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1. Introduction 

Physical distancing (PD) is one of the popular practices to prevent the transmission of COVID-19, 
which WHO currently endorses. The term PD refers to the minimum distance between two people to 
interact. The minimum distance recommended by WHO and CDC is 6 feet (2 meters) [1]–[4]. A study 
by Kuitunen et al. [5] showed that PD declined the pediatric emergency room patient volume and altered 
the patient traits to fewer stays yielded by respiratory diseases in Finland. Although PD has played an 
important role in tackling COVID-19, its implementation faces obstacles. As reported by Masters et al. 
[4], millennials in the USA had a more increased perceived threat of infection but did not rehearse as 
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 During the COVID-19 pandemic, physical distancing (PD) is highly 
recommended to stop the transmission of the virus. PD practices are 
challenging due to humans' nature as social creatures and the difficulty in 
estimating the distance from other people. Therefore, some technological 
aspects are required to monitor PD practices, where one of them is 
computer vision-based approach. Hence, deep learning-based computer 
vision is utilized to automatically detect human objects in the video 
surveillance. In this work, we focus on the performance study of deep 
learning-based object detector with Tensor RT optimization for the 
application of physical distancing monitoring system. Deep learning-based 
object detection is employed to discover people in the crowd. Once the 
objects have been detected, then the distances between objects can be 
calculated to determine whether those objects violate physical distancing 
or not. This work presents the physical distancing monitoring system using 
a deep neural network. The optimization process is based on TensorRT 
executed on Graphical Processing Unit (GPU) and Computer Unified 
Device Architecture (CUDA) platform. This research evaluates the 
inferencing speed of the well-known object detection model You-Only-
Look-Once (YOLO) run on two different Artificial Intelligence (AI) 
machines. Two different systems-based on Jetson platform are developed 
as portable devices functioning as PD monitoring stations. The results 
show that the inferencing speed in regard to Frame-Per-Second (FPS) 
increases up to 9 times of the non-optimized ones, while maintaining the 
detection accuracies.  
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many PD behaviors, potentially due to other obstacles such as employment, childcare, housing 
insecurity, or a lack of knowledge of the necessity of PD [4]. 

PD practices are challenging due to humans' nature as social creatures and the difficulty in estimating 
the distance from other people. Therefore, technology is required to overcome these challenges. One of 
the technologies that can be used is deep learning based computer vision (CV) [6], [7]. Deep learning, 
sometimes referred to as Deep Neural Network (DNN), which is a subset of Machine Learning (ML) 
that can be used to detect people objects in an image. The methods to detect people objects by using 
DNN can be divided into two approaches. The first is region-based, and the second is unified-based 
techniques. The first is also called a double stage detector since it has two stages to detect objects: region 
proposal and processing. Algorithms such as Fast-RCNN, Faster RCNN, and Mask-RCNN are classified 
into this method. The region-based method has high accuracy, but it features high complexity, so it is 
unsuitable for devices with limited computing capacities. The second method is unified-based, which is 
one stage technique. Thus, it is sometimes referred to as a single-stage detector. This method maps the 
image pixels into bounding box grid and class probabilities to detect the object. Algorithms such as 
YOLO and SSD are prime examples of this approach [7]. 

The popularity of DNN inspired many researchers to develop DNN-based algorithms for PD 
monitoring. Saponara et.al. [8] implemented YOLOv2 on Jetson Nano for PD monitoring with the 
video taken using the thermal camera. The experiment results showed that the method was faster 
compared to another method that used YOLOv3. Suryadi et.al [9] likened the performance of YOLOv3, 
YOLOv3-Tiny and MobilenetSSD on GPU to execute PD monitoring. The outcomes demonstrated 
that YOLOv3 suggested the most suitable detection accuratenesses corresponded to the other two 
techniques. Despite that, the YOLOv3-Tiny performed an enormous FPS rate. This is due to YOLOv3-
Tiny is a lightweight version of YOLOv3. Rezai and Azami [10] developed DeepSocial that used 
YOLOv4 as the DNN model. In [10], YOLOv4 was combined with Hungarian algorithm and Kalman 
filter to monitor the distances among people. The use of YOLOv4 was then followed by [11], which 
experimented on YOLOV4 for PD monitoring under low light conditions. 

PD monitoring system based on deep learning should consider two aspects, i.e., accuracy and 
detection speed. Accuracy depends on the chosen DNN model, while detection speed relates to the used 
hardware and optimization method. The graphical processing unit (GPU) offers the best computing 
capabilities due to performing parallel computation and ease for the model implementation compared to 
DSP or FPGA. While, TensorRT is one of the technologies to optimize neural network models 
instructed in all-powerful frameworks, calibrate for more inferior precision with excellent accuracy, and 
distribute to hyperscale data centers. TensorRT utilizes parallel computing ability of CUDA (Compute 
Unified Device Architecture) and cuDNN (CUDA Deep Neural Network). It can be implemented on 
embedded platforms such as jetson boards [12]. 

Several research works attempted to apply TensorRT optimization for DNN-based object detections 
can be found in [13]–[22]. Shin et.al, in [13], presents a performance inference method that combines 
the Jetson monitoring tool with TensorFlow and TRT source code on the Nvidia Jetson AGX Xavier 
platform. The survey of various works that assess and optimize deep learning model applications on the 
mobile and embedded platforms has been conducted in [14], [15]. Osipov et.al, in [16], modified the 
Agrifac HEXX TRAXX harvester by installing a 24 fps video camera and a single-board computer using 
a Canny edge detector and excess green minus excess red (ExGR) method with Otsu’s binarization. A 
review of the study and application of deep learning based on structural damage detection was done by 
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Zhang et.al, in [17]. Kim et. al [18], implemented a deep convolutional neural network-based damage 
locating (DCNN-DL) approach to classify the steel frame images supplied as information as damaged 
and undamaged.  Utilization of deep learning methods to support the development of driving safety on 
embedded platform can be found in [19]–[22]. Wu et.al, in [23], proposed a novel real-time infrared 
pedestrian detection algorithm that uses RepVGG to reconstruct the YOLOv4 backbone network. In 
other works, Wu et.al, in [24], proposed an embedded vehicle detection algorithm using Raspberry Pi 
4B and Inter NCS2 neural computing stick has been improved in many aspects. TensorRT-based object 
detection deployed on limited on-board resources of Autonomous Mobile Robots (AMR) was developed 
in [25]. 

In this paper, we evaluate pre-trained DNN model's performance with TensorRT optimization used 
for PD monitoring system. The evaluated models are YOLOv3 and YOLOv4 with various resolutions 
running on two different machines, i.e., Jetson Xavier AGX and Jetson Xavier NX. The main 
contributions of this article are outlined as follow: (i) a detail configuration of PD monitoring system 
based on DNN and TensorRT Optimization is presented, (ii) the performance of PD monitoring system 
with various models of YOLO-based DNN in terms of FPS and detection accuracies is evaluated, (iii) 
two portable PD monitoring stations with AI computing capabilities are developed. In addition, the 
computing capabilities can also be adjusted based on the available power and CPU cores. 

The remains of this paper is structured as follows; Section 2 presents the proposed method covering 
a configuration of the PD monitoring system, the YOLO model for object detection, and TensorRT-
based optimization. Section 3 provides the experimental setup describing the experimental procedure, 
including hardware and software specifications. Results and discussion are given in Section 4, and Section 
5 concludes the research work.  

2. Method 

2.1. Abbreviation 

Throughout this paper, the complete list of abbreviations is provided in Table 1. 

Table 1.  List of Abbreviations 

Abbreviation Full Description 

AI Artificial Intelligence 
CDC Centers for Disease Control and Preventions 
CNN Convolutional Neural Network 

COVID-19 Coronavirus Disease 2019 
CSPNet Cross Stage Partial Network 

CSPDarknet53 Cross Stage Partial Darknet53 
CUDA Compute Unified Device Architecture 
cuDNN CUDA Deep Neural Network 

CV Computer Vision 
DNN Deep Neural Network 
FPN Feature Pyramid Networks 
FPS Frame Per Second 
GPU Graphics Processing Unit 
IOU Intersection Over Union 
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Table 1. (cont.) 

Abbreviation Full Description 

MAE Mean of Absolute Error 
MAP Mean of Average Precision 
PAN Path Aggregation Network 
PD Physical Distancing 

RCNN Regional CNN 
SPP Spatial Pyramid Pooling 
SSD Single Shot Detector 
TOF Time of Flight 
WHO World Health Organization 
YOLO You Only Look Once 

YOLOvi YOLO i-th Version 
YOLOvi-288/416/608 YOLO i-th Version with 288 × 288/416 × 416/608 × 608 input resolution 
 

2.2. PD Monitoring  

A block diagram of the PD monitoring system based on a deep learning algorithm is shown in Fig. 
1. Early works on PD monitoring system based on deep learning have been done in [9], [26]. Here, we 
specifically used DNN-based object detector to detect people objects. A pre-trained YOLO model 
inferred with TensorRT optimization is used in the implementation.  When the people things are caught 
along with their bounding containers and centroids, the next step calculates the pairwise distances among 
all detected objects. The calculated distance is norm distance formulated as follows: 

�̂�1,2 = √(𝑐𝑥1 − 𝑐𝑥2)2 + (𝑐𝑦1 − 𝑐𝑦2)2 (1) 

 

where �̂�1,2 is the distance between object 1 and 2, (𝑐𝑥1, 𝑐𝑦1) is the centroid coordinate of object 1, 
and (𝑐𝑥2, 𝑐𝑦2) is the centroid coordinate of object 2.  

 

Fig. 1.  Block  Diagram of DNN-based PD  Monitoring System 

The distance �̂�1,2 above is in pixel (px), and we need to know how long it represents to actual distance 
𝑑1,2 . Therefore, we need a conversion from the distance in pixel to the actual distance in meter (m). 
The conversion can be done by following the steps as follow: 
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1. Obtain the focal length of camera (F) 

     𝐹 =
𝐷 ×  𝑃

𝑊
 (2) 

, where 𝐹 is focal length of camera, 𝐷 is the exact distance of the camera to the reference object (m), 
𝑊 is an actual width of reference object (m), and 𝑃 is the width of reference object in an image (px). 
This stage is calibration step to obtain focal length of camera. 

2. Estimate the actual distance (m) by using the obtained focal length of camera. The estimation formula 
is given by; 

    𝑑1,2 =
𝐷 × �̂�1,2

𝐹
        (3) 

The threshold in pixel representing 1.5 m distance, can be obtained from: 

     �̂�𝑇 =
𝐹 × 1,5

𝐷
           (4) 

At the final stage, we check if  �̂�1,2 > �̂�𝑇 or �̂�1,2 < �̂�𝑇. The violation is detected when �̂�1,2 < �̂�𝑇, 
and vice versa. 

2.3. YOLO Model 

Here, an actual object detection algorithm for videos based on the YOLO network proposed by Lu 
et al. [27], the Fast YOLO model has been trained for object detection to acquire the object data. YOLO 
splits the intake image into S x S grid, and then a single convolutional network simultaneously indicates 
multiple bounding boxes and class probabilities for those boxes. The YOLO detection system can be 
seen in Fig. 2. YOLO instructs on total pictures and directly optimizes detection performance. This 
unified model has several advantages over conventional methods of object detection. 

 
Fig. 2.  YOLO detection system 
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There are two main reasons YOLO can perform fast and real-time detection of full images compared 
to other Fast R-CNN models. First, YOLO's pipeline channel just forecasts less than 100 bounding 
boxes per photo, while Fast R-CNN utilizes selective search. Second, YOLO performs object detection 
as a regression issue, so a unified architecture can directly extract attributes from information pictures 
to forecast bounding boxes and class probabilities [28]. YOLO's result is bounding boxes, in which each 
bounding box consists of 5 projections: x,y,w,h, and confidence. The (x,y) coordinates describe the center 
of the container. The width w and height h are predicted relative to the entire image. The confidence 
prediction illustrates the IOU between the indicated box and any ground truth box.  YOLO recognizes 
an object based on class-specific. 

Since its first appearance, YOLO has continued to develop. The third version of YOLO, which is 
YOLOv3, developed by Zao et al. in 2020 [29]. They have produced a new cluster strategy for calculating 
the initial width and height of the expected bounding boxes. A pair of width and height values are 
randomly selected as one initial cluster center distinct from the width and height of the ground truth 
boxes. Then, it creates Markov chains based on the selected initial cluster and utilizes the last points of 
every Markov chain as the different initial centers. 

The latest version of YOLO, namely YOLOv4, was modified by Roy et al. in 2022 [30]. The YOLOv4 
algorithm was modified with the network architecture to maximizes accuracy and rate by containing 
DenseNet in the backbone. It can optimize feature transfer and reuse two new residual blocks in the 
backbone and neck to enhance feature extraction, decreasing computing costs. The Spatial Pyramid 
Pooling (SPP) was used to improve the receptive field, and a modified Path Aggregation Network 
(PANet) maintains fine-grain localized data and improves quality fusion. 

YOLO models which will be compared in this paper are YOLOv3 and YOLOv4. These choices are 
based upon their advantages in the accuracy of detection compared with early YOLO models. The 
structure of YOLO V3 and YOLO V4 are shown in Fig. 3 and Fig. 4. 

 

Fig. 3.  YOLO V3 Structure [31]  
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Fig. 4. YOLO V4 Structure [31] 
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2.4. TensorRT Optimization 

In this work, TensorRT is employed to optimize the inferencing process of deep learning model. 
TensorRT is built on CUDA enabling inference optimization of all deep learning frameworks that utilize 
libraries, development tools, artificial intelligence, high-performance computing, and graphics.  
TensorRT delivers INT8 and FP16 optimizations for deep learning inference production applications 
such as video streaming, speech recognition, recommendations, fraud detection, and natural language 
recommendations. Smaller precision inference considerably declines application latency, requiring much 
real-time assistance, automated applications, and embedded applications. 

Number representation is very useful when improving latency efficiency of computation system. Most 
of the already-trained networks use FP32 (Floating Point 32) to adjust their weight and activation 
function. When this parameter used in inference, it’s required large memory allocation and could lead 
to high latency in computing process. TensorRT have the capability to convert FP32 number to lower 
precision number such as FP16 (Floating Point 16) or INT8 (Integer 8). This conversion can reduce 
computation time. The equation below formulates the process of quantization to INT8 where input, 
floating point range, and scaling factor are denoted by 𝑥, 𝑟, and 𝑠 respectively [32]. 

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑥, 𝑟) = 𝑟𝑜𝑢𝑛𝑑(𝑟 ∗ 𝑐𝑙𝑖𝑝(𝑥, −𝑟, 𝑟)  ()  

 To maintain accuracy after conversion, TensorRT then provides calibration mechanism. This 
mechanism produces a set of representative data (called as calibration data), which gives histogram 
activation values used to find the threshold for minimum KL-divergence. TensorRT uses KL-divergence 
to measure the difference between the original and the new conversion numbers [33].                                                                                                                                                                             

2.5. Experimental Setup 

This research work is carried out on two PD monitoring systems, in which each system is powered 
by two different AI computers, namely Jetson Xavier AGX and Jetson Xavier NX. Fig. 5 and Fig. 6 show 
the portable PD monitoring stations which have been developed. The main hardware and software 
specifications are listed in Table 2. For the testing purposes, we use a recorded video of pedestrians in a 
busy downtown area in Oxford [34]. The supplied video is in the mp4 format consisting of 530 frames 
with the original frame size of 1980 x 1080 pixels. 

  

Fig. 5.  Portable PD monitoring station with 
Jetson AGX Xavier 

Fig. 6.  Portable PD monitoring station with 
Jetson Xavier NX 
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Table 2. Main hardware and software specifications 

Item System-1 System-2 

GPU 384 NVIDIA CUDA® cores and 48 Tensor cores 512-core Volta GPU with Tensor Cores 

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 
MB L2 + 4 MB L3 

8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3 

Memory 8 GB 128-bit LPDDR4x @ 51.2GB/s 32GB 256-Bit LPDDR4x | 137GB/s 

Storage 250 GB SSD M2 NVME 250 GB SSD M2 NVME 
Power 10 W 30 W 

OS Ubuntu 18.0.4 Ubuntu 18.0.4 
JetPack 4.4 [L4T 32.4.3] 4.4 [L4T 32.4.3] 
CUDA 10.2.89 10.2.89 

TensorRT 7.1.3.0 7.1.3.0 
cuDNN 8.0.0.180 8.0.0.180 
OpenCV 4.4.0 4.4.0 

3. Results and Discussion 

The speed performance of PD monitoring system with Jetson AGX Xavier is plotted in Fig. 7. For 
the comparison purposes, six DNN models, i.e., YOLOv3-288, YOLOv3-416, YOLOv3-608, YOLOv4-
288, YOLOv4-416, YOLOv4-608, are inferred with and without TensorRT optimization. To know what 
YOLOv3-288, YOLOv3-416, YOLOv3-608, YOLOv4-288, YOLOv4-416, YOLOv4-608 correspond to, 
please refer to the Table 1. The DNN models are executed on CUDA along with OpenCV at MAXN 
power mode. The MAXN power mode offers maximum utilization of both CPU and GPU cores (i.e., 
Online CPU: 8, Max CPU Freq.: 2265.6 MHz, GPU TPC: 4 clusters, Max GPU Freq.: 1377 MHz). 
When the DNN models are executed without TensorRT optimization, the maximum FPS is achieved 
at 2.53 for v3-288 model, and the lowest FPS is obtained for v4-608 model at 2.45. In contrast to the 
above results, with TensorRT optimization, the speed performances are drastically increased for all DNN 
models. The highest FPS is achieved for v3-288 model at 25.04, followed by v4-288 model at 24.22. The 
lowest FPS is obtained from v4-608 model at 13.25. The maximum percentage increase occurs on v3-
288 model with 889 % improvement which is almost 9 times of the non-optimized ones. The minimum 
improvement is acquired on v4-608 model at 440 %. These results show drastic improvement in term 
of FPS when the TensorRT optimization is applied. The results also indicates that v3 models consistently 
achieve higher FPS compared to v4 models. 

The speed performance of PD monitoring system with Jetson Xavier NX executed with and without 
TensorRT can be observed in Fig. 8. The DNN models are also run at maximum power mode that 
utilizes peak capabilities of both CPU and GPU (i.e, power budget: 15 W, online CPU: 6 cores, Max 
CPU Freq.: 1400 MHz, GPU TPC : 3 clusters, Max GPU Freq. : 1100 MHz). As indicated from Fig. 
9, when the DNN models are inferred without TensorRT optimization, the achieved FPSs are extremely 
low and ranged from 1.48 to 1.71. Similar trends are shown from NX system, where the TensorRT 
optimization significantly increases the FPS for all DNN models. The highest FPS reaches 14.14 which 
is obtained from v3-288 model. This gives 849 % improvement which is relatively close to the percentage 
increase obtained from AGX system. The lowest FPS is also acquired from v4-608 model that is at 7.44 
FPS.  This contributes the minimum percentage increase by 373 %. The performance results with 
TensorRT optimization also point out that v3 models provide better FPS compared to v4 models. 
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Fig. 7.  Speed performance of PD monitoring system 
with Jetson AGX Xavier 

Fig. 8.  Speed performance of PD monitoring system 
with Jetson Xavier NX 

Next, we examine the speed and detection accuracy of PD monitoring systems with a static video 
input. The video input is created from 100-th frame of the previous video as illustrated in Fig. 9. Then, 
the frame is looped for 530 times. In this way, the number of persons for each frame remains the same. 
The ground truth of the number of persons is manually counted and obtained as 17.  

 

Fig. 9.  An image of frame # 100 

Table 3 summarizes the performances in speed and detection accuracy of AGX system with TensorRT 
optimization. As observed in Table. 2, the similar pattern of FPS is shown here, where v3-288 model 
achieves highest FPS and v4-608 model offers lowest FPS. Table 3 describes that v3 models show 
inconsistent detection error where the model with highest resolution 608 × 608 results in largest 
detection error. The detection error (DE) here is defined as  

𝐷𝐸 =
|𝐺𝑇−𝐷𝑃|

𝐺𝑇
x 100%   () 

where GT and DP stand for Ground Truth and Detected Persons. In contrast to v3 models, v4 models 
provide consistent outcomes, where increasing the model resolution improves the detection accuracy. 
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The best detection accuracy is obtained from v4-608 model with 0.12 % detection error. In exchange to 
the best detection accuracy by v4-608 model, is the lowest processing speed which is leveled at 13.07 
FPS. 

Table 3.  Speed and accuracy of  AGX system with TensorRT optimization using 100-th frame video input 

 

The speed and detection performance of NX system with TensorRT optimization is described in 
Table 4. Similar trends to AGX system are shown from Table 4, where the fastest FPS is achieved by 
v3-288 model, and v4-608 model offers the lowest FPS. Table 4 also points out that the best detection 
accuracy is yielded by v4-608 model with 0.12 % detection error. These results confirm that increasing 
the model resolution improves the detection accuracy. 

Table 4.  Speed and accuracy of  NX system with TensorRT optimization using 100-th frame video input 

4. Conclusion 

The PD monitoring systems based on DNN with TensorRT optimization have been presented in 
this paper. The systems are built on portable workstations powered by low-power AI machines, namely 
Jetson AGX Xavier and Jetson Xavier NX.  The TensorT optimization is executed on GPU with 
Computer Unified Device Architecture (CUDA) platform. In this work, the performances of DNN 
models with and without TensorRT optimization are evaluated. The evaluated models are YOLOv3-
288, YOLOv3-416, YOLOv3-608, YOLOv4-288, YOLOv4-416, YOLOv4-608. The results indicate 

No 
YOLO 

Model 

Grund Truth 

#Person 

TensorRT 

#FPS #Avg. Detected Persons 
%Detection 

Error 

1 v3-228 17 24.05 18.00 5.88 

2 v3-416 17 19.54 16.97 0.17 

3 v3-608 17 13.81 19.02 11.88 

4 v3-228 17 23.11 14.73 13.35 

5 v3-416 17 18.53 16.00 5.88 

6 v3-608 17 13.07 17.02 0.12 

No 
YOLO 

Model 

Grund Truth 

#Person 

TensorRT 

#FPS #Avg. Detected Persons 
%Detection 

Error 

1 v3-228 17 15.29 18.98 11.64 

2 v3-416 17 11.82 21.00 23.52 

3 v3-608 17 8.37 20.00 17.64 

4 v3-228 17 15.15 14.73 13.35 

5 v3-416 17 11.58 16.00 5.88 

6 v3-608 17 7.82 17.02 0.12 
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that the optimization drastically improves the performance in terms of FPS on both machines. The PD 
station with Jetson AGX machine offers higher FPS compared to the ones with NX machine. From the 
experiment, it is also shown that the YOLOv4 model with highest resolution offers better accuracy in 
the exchange of slower computational speed. Note that the developed system is prepared for the GPU-
supported machines that gives the limitation of the system. Therefore, in the future research work, a 
light version of this system would be developed. 
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