ON THE COMPOSITION AND NEUTRIX COMPOSITION OF THE DELTA FUNCTION AND THE FUNCTION $\cosh ^{-1}\left(|x|^{1 / r}+1\right)$

BRIAN FISHER ${ }^{1}$, EMIN OZCAG ${ }^{2, *}$ AND FATMA AL-SIREHY ${ }^{3}$

Abstract

Let F be a distribution in \mathcal{D}^{\prime} and let f be a locally summable function. The composition $F(f(x))$ of F and f is said to exist and be equal to the distribution $h(x)$ if the limit of the sequence $\left\{F_{n}(f(x))\right\}$ is equal to $h(x)$, where $F_{n}(x)=F(x) * \delta_{n}(x)$ for $n=1,2, \ldots$ and $\left\{\delta_{n}(x)\right\}$ is a certain regular sequence converging to the Dirac delta function. It is proved that the neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]$ exists and

$$
\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]=-\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{(-1)^{i+k} r c_{r, s, k}}{(k r+r) k!} \delta^{(k)}(x),
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$, where

$$
c_{r, s, k}=\sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{k r+r-i}(2 j-i)^{s+1}}{2^{s+i+1}},
$$

M is the smallest integer for which $s-2 r+1<2 M r$ and $r \leq s /(2 M+2)$.
Further results are also proved.

1. Introduction

Let \mathcal{D} be the space of infinitely differentiable functions with compact support, let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D}.

A sequence of functions $\left\{f_{n}\right\}$ is said to be regular if
(i) f_{n} is infinitely differentiable for all n,
(ii) the sequence $\left\{\left\langle f_{n}, \varphi\right\rangle\right\}$ converges to a limit $\langle f, \varphi\rangle$ for every $\varphi \in \mathcal{D}$,
(iii) $\langle f, \varphi\rangle$ is continuous in φ in the sense that $\lim _{n \rightarrow \infty}\left\langle f_{n}, \varphi\right\rangle=0$ for each sequence $\varphi_{n} \rightarrow 0$ in \mathcal{D}, see [24].
There are many ways to construct a sequence of regular functions which converges to $\delta(x)$. For instance let ρ be a fixed infinitely differentiable function having the properties:
(i) $\rho(x)=0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$,
putting $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \ldots$, it follows that $\left\{\delta_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.
Further, if F is a distribution in \mathcal{D}^{\prime} and $F_{n}(x)=\left\langle F(x-t), \delta_{n}(x)\right\rangle$, then $\left\{F_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to $F(x)$.

In the framework of the theory of distributions, no meaning can be generally given to expressions of the form $F(f(x))$ where F and f are arbitrary distributions. However, in elementary particle physics one finds the need to evaluate $\delta^{2}(x)$ when calculating the transition rates of certain particle interactions, [14]. In addition, there are terms proportional to powers of the δ functions at the origin

[^0]coming from the measure of path integration [10]. The composition of a distribution and an infinitely differentiable function is extended to distributions by continuity provided the derivative of the infinitely differentiable function is different from zero, [2]. The composition of a distribution and an infinitely differentiable function is extended to distributions by continuity provided the derivative of the infinitely differentiable function is different from zero, [2]. Fisher [5] defined the composition of a distribution F and a summable function f which has a single simple root in the open interval (a, b), and it was recently generalized in [18] by allowing f to be a distribution. Antosik [1] defined the composition $g(f(x))$ as the limit of the sequence $\left\{g_{n}\left(f_{n}\right)\right\}$ providing the limit exists. By this definition he defined the compositions $\sqrt{\delta}=0, \sqrt{\delta^{2}+1}=1+\delta, \log (1+\delta)=0, \sin \delta=0, \cos \delta=1$ and $\frac{1}{1+\delta}=1$.

For many pairs of distributions, it is not possible to define their compositions by using the definition of Antosik. Using the neutrix calculus developed by van der Corput [3], Fisher gave a general principle for the discarding of unwanted infinite quantities from asymptotic expansions and this has been exploited in context of distributions, see $[4,5]$. The technique of neglecting appropriately defined infinite quantities was devised by Hadamard and the resulting finite value extracted from divergent integral is referred to as the Hadamard finite part, see [16]. In fact his method can be regarded as a particular applications of the neutrix calculus.

The following definition of the neutrix composition of distributions is a generalization of Gel'fand and Shilov's definition of the composition involving the delta function [15], and was given in [5].

Definition 1.1. Let F be a distribution in \mathcal{D}^{\prime} and let f be a locally summable function. We say that the neutrix composition $F(f(x))$ exists and is equal to h on the open interval (a, b), with $-\infty<a<b<\infty$, if

$$
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{-\infty}} \int_{-\infty}^{\infty} F_{n}(f(x)) \varphi(x) d x=\langle h(x), \varphi(x)\rangle
$$

for all φ in $\mathcal{D}[a, b]$, where $F_{n}(x)=F(x) * \delta_{n}(x)$ for $n=1,2, \ldots$ and N is the neutrix, see [3], having domain N^{\prime} the positive and range $N^{\prime \prime}$ the real numbers, with negligible functions which are finite linear sums of the functions

$$
n^{\lambda} \ln ^{r-1} n, \quad \ln ^{r} n: \quad \lambda>0, \quad r=1,2, \ldots
$$

and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, we say that the composition $F(f(x))$ exists and is equal to h on the open interval (a, b) if

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} F_{n}(f(x)) \varphi(x) d x=\langle h(x), \varphi(x)\rangle
$$

for all φ in $\mathcal{D}[a, b]$.
Note that taking the neutrix limit of a function $f(n)$, is equivalent to taking the usual limit of Hadamard's finite part of $f(n)$, see $[4,6,7,16]$.

2. Main Results

By using Fisher's definition Koh and Li give meaning to δ^{k} and $\left(\delta^{\prime}\right)^{k}$ for $k=2,3, \ldots$, see [17], and the more general form $\left(\delta^{(r)}\right)^{k}$ was considered by Kou and Fisher in [18]. The meaning has been given to the symbol δ_{+}^{k} in [22] and the k-th powers of δ for negative integers were defined in [21].

Recently, in [20] Chenkuan Li and Changpin Li used Caputo fractional derivatives and Definition 1.1 and chose the following δ-sequence

$$
\delta_{n}(x)=\left(\frac{n}{\pi}\right) e^{-n x^{2}} \quad(x \in \mathbb{R})
$$

to redefine powers of the distributions $\delta^{k}(x)$ and $\left(\delta^{\prime}\right)^{k}(x)$ for some values of $k \in \mathbb{R}$.
The following two theorems were proved in [6] and [7] respectively.
Theorem 2.1. The neutrix composition $\delta^{(s)}\left(\operatorname{sgn} x|x|^{\lambda}\right)$ exists and

$$
\delta^{(s)}\left(\operatorname{sgn} x|x|^{\lambda}\right)=0
$$

for $s=0,1,2, \ldots$ and $(s+1) \lambda=1,3, \ldots$ and

$$
\delta^{(s)}\left(\operatorname{sgn} x|x|^{\lambda}\right)=\frac{(-1)^{(s+1)(\lambda+1)} s!}{\lambda[(s+1) \lambda-1]!} \delta^{((s+1) \lambda-1)}(x)
$$

for $s=0,1,2, \ldots$ and $(s+1) \lambda=2,4, \ldots$.
Theorem 2.2. The compositions $\delta^{(2 s-1)}\left(\operatorname{sgn} x|x|^{1 / s}\right)$ and $\delta^{(s-1)}\left(|x|^{1 / s}\right)$ exist and

$$
\begin{aligned}
\delta^{(2 s-1)}\left(\operatorname{sgn} x|x|^{1 / s}\right) & =\frac{1}{2}(2 s)!\delta^{\prime}(x) \\
\delta^{(s-1)}\left(|x|^{1 / s}\right) & =(-1)^{s-1} \delta(x)
\end{aligned}
$$

for $s=1,2, \ldots$.
The next theorem was proved in [9].
Theorem 2.3. The neutrix composition $\delta^{(s)}\left(\sinh ^{-1} x_{+}^{1 / r}\right)$ exists and

$$
\delta^{(s)}\left(\sinh ^{-1} x_{+}^{1 / r}\right)=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r-1}\binom{k r+r-1}{i} \frac{(-1)^{i+k} r a_{s, k, i}}{2^{k r+r} k!} \delta^{(k)}(x)
$$

for $s=0,1,2, \ldots$ and $r=1,2, \ldots$, where M is the smallest positive integer greater than $(s-r+1) / r$ and

$$
a_{r, s, k, i}=\frac{(-1)^{s}\left[(k r+r-2 i)^{s}+(k r+r-2 i-2)^{s}\right]}{2}
$$

In particular, the neutrix composition $\delta\left(\sinh ^{-1} x_{+}^{1 / r}\right)$ exists and

$$
\delta\left(\sinh ^{-1} x_{+}^{1 / r}\right)=0
$$

for $r=2,3, \ldots$.
In the following, we define the function $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]$ by

$$
\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]=\left\{\begin{array}{cc}
\delta^{(s)}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right], & x \geq 0 \\
0, & x<0
\end{array}\right.
$$

and we define the function $\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]$ by

$$
\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]=\left\{\begin{array}{cc}
\delta^{(s)}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right], & x \leq 0 \\
0, & x>0
\end{array}\right.
$$

for $r=1,2, \ldots$ and $s=0,1,2, \ldots$.
We also use the following easily proved lemma.

Lemma 2.1.

$$
\int_{0}^{1} t^{i} \rho^{(s)}(t) d t=\left\{\begin{array}{cc}
0, & 0 \leq i<s \\
\frac{1}{2}(-1)^{s} s!, & i=s
\end{array}\right.
$$

for $s=0,1,2, \ldots$.
We now prove
Theorem 2.4. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{(-1)^{k} r c_{r, s, k}}{(k r+r) k!} \delta^{(k)}(x) \tag{2.1}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$, where

$$
c_{r, s, k}=\sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{k r+r+s-i}(2 j-i)^{s+1}}{2^{i+1}}
$$

M is the smallest integer for which $s-2 r+1<2 M r$ and $r \leq s /(2 M+2)$.
In particular, the neutrix composition $\delta\left[\cosh ^{-1}\left(x_{+}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta\left[\cosh ^{-1}\left(x_{+}+1\right)\right]=0 \tag{2.2}
\end{equation*}
$$

for $r=1,2, \ldots$ and the neutrix composition $\delta^{\prime}\left[\cosh ^{-1}\left(x_{+}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{\prime}\left[\cosh ^{-1}\left(x_{+}+1\right)\right]=\frac{1}{4} \delta(x) \tag{2.3}
\end{equation*}
$$

Proof. To prove equation (1), we first of all have to evaluate

$$
\begin{align*}
\int_{-1}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{k} d x= & n^{s+1} \int_{-1}^{1} \rho^{(s)}\left[n \cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{k} d x \\
= & n^{s+1} \int_{0}^{1} \rho^{(s)}\left[n \cosh ^{-1}\left(x^{1 / r}+1\right)\right] x^{k} d x \\
& +n^{s+1} \int_{-1}^{0} \rho^{(s)}(0) x^{k} d x \\
= & I_{1}+I_{2} \tag{2.4}
\end{align*}
$$

It is obvious that
for $k=0,1,2, \ldots$.
Making the substitution $t=n \cosh ^{-1}\left(x^{1 / r}+1\right)$, we have for large enough n

$$
\begin{aligned}
I_{1} & =r n^{s} \int_{0}^{1}[\cosh (t / n)-1]^{k r+r-1} \sinh (t / n) \rho^{(s)}(t) d t \\
& =-\frac{r n^{s+1}}{k r+r} \int_{0}^{1}[\cosh (t / n)-1]^{k r+r} \rho^{(s+1)}(t) d t \\
& =-\frac{r n^{s+1}}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i}(-1)^{k r+r-i} \int_{0}^{1} \cosh ^{i}(t / n) \rho^{(s+1)}(t) d t \\
& =-\frac{r n^{s+1}}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{k r+r-i}}{2^{i}} \int_{0}^{1} \exp [(2 j-i) t / n] \rho^{(s+1)}(t) d t \\
& =-\frac{r n^{s+1}}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{i}\binom{i}{j} \sum_{m=0}^{\infty} \frac{(-1)^{k r+r-i}(2 j-i)^{m}}{2^{i} m!n^{m}} \int_{0}^{1} t^{m} \rho^{(s+1)}(t) d t
\end{aligned}
$$

It follows that

$$
\begin{align*}
\mathrm{N}-\lim _{n \rightarrow \infty} I_{1} & =\frac{r}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{k r+r+s-i}(2 j-i)^{s+1}}{2^{i}(s+1)!} \int_{0}^{1} t^{s+1} \rho^{(s+1)}(t) d t \\
& =\frac{r}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{k r+r+s-i}(2 j-i)^{s+1}}{2^{i+1}} \\
& =\frac{r}{k r+r} \sum_{i=0}^{k r+r}\binom{k r+r}{i} c_{r, s, k} \tag{2.6}
\end{align*}
$$

for $k=0,1,2, \ldots$.
When $k=M$, we have

$$
\begin{aligned}
\left|I_{1}\right| & \leq \frac{r n^{s+1}}{M r+r} \int_{0}^{1}\left|[\cosh (t / n)-1]^{M r+r} \rho^{(s+1)}(t)\right| d t \\
& \leq r n^{s+1} \int_{0}^{1}\left[(t / n)^{2}+O\left(n^{-4}\right)\right]^{M r+r}\left|\rho^{(s+1)}(t)\right| d t \\
& \leq r n^{s-2 M r-2 r+1} \int_{0}^{1}\left[1+O\left(n^{-4 M r-4 r}\right)\right]\left|\rho^{(s+1)}(t)\right| d t \\
& =O\left(n^{s-2 M r-2 r+1}\right)
\end{aligned}
$$

Thus, if ψ is an arbitrary continuous function, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{M} \psi(x) d x=0 \tag{2.7}
\end{equation*}
$$

since $s-2 M r-2 r+1<0$.
We also have

$$
\int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] \psi(x) d x=n^{s+1} \int_{-1}^{0} \rho^{(s)}(0) \psi(x) d x
$$

and it follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{n}} \int_{-1}^{0} \delta_{n}^{(s)}\left[\left(\sinh ^{-1} x_{+}\right)^{1 / r}\right] \psi(x) d x=0 \tag{2.8}
\end{equation*}
$$

If now φ is an arbitrary function in $\mathcal{D}[-1,1]$, then by Taylor's Theorem, we have

$$
\varphi(x)=\sum_{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{x^{M}}{M!} \varphi^{(M)}(\xi x)
$$

where $0<\xi<1$, and so

$$
\begin{align*}
\mathrm{N}-\lim \left\langle\delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right], \varphi(x)\right\rangle & =\mathrm{N}-\lim _{n \rightarrow \infty} \sum_{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{k} d x \\
& +\mathrm{N}-\lim _{n \rightarrow \infty} \sum_{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} \int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{k} d x \\
& +\lim _{n \rightarrow \infty} \frac{1}{M!} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{M} \varphi^{(M)}(\xi x) d x \\
& +\lim _{n \rightarrow \infty} \frac{1}{M!} \int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] x^{M} \varphi^{(M)}(\xi x) d x \\
& =\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{r c_{r, s, k} \varphi^{(k)}(0)}{(k r+r) k!}+0 \\
& =\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{(-1)^{k} r c_{r, s, k}}{(k r+r) k!}\left\langle\delta^{(k)}(x), \varphi(x)\right\rangle \tag{2.9}
\end{align*}
$$

on using equations (4) to (9). This proves equation (1) on the interval $(-1,1)$.
It is clear that $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]=0$ for $x>0$ and so equation (1) holds for $x>0$.
Now suppose that φ is an arbitrary function in $\mathcal{D}[a, b]$, where $a<b<0$. Then

$$
\int_{a}^{b} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] \varphi(x) d x=n^{s+1} \int_{a}^{b} \rho^{(s)}(0) \varphi(x) d x
$$

and so

$$
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim } \int_{a}^{b} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right] \varphi(x) d x=0
$$

It follows that $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]=0$ on the interval (a, b). Since a and b are arbitrary, we see that equation (1) holds on the real line.

To prove equation (2), we note that in this case $s=0$ and so $M=0$ for $r=1,2, \ldots$ The sum in equation (1) is therefore empty and equation (2) follows.

When $r=s=1$ it follows that $M=1$ and equation (3) then follows from equation (1). This completes the proof of the theorem.
Corollary 2.1. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{r c_{r, s, k}}{(k r+r) k!} \delta^{(k)}(x) \tag{2.10}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$,
In particular, the neutrix composition $\delta\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]=0 \tag{2.11}
\end{equation*}
$$

for $r=1,2, \ldots$ and the neutrix composition $\delta^{\prime}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{\prime}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]=\frac{1}{4} \delta(x) \tag{2.12}
\end{equation*}
$$

Proof. Equations (10) to (12) follow immediately on replacing x by $-x$ in equations (1) to (3) respectively.
Corollary 2.2. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k}{i} \frac{\left[1+(-1)^{k}\right] r c_{r, s, k}}{(k r+r) k!} \delta^{(k)}(x) \tag{2.13}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$,
In particular, the neutrix composition $\delta\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]=0 \tag{2.14}
\end{equation*}
$$

for $r=1,2, \ldots$ and the neutrix composition $\delta^{\prime}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]$ exists and

$$
\begin{equation*}
\delta^{\prime}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]=\frac{1}{2} \delta(x) \tag{2.15}
\end{equation*}
$$

Proof. Equation (13) follows from equations (1) and (10) on noting that

$$
\delta^{(s)}\left[\cosh ^{-1}\left(|x|^{1 / r}+1\right)\right]=\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}^{1 / r}+1\right)\right]+\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}^{1 / r}+1\right)\right]
$$

Equations (14) to (15) follow similarly.
Theorem 2.5. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \frac{(-1)^{k} b_{r, s, k}}{k!} \delta^{(k)}(x) \tag{2.16}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$, where

$$
b_{r, s, k}=\sum_{j=0}^{r i+r}\binom{r i+r}{j} \frac{(-1)^{s+k-i} r(2 j-r i-r)^{s+1}}{2^{r i+r+1}(r i+r)}
$$

M is the smallest integer for which $s+1<2 M r$ and $r \leq(s+1) /(2 M)$.
Proof. To prove equation (16), we first of all have to evaluate

$$
\begin{align*}
\int_{-1}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{k} d x= & n^{s+1} \int_{-1}^{1} \rho^{(s)}\left[n \cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{k} d x \\
= & n^{s+1} \int_{0}^{1} \rho^{(s)}\left[n \cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{k} d x \\
& +n^{s+1} \int_{-1}^{0} \rho^{(s)}(0) x^{k} d x \\
= & J_{1}+J_{2} \tag{2.17}
\end{align*}
$$

It is obvious that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{2}} J_{2}=\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{n}} n^{s+1} \int_{-1}^{0} \rho^{(s)}(0) x^{k} d x=0 \tag{2.18}
\end{equation*}
$$

for $k=0,1,2, \ldots$.

Making the substitution $t=n \cosh ^{-1}\left(x_{+}+1\right)^{1 / r}$, we have for large enough n

$$
\begin{aligned}
J_{1} & =r n^{s} \int_{0}^{1}\left[\cosh ^{r}(t / n)-1\right]^{k} \cosh ^{r-1}(t / n) \sinh (t / n) \rho^{(s)}(t) d t \\
& =r n^{s} \sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} \int_{0}^{1} \cosh ^{r i+r-1}(t / n) \sinh (t / n) \rho^{(s)}(t) d t \\
& =-r n^{s+1} \sum_{i=0}^{k}\binom{k}{i} \frac{(-1)^{k-i}}{r i+r} \int_{0}^{1} \cosh ^{r i+r}(t / n) \rho^{(s+1)}(t) d t \\
& =-r n^{s+1} \sum_{i=0}^{k}\binom{k}{i} \sum_{j=0}^{r i+r}\binom{r i+r}{j} \frac{(-1)^{k-i}}{2^{r i+r}(r i+r)} \int_{0}^{1} \exp [(2 j-r i-r) t / n] \rho^{(s+1)}(t) d t \\
& =-r n^{s+1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{r i+r}\binom{r i+r}{j} \sum_{m=0}^{\infty} \frac{(-1)^{k-i}(2 j-r i-r)^{m}}{2^{r i+r}(r i+r) m!n^{m}} \int_{0}^{1} t^{m} \rho^{(s+1)}(t) d t
\end{aligned}
$$

It follows that

$$
\begin{align*}
\mathrm{N}_{n \rightarrow \infty} \lim _{1} J_{1} & =-\sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{r i+r}\binom{r i+r}{j} \frac{(-1)^{k-i} r(2 j-r i-r)^{s+1}}{2^{r i+r}(r i+r)(s+1)!} \int_{0}^{1} t^{s+1} \rho^{(s+1)}(t) d t \\
& =\sum_{i=0}^{k r+r}\binom{k r+r}{i} \sum_{j=0}^{r i+r}\binom{r i+r}{j} \frac{(-1)^{s+k-i} r(2 j-r i-r)^{s+1}}{2^{r i+r+1}(r i+r)} \\
& =\sum_{i=0}^{k r+r}\binom{k r+r}{i} b_{r, s, k} \tag{2.19}
\end{align*}
$$

for $k=0,1,2, \ldots$.
When $k=M$, we have

$$
\begin{aligned}
\left|J_{1}\right| & \leq r n^{s} \int_{0}^{1}\left|\left[\cosh ^{r}(t / n)-1\right]^{M} \cosh ^{r-1}(t / n) \sinh (t / n) \rho^{(s)}(t)\right| d t \\
& \leq r n^{s} \int_{0}^{1}\left|\left[(t / n)^{2 r}+O\left(n^{-4 r}\right)\right]^{M} \cosh ^{r-1}(t / n) \sinh (t / n) \rho^{(s)}(t)\right| d t \\
& =O\left(n^{s-2 M r-1}\right)
\end{aligned}
$$

Thus, if ψ is an arbitrary continuous function, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{M} \psi(x) d x=0 \tag{2.20}
\end{equation*}
$$

since $s-2 M r-1<0$.
We also have

$$
\int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] \psi(x) d x=n^{s+1} \int_{-1}^{0} \rho^{(s)}(0) \psi(x) d x
$$

and it follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim } \int_{-1}^{0} \delta_{n}^{(s)}\left[\left(\sinh ^{-1} x_{+}\right)^{1 / r}\right] \psi(x) d x=0 \tag{2.21}
\end{equation*}
$$

If now φ is an arbitrary function in $\mathcal{D}[-1,1]$, then by Taylor's Theorem, we have

$$
\varphi(x)=\sum_{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{x^{M}}{M!} \varphi^{(M)}(\xi x)
$$

where $0<\xi<1$, and so

$$
\begin{align*}
\mathrm{N}_{n \rightarrow \infty} \lim _{n}\left\langle\delta _ { n } ^ { (s) } \left[\operatorname { c o s h } ^ { - 1 } \left(x_{+}\right.\right.\right. & \left.\left.+1)^{1 / r}\right], \varphi(x)\right\rangle= \\
= & \mathrm{N}-\lim _{n \rightarrow \infty} \sum_{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{k} d x \\
& +\mathrm{N}_{n \rightarrow \infty} \lim _{k=0}^{M-1} \frac{\varphi^{(k)}(0)}{k!} \int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{k} d x \\
& +\lim _{n \rightarrow \infty} \frac{1}{M!} \int_{0}^{1} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{M} \varphi^{(M)}(\xi x) d x \\
& +\lim _{n \rightarrow \infty} \frac{1}{M!} \int_{-1}^{0} \delta_{n}^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right] x^{M} \varphi^{(M)}(\xi x) d x \\
& =\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \frac{b_{r, s, k} \varphi^{(k)}(0)}{k!}+0 \\
= & \sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \frac{(-1)^{k} b_{r, s, k}}{k!}\left\langle\delta^{(k)}(x), \varphi(x)\right\rangle \tag{2.22}
\end{align*}
$$

on using equations (17) to (22). This proves equation (16) on the interval $(-1,1)$.
Replacing x by $-x$ in equation (16), we get
Corollary 2.3. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}+1\right)^{1 / r}\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}+1\right)^{1 / r}\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \frac{b_{r, s, k}}{k!} \delta^{(k)}(x) \tag{2.23}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$,
Corollary 2.4. The neutrix composition $\delta^{(s)}\left[\cosh ^{-1}(|x|+1)^{1 / r}\right]$ exists and

$$
\begin{equation*}
\delta^{(s)}\left[\cosh ^{-1}(|x|+1)^{1 / r}\right]=\sum_{k=0}^{M-1} \sum_{i=0}^{k r+r}\binom{k r+r}{i} \frac{[1+(-1)]^{k} b_{r, s, k}}{k!} \delta^{(k)}(x) \tag{2.24}
\end{equation*}
$$

for $s=M-1, M, M+1, \ldots$ and $r=1,2, \ldots$,
Proof. Equation (24) follows from equations (16) and (23) on noting that

$$
\delta^{(s)}\left[\cosh ^{-1}(|x|+1)^{1 / r}\right]=\delta^{(s)}\left[\cosh ^{-1}\left(x_{+}+1\right)^{1 / r}\right]+\delta^{(s)}\left[\cosh ^{-1}\left(x_{-}+1\right)^{1 / r}\right] .
$$

For further related results on the neutrix composition of distributions, see [11], [12], [13], [19] and [23].

References

[1] P. Antosik, Composition of Distributions, Technical Report no. 9 University of Wisconsin, Milwaukee, (1988-89), pp.1-30.
[2] P. Antosik, J. Mikusinski and R. Sikorski, Theory of Distributions, The sequential Approach, PWN-Elsevier, Warszawa-Amsterdam (1973).
[3] J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7(1959), 291-398.
[4] B. Fisher, On defining the distribution $\delta^{(r)}(f(x))$, Rostock. Math. Kolloq., 23(1983), 73-80.
[5] B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq., 28(1985), 33-40.
[6] B. Fisher, The delta function and the composition of distributions, Dem. Math., 35(1)(2002), 117-123.
[7] B. Fisher, The composition and neutrix composition of distributions, in: Kenan Taş et al. (Eds.), Mathematical Methods in Engineering, Springer, Dordrecht, 2007, pp. 59-69.
[8] B. Fisher and B. Jolevska-Tuneska, Two results on the composition of distributions, Thai. J. Math., 3(1)(2005), 17-26.
[9] B. Fisher and A. Kıliçman, On the composition and neutrix composition of the delta function and powers of the inverse hyperbolic sine function, Integral Transforms Spec. Funct. 21(12)(2010), 935-944.
[10] H. Kleinert, A. Chervyakov, Rules for integrals over products of distributions from coordinate independence of path integrals, Eur. Phys. J. C Part. Fields 19(4)(2001), 743-747.
[11] B. Fisher, A. Kananthai, G. Sritanatana and K. Nonlaopon, The composition of the distributions $x_{-}^{m s} \ln x_{-}$and $x_{+}^{r-p / m}$, Integral Transforms Spec. Funct., 16(1)(2005), 13-20.
[12] B. Fisher and E. Ozcag, Some results on the neutrix composition of the delta function, Filomat, 26(6)(2012), 1247-1256.
[13] B. Fisher and K. Taş, On the composition of the distributions $x^{-1} \ln |x|$ and x_{+}^{r}, Integral Transforms Spec. Funct., 16(7)(2005), 533-543.
[14] S. Gasiorowics, Elementery Particle Physics, John Wiley and Sons, New York, 1966.
[15] I.M. Gel'fand and G.E. Shilov, Generalized Functions, Volume I, Academic Press, New York and London, 1st edition, 1964.
[16] D. S. Jones, Hadamard's Finite Part., Math. Methods Appl. Sci. 19(13)(1996), 1017-1052.
[17] E. L. Koh and C. K. Li, On distributions δ^{k} and $\left(\delta^{\prime}\right)^{k}$, Math. Nachr., 157(1992), 243-248.
[18] H. Kou and B. Fisher, On Composition of Distributions, Publ. Math. Debrecen, 40(3-4)(1992), 279-290.
[19] L. Lazarova, B. Jolevska-Tuneska, I. Akturk and E. Ozcag Note on the Distribution Composition $\left(x_{+}^{\mu}\right)^{\lambda}$. Bull. Malaysian Math. Soc., (2016). doi:10.1007/s40840-016-0342-2.
[20] C. K. Li and C. Li, On defining the distributions δ^{k} and $\left(\delta^{\prime}\right)^{k}$ by fractional derivatives, Appl. Math. Compt., 246(2014), 502-513.
[21] E. Ozcag, Defining the k-th powers of the Dirac-delta distribution for negative integers, Appl. Math. Letters, 14(2001), 419-423.
[22] E. Ozcag, U. Gulen and B. Fisher, On the distribution δ_{+}^{k}, Integral Transforms Spec. Funct., 9(2000), 57-64.
[23] E. Ozcag, L. Lazarova and B. Jolevska-Tuneska, Defining Compositions of $x_{+}^{\mu},|x|^{\mu}, x^{-s}$ and $x^{-s} \ln |x|$ as Neutrix Limit of Regular Sequences, Commun. Math. Stat., 4(1)(2016), 63-80.
[24] G. Temple, The Theory of generalized Functions, Proc. Roy. Soc. ser. A 28(1955), 175-190.
${ }^{1}$ Department of Mathematics and Computer Science, Leicester University, England
${ }^{2}$ Department of Mathematics, Hacettepe University, Ankara, Turkey
${ }^{3}$ Department of Mathematics, Jeddah, King Abdulaziz University, Jeddah, Saudi Arabia

* Corresponding author: ozcag1@hacettepe.edu.tr

[^0]: Received $7^{\text {th }}$ September, 2016; accepted $4^{\text {th }}$ November, 2016; published $1^{\text {st }}$ March, 2017.
 2010 Mathematics Subject Classification. 33B10, 46F30, 46F10, 41A30.
 Key words and phrases. distribution; delta function; composition of distributions; neutrix composition of distributions.

