOL 0.5 402 21 43% -893% 2354% 28 29% -928% 2284%

  1.0 259 14 53% -902% 2354% 22 36% -938% 2284%

  2.0 148 12 67% -1022% 2354% 16 48% -1061% 2284%

Summary of monthly index returns (without stop-loss and profit-taking 
trade-out rules)

N3 represents the number of months which generated positive returns. Stdev 
represents the standard deviation of monthly returns. The Sharpe Ratio is the 
annualised Sharpe Ratio for the index returns.

Model spreads α N1 N2 N3
Monthly returns

Stdev
Sharpe 
RatioMean Min Max

1000_VOL 0.5 48 0 23 1% -39% 113% 25% 0.19

  1.0 48 0 21 1% -42% 121% 29% 0.14

  2.0 48 0 21 -3% -75% 100% 31% -0.32

250_VOL 0.5 48 0 28 8% -47% 93% 28% 0.94

  1.0 48 0 25 7% -69% 85% 32% 0.73

  2.0 48 0 29 11% -78% 231% 49% 0.79

EW_VOL 0.5 48 0 21 2% -34% 110% 27% 0.23

  1.0 48 0 20 -1% -43% 112% 28% -0.14

  2.0 48 0 23 -2% -48% 139% 34% -0.18

IMP_VOL 0.5 48 0 36 17% -41% 166% 36% 1.63

  1.0 48 0 29 14% -45% 129% 34% 1.43

  2.0 48 0 26 10% -54% 109% 34% 1.08

Table 10: Trading Strategy Performance Excluding Financials

1000_VOL, 250_VOL, EW_VOL and IMP_VOL represent CreditGrades model 
spreads based on 1000-day historical, 250-day historical, exponentially-weighted 
historical and option-implied volatilities, respectively. α represents the trading 
trigger, N1 represents the total number of trades implemented and N2 represents 
the number of trades in which the initial capital was completely depleted. Mean, 
Min and Max represent the average, minimum and maximum holding period 
returns, respectively.
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Summary of returns on individual trades (excluding financials)

Returns before transaction costs Returns after transaction costs

Volatility α N1 N2 Mean Min Max N2 Mean Min Max

1000_VOL 0.5 206 4 19% -204% 694% 5 8% -217% 668%

  1.0 144 3 18% -188% 694% 3 7% -206% 668%

  2.0 89 2 4% -188% 518% 2 -7% -206% 500%

250_VOL 0.5 194 1 22% -103% 567% 4 10% -148% 526%

  1.0 129 1 27% -104% 577% 3 13% -119% 555%

  2.0 63 2 22% -118% 511% 5 4% -143% 486%

EW_VOL 0.5 197 6 17% -181% 516% 9 6% -194% 494%

  1.0 136 4 14% -167% 516% 5 3% -186% 494%

  2.0 82 2 12% -167% 521% 4 0% -186% 483%

IMP_VOL 0.5 319 4 24% -193% 584% 7 13% -206% 542%

  1.0 221 3 27% -232% 584% 6 14% -245% 543%

  2.0 139 1 27% -167% 573% 1 13% -182% 532%

Summary of monthly index returns (excluding financials)

N3 represents the number of months which generated positive returns. Stdev 
represents the standard deviation of monthly returns. The Sharpe Ratio is the 
annualised Sharpe Ratio for the index returns.

Model spreads α N1 N2 N3
Monthly returns

Stdev Sharpe Ratio
Mean Min Max

1000_VOL 0.5 48 0 20 6% -49% 163% 35% 0.55

  1.0 48 0 19 2% -45% 117% 32% 0.22

  2.0 48 0 17 -3% -118% 137% 42% -0.28

250_VOL 0.5 48 0 27 11% -52% 243% 50% 0.79

  1.0 48 0 27 6% -48% 103% 32% 0.67

  2.0 48 0 24 4% -92% 215% 47% 0.29

EW_VOL 0.5 48 0 23 7% -44% 150% 37% 0.64

  1.0 48 0 23 5% -41% 153% 34% 0.50

  2.0 48 0 19 0% -96% 147% 44% -0.03

IMP_VOL 0.5 48 0 29 17% -51% 287% 52% 1.11

  1.0 48 0 25 12% -51% 225% 47% 0.90

  2.0 48 0 26 10% -59% 162% 39% 0.86

As might be expected, when stop-loss and profit-taking trade out rules 
were excluded, the number of trades open at each point in time increased while 
the total number of trades decreased, reflecting positions being held open for 
significantly longer periods of time. While previous results indicated that the 
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number of trades ranged from 105 to 541, when the stop-loss and profit-taking 
rules were excluded, it ranged from 58 (250_VOL with α=2) to 402 (IMP_VOL 
with α=0.5). Without stop-loss and profit-taking rules, the strategy was extremely 
risky at the individual trade level, with one particular trade based on the EW_
VOL losing over 30 times the capital allocated to cover margin requirements 
for that trade. While this particular result was due to an unfortunate entry and 
exit timing, an increase in leverage of the trade and divergence in the CDS and 
equity market, this was by no means uncommon. The number of trades in each 
simulation in which the initial capital allocated to that trade was completely 
depleted represented a significant proportion (6 to 32 before and 11 to 34 after 
transaction costs) of the total number of trades made (58 to 402).

Interestingly, monthly returns on the capital structure arbitrage index 
were not influenced by the absence of stop-loss and profit-taking trade-out rules. 
Nevertheless, given the practical difficulties in daily trading and rebalancing to 
invest in such an index, we concluded that while the simple convergence and 
timing exit rules used by Yu (2006) and Duarte, Longstaff and Yu (2007) may 
be effective during times of market stability, they were not adequate in times of 
significant market volatility.

5.8.2	 Inclusion of financials

To validate the inclusion of financial firms in the trading strategy, Table 10 
contains a summary of individual trade and index profitability, respectively, when 
financials are excluded. The number of trades under each scenario ranged from 
63 (250_VOL with α=2) to 319 (IMP_VOL with α=2), which was significantly 
lower than the previously discussed results.

The relative performance of strategies based on different volatility inputs 
after transaction costs was similar to previous results, with simulations based 
on the IMP_VOL (average returns on each trade of 13% to 14% depending 
on α) and, to a lesser extent, 250_VOL (average returns of 4% to 13%) inputs 
performing much better than those based on long-term historical volatility inputs. 
Interestingly, while strategies based on the long-term historical volatility inputs 
were more profitable when financials were not included in the sample, those 
using the IMP_VOL and 250_VOL inputs were more profitable when financials 
were included in the sample. Similar conclusions were reached when the returns 
on the capital structure arbitrage index were considered in addition to the returns 
on individual trades. We, thus conclude that the inclusion of financials in the 
trading strategy does not adversely affect its overall profitability.

6. Conclusion

We examined the ability of the CreditGrades model to predict CDS spreads 
of Australian obligors using factors such as equity prices, equity volatilities 
and leverage. Using the model, we implemented a convergence style capital 
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structure arbitrage trading strategy to investigate the profitability of relative 
value opportunities across the two markets during the financial crisis.

We found that commonly used long-term, 1000_VOL produced spreads 
which fit market spreads more closely than those produced using IMP_VOL. 
However, within the context of the trading strategy, the use of IMP_VOL 
resulted in a greater number of trades and higher average holding-period returns. 
Unlike previous studies conducted in the pre-crisis period, we found the average 
returns after transaction costs based on the 1000_VOL disappointing, ranging 
from -12% to 2%, depending on α. In contrast, returns using the IMP_VOL input 
ranged from 17% to 27%, depending on α. Similar results held at the index level, 
with IMP_VOL producing significant annualised Shape ratios of between 1.31 
and 1.63, again depending on α. We thus conclude that while model spreads 
based on IMP_VOL may not fit market spreads as closely as those based on 
historical volatility, they may be more relevant for practitioners engaging in 
capital structure arbitrage.

While previous literature incorporates trade-out rules which consider 
model convergence and either timing exits or profit and loss exits, we found 
these simple trade-out rules produced a significant number of trades where 
losses exceed the initial capital. Although these rules may be effective in stable 
markets, they are less reliable during periods of high market volatility. We 
propose a more complex set of trading rules which reduce large losses and may 
be of more interest to practitioners. By modelling the more liquid and highly 
traded iTraxx Index from the estimated spreads of the constituents, we offer a 
new direction in capital structure arbitrage which when hedged with an equity 
index is potentially profitable. 
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