ON THE GROWTH OF ITERATED ENTIRE FUNCTIONS

DIBYENDU BANERJEE* AND NILKANTA MONDAL

Abstract

We consider iteration of two entire functions of (p, q)-order and study some growth properties of iterated entire functions to generalise some earlier results.

1. Introduction

For any two transcendental entire functions $f(z)$ and $g(z), \lim _{r \rightarrow \infty} \frac{M(r, f \circ g)}{M(r, f)}=\infty$ and Clunie [2] proved that the same is true for the ratio $\frac{T(r, f \circ g)}{T(r, f)}$. In [7] Singh proved some results dealing with the ratios of $\log T(r, f \circ g)$ and $T(r, f)$ under some restrictions on the orders of f and g. In this paper, we generalise the results of Singh [7] for iterated entire functions of (p, q)-orders. Following Sato [6], we write $\log ^{[0]} x=x, \exp ^{[0]} x=x$ and for positive integer $m, \log ^{[m]} x=\log \left(\log { }^{[m-1]} x\right)$, $\exp ^{[m]} x=\exp \left(\exp ^{[m-1]} x\right)$.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function. Then the (p, q)-order and lower (p, q)-order of $f(z)$ are denoted by $\rho_{(p, q)}(f)$ and $\lambda_{(p, q)}(f)$ respectively and defined by [1]
$\rho_{(p, q)}(f)=\lim _{r \rightarrow \infty} \sup \frac{\log ^{[p]} T(r, f)}{\log ^{[q]} r}$
and $\lambda_{(p, q)}(f)=\lim _{r \rightarrow \infty} \inf \frac{\log ^{[p]} T(r, f)}{\log ^{[q]} r}, p \geq q \geq 1$.
According to Lahiri and Banerjee [4] if $f(z)$ and $g(z)$ be entire functions then the
iteration of f with respect to g is defined as follows:
$f_{1}(z)=f(z)$
$f_{2}(z)=f(g(z))=f\left(g_{1}(z)\right)$
$f_{3}(z)=f(g(f(z)))=f\left(g_{2}(z)\right)$
$f_{n}(z)=f(g(f(g(\ldots .(f(z)$ or $g(z)$ according as n is odd or even $))))$
and so are $g_{n}(z)$.
Clearly all $f_{n}(z)$ and $g_{n}(z)$ are entire functions.
The main purpose of this paper is to study growth properties of iterated entire functions to that of the generating functions under some restriction on (p, q)-orders and lower (p, q)-orders of f and g.

Throughout we assume f, g etc., are non-constant entire functions having finite (p, q)-orders.

[^0]
2. Lemmas

Following two lemmas will be needed throughout the proof of our theorems.
Lemma 1[5]. Let $f(z)$ and $g(z)$ be entire functions. If $M(r, g)>\frac{2+\epsilon}{\epsilon}|g(0)|$ for any $\epsilon>0$, then $T(r, f \circ g) \leq(1+\epsilon) T(M(r, g), f)$.

In particular, if $g(0)=0$ then $T(r, f \circ g) \leq T(M(r, g), f)$ for all $r>0$.
Lemma 2[3]. If $f(z)$ be regular in $|z| \leq R$, then for $0 \leq r<R$
$T(r, f) \leq \log ^{+} M(r, f) \leq \frac{R+r}{R-r} T(R, f)$.
In particular if f be entire, then
$T(r, f) \leq \log ^{+} M(r, f) \leq 3 T(2 r, f)$.

3. Main Results

First we shall show that if we put some restriction on (p, q)-orders of f and g then the limit superior of the ratio is bounded above by a finite quantity. The following two theorems admit the results.

Theorem 1. Let $f(z)$ and $g(z)$ be two entire functions with $f(0)=g(0)=0$ and $\rho_{(p, q)}(g)<\lambda_{(p, q)}(f)$. Then for even n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log [q-1]} T\left(2^{n-2} r, f\right) \quad \leq \rho_{(p, q)}(f) .
$$

Proof. We have by Lemma 1 and Lemma 2

$$
\begin{aligned}
& \log ^{[p]} T\left(r, f_{n}\right) \leq \log ^{[p]} T\left(M\left(r, g_{n-1}\right), f\right) \\
&<\left(\rho_{(p, q)}(f)+\epsilon\right) \log ^{[q]} M\left(r, g_{n-1}\right), \text { for all large values of } r
\end{aligned}
$$

and $\epsilon>0$

$$
\begin{aligned}
& \leq\left(\rho_{(p, q)}(f)+\epsilon\right) \log ^{[q-1]}\left\{3 T\left(2 r, g_{n-1}\right)\right\} \\
& =\left(\rho_{(p, q)}(f)+\epsilon\right) \log ^{[q-1]} T\left(2 r, g_{n-1}\right)+O(1)
\end{aligned}
$$

So, $\log ^{[p+(p+1-q)]} T\left(r, f_{n}\right)<\log ^{[p]} T\left(2 r, g_{n-1}\right)+O(1)$

$$
<\left(\rho_{(p, q)}(g)+\epsilon\right) \log ^{[q-1]} T\left(2^{2} r, f_{n-2}\right)+O(1)
$$

Proceeding similarly after $(n-2)$ steps we get
$\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)<\log ^{[p]} T\left(2^{n-2} r, f(g)\right)+O(1)$

$$
\begin{align*}
& \leq \log ^{[p]} T\left(M\left(2^{n-2} r, g\right), f\right)+O(1) \\
& <\left(\rho_{(p, q)}(f)+\epsilon\right) \log ^{[q]} M\left(2^{n-2} r, g\right)+O(1) \\
& <\left(\rho_{(p, q)}(f)+\epsilon\right)\left\{\exp ^{[p-q]}\left(\log ^{[q-1]}\left(2^{n-2} r\right)\right)^{\rho_{(p, q)}(g)+\epsilon}\right\}+O(1) \tag{3.1}
\end{align*}
$$

for all large values of r

$$
<\left(\rho_{(p, q)}(f)+\epsilon\right)\left\{\exp ^{[p-q]}\left(\log ^{[q-1]}\left(2^{n-2} r\right)\right)^{\lambda_{(p, q)}(f)-\epsilon}\right\}+O(1)
$$

by choosing $\epsilon>0$ so small that $\rho_{(p, q)}(g)+\epsilon<\lambda_{(p, q)}(f)-\epsilon$.
On the other hand,
$T(r, f)>\exp ^{[p-1]}\left(\log ^{[q-1]} r\right)^{\lambda_{(p, q)}(f)-\epsilon}$, for all $r \geq r_{0}$
or, $\log { }^{[q-1]} T(r, f)>\exp ^{[p-q]}\left(\log ^{[q-1]} r\right)^{\lambda(p, q)}(f)-\epsilon$, for all $r \geq r_{0}$.
Therefore, from above

$$
\frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\left[\log ^{[q-1]} T\left(2^{n-2} r, f\right)\right.}<\frac{\left(\rho_{(p, q)}(f)+\epsilon\right)\left\{\exp ^{[p-q]} \log ^{[q-1]}\left(2^{n-2} r\right)\right)^{\lambda}(p, q)(f)-\epsilon}{\exp ^{[p-q]}\left(\log ^{[q-1]}\left(2^{n-2} r\right)\right)^{\lambda}(p, q)^{(f)-\epsilon}},
$$

for all $r \geq r_{0}$.
Hence,

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[q-1]} T\left(2^{n-2} r, f\right)} \leq \rho_{(p, q)}(f)+\epsilon
$$

The theorem now follows since $\epsilon(>0)$ is arbitrary.
Note 1. From the hypothesis it is clear that f must be transcendental.
Theorem 2. Let f and g be two entire functions with $f(0)=g(0)=0$ and $\rho_{(p, q)}(f)<\lambda_{(p, q)}(g)$. Then for odd n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log [q-1]} T\left(2^{n-2} r, g\right) \quad \leq \rho_{(p, q)}(g) .
$$

The proof of the theorem is on the same line as that of Theorem 1.
If $\rho_{(p, q)}(g)>\rho_{(p, q)}(f)$ holds in Theorem 1 we shall show that the limit superior will tend to infinity. Now we prove the following two theorems.
Theorem 3. Let $f(z)$ and $g(z)$ be two entire functions of positive lower (p, q) orders with $\rho_{(p, q)}(g)>\rho_{(p, q)}(f)$. Then for even n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n+2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[q-1]} T\left(\frac{r}{4^{n-1}}, f\right)}=\infty
$$

Proof. We have,

$$
T\left(r, f_{n}\right)=T\left(r, f\left(g_{n-1}\right)\right)
$$

$$
\begin{aligned}
& \geq \frac{1}{3} \log M\left(\frac{1}{8} M\left(\frac{r}{4}, g_{n-1}\right)+o(1), f\right) \quad\{\text { see }[7], \text { page } 100\} \\
& \geq \frac{1}{3} \log M\left(\frac{1}{9} M\left(\frac{r}{4}, g_{n-1}\right), f\right) \\
& \geq \frac{1}{3} T\left(\frac{1}{9} M\left(\frac{r}{4}, g_{n-1}\right), f\right) \\
& >\frac{1}{3} \exp ^{[p-1]}\left\{\log ^{[q-1]} \frac{1}{9} M\left(\frac{r}{4}, g_{n-1}\right)\right\}^{\lambda_{(p, q)}(f)-\epsilon}, \quad \text { for all } r \geq r_{0} \\
& =\frac{1}{3} \exp ^{[p-1]}\left\{\log ^{[q-1]} M\left(\frac{r}{4}, g_{n-1}\right)\right\}^{\lambda_{(p, q)}(f)-\epsilon}+O(1), \quad \text { for all } r \geq r_{0} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\log ^{[p]} T\left(r, f_{n}\right) & >\log \left\{\log ^{[q-1]} M\left(\frac{r}{4}, g_{n-1}\right)\right\}^{\lambda_{(p, q)}(f)-\epsilon}+O(1), \\
& =\left(\lambda_{(p, q)}(f)-\epsilon\right) \log ^{[q]} M\left(\frac{r}{4}, g_{n-1}\right)+O(1) . \tag{3.2}
\end{align*}
$$

So, we have for all $r \geq r_{0}$

$$
\begin{aligned}
\log ^{[p+(p+1-q)]} T(r, & \left.f_{n}\right)>\log ^{[p]}\left[\log M\left(\frac{r}{4}, g_{n-1}\right)\right]+O(1) \\
& \geq \log ^{[p]} T\left(\frac{r}{4}, g_{n-1}\right)+O(1) \\
& >\left(\lambda_{(p, q)}(g)-\epsilon\right) \log ^{[q]} M\left(\frac{r}{4^{2}}, f_{n-2}\right)+O(1), \text { using }(3.2) \\
\text { or, } \log ^{[p+2(p+1-q)]} & T(r, \\
& \left.f_{n}\right)>\log ^{[p]} T\left(\frac{r}{4^{2}}, f_{n-2}\right)+O(1) \\
& \quad>\left(\lambda_{(p, q)}(f)-\epsilon\right) \log ^{[q]} M\left(\frac{r}{4^{3}}, g_{n-3}\right)+O(1), \text { using }(3.2) .
\end{aligned}
$$

Proceeding similarly after some steps we get

$$
\begin{align*}
\log ^{[p+(n-2)(p+1-q)]} T(& \left., f_{n}\right)>\left(\lambda_{(p, q)}(f)-\epsilon\right) \log ^{[q]} M\left(\frac{r}{4^{n-1}}, g\right)+O(1) \\
& >\left(\lambda_{(p, q)}(f)-\epsilon\right) \exp ^{[p-q]}\left(\log ^{[q-1]}\left(\frac{r}{4^{n-1}}\right)\right)^{\rho_{(p, q)}(g)-\epsilon}+O(1) \tag{3.3}
\end{align*}
$$

for a sequence of values of $r \rightarrow \infty$.
On the other hand for all $r \geq r_{0}$ we have,

$$
\begin{align*}
& T(r, f)<\exp ^{[p-1]}\left(\log ^{[q-1]} r\right)^{\rho_{(p, q)}(f)+\epsilon} \\
& \text { or, } \log ^{[q-1]} T(r, f)<\exp ^{[p-q]}\left(\log ^{[q-1]} r\right)^{\rho_{(p, q)}(f)+\epsilon} . \tag{3.4}
\end{align*}
$$

So, from (3.3) and (3.4) we have for a sequence of values of $r \rightarrow \infty$,
$\frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[q-1]} T\left(\frac{r}{4^{n-1}}, f\right)}>\frac{\left(\lambda_{(p, q)}(f)-\epsilon\right) \exp ^{[p-q]}\left(\log ^{[q-1]}\left(\frac{r}{4^{n-1}}\right)\right)^{\rho}(p, q)}{}(g)-\epsilon{ }^{[g)}+o(1)$
and so,
$\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[q-1]} T\left(\frac{r}{4^{n-1}}, f\right)}=\infty$
since we can choose $\epsilon(>0)$ such that $\rho_{(p, q)}(g)-\epsilon>\rho_{(p, q)}(f)+\epsilon$.
This proves the theorem.
An immediate consequence of Theorem 3 for odd n is the following theorem.
Theorem 4. Let $f(z)$ and $g(z)$ be two entire functions of positive lower (p, q) orders with $\rho_{(p, q)}(g)<\rho_{(p, q)}(f)$. Then for odd n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[q-1]} T\left(\frac{r}{4^{n-1}}, g\right)}=\infty
$$

Next if we consider the ratios $\frac{\log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(2^{n-2} r, g\right)}$ or $\frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(\frac{r}{\left.4^{n-1}, g\right)}\right.}$ we have obtained the following four theorems.
Theorem 5. Let $f(z)$ and $g(z)$ be two transcendental entire functions with $f(0)=$ $g(0)=0$ and let $\lambda_{(p, q)}(g)>0$. Then for even n
$\underset{r \rightarrow \infty}{\limsup _{1}} \frac{\log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(2^{n-2} r, g\right)} \leq \frac{\rho_{(p, q)}(g)}{\lambda_{(p, q)}(g)}$.
Proof. We get from (3.1), for all large values of r
$\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)<\left(\rho_{(p, q)}(f)+\epsilon\right)\left\{\exp ^{[p-q]}\left(\log ^{[q-1]}\left(2^{n-2} r\right)\right)^{\rho_{(p, q)}(g)+\epsilon}\right\}+$ $O(1)$

$$
\text { or, } \log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)<\left(\rho_{(p, q)}(g)+\epsilon\right) \log ^{[q]}\left(2^{n-2} r\right)+O(1)
$$

On the other hand,
$\log ^{[p]} T(r, g)>\left(\lambda_{(p, q)}(g)-\epsilon\right) \log ^{[q]} r$, for all $r \geq r_{0}$.
Thus for all $r \geq r_{0}$
$\frac{\log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(2^{n-2} r, g\right)}<\frac{\left(\rho_{(p, q)}(g)+\epsilon\right) \log ^{[q]}\left(2^{n-2} r\right)+O(1)}{\left(\lambda_{(p, q)}(g)-\epsilon\right) \log ^{[q]}\left(2^{n-2} r\right)}$.
Therefore,
$\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(2^{n-2} r, g\right)} \leq \frac{\rho_{(p, q)}(g)}{\lambda_{(p, q)}(g)}$.
Hence the theorem is proved.
Theorem 6. Let $f(z)$ and $g(z)$ be two transcendental entire functions with $f(0)=$ $g(0)=0$ and let $\lambda_{(p, q)}(f)>0$. Then for odd n
$\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-1)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(2^{n-2} r, f\right)} \leq \frac{\rho_{(p, q)}(f)}{\lambda_{(p, q)}(f)}$.
The proof is omitted.
Theorem 7. Let $f(z)$ and $g(z)$ be two transcendental entire functions of positive lower (p, q)-orders with $\rho_{(p, q)}(g)>0$. Then for even n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)}=\infty
$$

Proof. From (3.3), we have for a sequence of values of $r \rightarrow \infty$

$$
\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)>\left(\lambda_{(p, q)}(f)-\epsilon\right) \exp ^{[p-q]}\left(\log ^{[q-1]}\left(\frac{r}{4^{n-1}}\right)\right)^{\rho_{(p, q)}(g)-\epsilon}+
$$

$O(1)$.
Also, $\log ^{[p]} T(r, g)<\left(\rho_{(p, q)}(g)+\epsilon\right) \log ^{[q]} r$, for all $r \geq r_{0}$.
Thus
$\frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(\frac{r}{\left.4^{n-1}, g\right)}\right.} \geq \frac{\left(\lambda_{(p, q)}(f)-\epsilon\right)}{\left(\rho_{(p, q)}(g)+\epsilon\right)} \frac{\exp ^{[p-q]}\left(\log ^{[q-1]}\left(\frac{r}{4^{n-1}}\right)\right)^{\rho(p, q)}(g)-\epsilon}{\log ^{[q]} \frac{r}{4^{n-1}}}$
which tends to infinity as $r \rightarrow \infty$, through this sequence since $\rho_{(p, q)}(g)>0$.
Theorem 8. Let $f(z)$ and $g(z)$ be two transcendental entire functions of positive lower (p, q)-orders with $\rho_{(p, q)}(f)>0$. Then for odd n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+(n-2)(p+1-q)]} T\left(r, f_{n}\right)}{\log ^{[p]} T\left(\frac{r}{4^{n-1}}, f\right)}=\infty
$$

The proof is omitted, since it follows easily as in Theorem 7 .
Note 2. If we put $n=2, p=q=1$ in the Theorem 1 and Theorem 5 we get the results of A.P. Singh [7].

References

[1] Walter Bergweiler, Gerhard Jank and Lutz Volkmann, Results in Mathematics 7 (1984), 35-53.
[2] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio University Press, 1970, 75-92.
[3] W. K. Hayman, Meromorphic functions, Oxford University Press, 1964.
[4] B. K. Lahiri and D. Banerjee, Relative fix points of entire functions, J. Indian Acad. Math., 19 (1), (1997), 87-97.
[5] K. Ninno and N. Suita, Growth of a composite function of entire functions, Kodai Math. J., 3 (1980), 374-379.
[6] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc., 69 (1963), 411-414.
[7] A. P. Singh, Growth of composite entire functions, Kodai Math. J., 8 (1985), 99-102.

Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India
*CORRESPONDING AUTHOR

[^0]: 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. entire functions, iteration, growth.

