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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR A THIRD-ORDER

DELAY DIFFERENTIAL EQUATION

FARID NOUIOUA1,2, ABDELOUAHEB ARDJOUNI2,3,∗, ABDELKERIM MERZOUGUI1 AND

AHCENE DJOUDI3

Abstract. In this paper, the following third-order nonlinear delay differential equation with periodic

coefficients

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = f (t, x (t) , x(t− τ(t))) + c(t)x′(t− τ(t)),

is considered. By employing Green’s function and Krasnoselskii’s fixed point theorem, we state and
prove the existence of positive periodic solutions to the third-order delay differential equation.

1. Introduction

Delay differential equations have received increasing attention during recent years since these equa-
tions have been proved to be valuable tools in the modeling of many phenomena in various fields of
science and engineering, see the monograph [8,19] and the papers [1]- [18], [20]- [22], [24]- [27] and the
references therein.

The second order nonlinear delay differential equation with periodic coefficients

x′′ (t) + p (t)x′ (t) + q (t)x (t) = r (t)x′ (t− τ (t)) + f (t, x (t) , x (t− τ (t))) ,

has been investigated in [25]. By using Krasnoselskii’s fixed point theorem and the contraction mapping
principle, Wang, Lian and Ge obtained existence and uniqueness of periodic solutions.

In [22], Ren, Siegmund and Chen discussed the existence of positive periodic solutions for the
third-order differential equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + c (t)x (t) = g (t, x (t)) .

By employing the fixed point index, the authors obtained existence results for positive periodic solu-
tions.

Inspired and motivated by the works mentioned above and the papers [1]- [18], [20]- [22], [24]-
[27] and the references therein, we concentrate on the existence of positive periodic solutions for the
third-order nonlinear delay differential equation

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = f (t, x (t) , x(t− τ(t))) + c(t)x′(t− τ(t)). (1.1)

where p, q, r are continuous real-valued functions. The function c : R −→ R+ is continuously differen-
tiable, τ : R −→ R+ is twice continuously differentiable and f : R× R× R −→ R is continuous in their
respective arguments. To show the existence of positive periodic solutions, we transform (1.1) into an
integral equation and then use Krasnoselskii’s fixed point theorem. The obtained integral equation
splits in the sum of two mappings, one is a contraction and the other is compact.

In this paper, we give the assumptions as follows that will be used in the main results.
(h1) There exist differentiable positive T -periodic functions a1 and a2 and a positive real constant

ρ such that  a1(t) + ρ = p(t),
a′1 (t) + a2 (t) + ρa1(t) = q (t) ,
a′2 (t) + ρa2(t) = r (t) .
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(h2) p, q, r, c ∈ C (R,R+) are T -periodic functions with τ (t) ≥ τ∗ > 0, τ ′ (t) 6= 1 for all t ∈ [0, T ]
and ∫ T

0

p(s)ds > ρ,

∫ T

0

q(s)ds > 0.

(h3) The function f(t, x, y) is continuous T -periodic in t and continuous in x and y.
The organization of this paper is as follows. In section 2, we introduce some notations and lemmas,

and state some preliminary results needed in later section, then we give the Green’s function of (1.1),
which plays an important role in this paper. In section 3, we present our main results on existence of
positive periodic solutions of (1.1).

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables us to prove the
existence of positive periodic solutions to (1.1). For its proof we refer the reader to [23].

Theorem 1.1 (Krasnoselskii). Let M be a closed convex nonempty subset of a Banach space (B, ‖.‖).
Suppose that H1 and H2 map M into B such that

(i) x, y ∈M, implies H1x+H2y ∈M,
(ii) H1 is compact and continuous,
(iii) H2 is a contraction mapping.

Then there exists z ∈M with z = H1z +H2z.

2. Green’s function of third-order differential equation

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period T . Then
(PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)| .

We consider

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t) , (2.1)

where h is a continuous T -periodic function. Obviously, by the condition (h1), (2.1) is transformed
into {

y′(t) + ρy(t) = h(t),
x′′(t) + a1(t)x′(t) + a2(t)x(t) = y(t).

Lemma 2.1 ( [3]). If y, h ∈ PT , then y is a solution of equation

y′(t) + ρy(t) = h(t),

if only if

y(t) =

∫ t+T

t

G1(t, s)h(s)ds, (2.2)

where

G1(t, s) =
exp (ρ (s− t))
exp (ρT )− 1

. (2.3)

Corollary 2.1. Green function G1 satisfies the following properties

G1(t+ T, s+ T ) = G1(t, s), G1(t, t+ T ) = G1(t, t) exp (ρT ) ,

G1 (t+ T, s) = G1(t, s) exp (−ρT ) , G1(t, s+ T ) = G1(t, s) exp (ρT ) ,

∂

∂t
G1(t, s) = −ρG1(t, s),

∂

∂s
G1(t, s) = ρG1(t, s),

and

m1 ≤ G1(t, s) ≤M1,

where

m1 =
1

exp (ρT )− 1
, M1 =

exp (ρT )

exp (ρT )− 1
.
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Lemma 2.2 ( [21]). Suppose that (h1) and (h2) hold and

R1

[
exp

(∫ T

0
a1(v)dv

)
− 1
]

Q1T
≥ 1, (2.4)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ T

0
a1(v)dv

)
exp

(∫ T

0
a1(v)dv

)
− 1

a2 (s) ds

∣∣∣∣∣∣ ,
Q1 =

(
1 + exp

(∫ T

0

a1(v)dv

))2

R2
1.

Then there are continuous T -periodic functions a and b such that

b(t) > 0,

∫ T

0

a(v)dv > 0,

and

a(t) + b(t) = a1(t), b′(t) + a(t)b(t) = a2(t), for t ∈ R.

Lemma 2.3 ( [25]). Suppose the conditions of Lemma 2.2 hold and y ∈ PT . Then the equation

x′′(t) + a1(t)x′(t) + a2(t)x(t) = y(t),

has a T periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

∫ t+T

t

G2(t, s)y(s)ds, (2.5)

where

G2(t, s) =

∫ s

t
exp

[∫ v

t
b(u)du+

∫ s

v
a(u)du

]
dv +

∫ t+T

s
exp

[∫ v

t
b(u)du+

∫ s+T

v
a(u)du

]
dv[

exp
(∫ T

0
a(v)dv

)
− 1
] [

exp
(∫ T

0
b(v)dv

)
− 1
] . (2.6)

Corollary 2.2. Green’s function G2 satisfies the following proprieties

G2(t+ T, s+ T ) = G2(t, s), G2(t, t+ T ) = G2(t, t),

G2(t+ T, s) = exp

(
−
∫ T

0

b(v)dv

)[
G2 (t, s) +

∫ t+T

t

E (t, u)F (u, s) du

]
,

∂

∂t
G2(t, s) = −b(t)G2(t, s) + F (t, s) ,

∂

∂s
G2(t, s) = a(t)G2(t, s)− E (t, s) ,

where

E (t, s) =
exp

(∫ s

t
b(v)dv

)
exp

(∫ T

0
b(v)dv

)
− 1

, F (t, s) =
exp

(∫ s

t
a (v) dv

)
exp

(∫ T

0
a (v) dv

)
− 1

.

Lemma 2.4 ( [21]). Let A =
∫ T

0
a1(v)dv and B = T 2 exp

(
1
T

∫ T

0
ln (a2(v)) dv

)
. If

A2 ≥ 4B, (2.7)

then

min

{∫ T

0

a(v)dv,

∫ T

0

b(v)dv

}
≥ 1

2

(
A−

√
A2 − 4B

)
= l,

max

{∫ T

0

a(v)dv,

∫ T

0

b(v)dv

}
≤ 1

2

(
A+

√
A2 − 4B

)
= L.
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Corollary 2.3. Functions G2, E and F satisfy

m2 ≤ G2(t, s) ≤M2,

E (t, s) ≤ eL

el − 1
,

F (t, s) ≤ eL,
where

m2 =
T

(exp (L)− 1)
2 , M2 =

T exp
(∫ T

0
a1 (v) dv

)
(exp (l)− 1)

2 .

Lemma 2.5 ( [11]). Suppose the conditions of Lemma 2.2 hold and h ∈ PT . Then the equation

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

∫ t+T

t

G(t, s)h(s)ds, (2.8)

where

G (t, s) =

∫ t+T

t

G2 (t, σ)G1 (σ, s) dσ. (2.9)

Corollary 2.4. Green’s function G satisfies the following properties

G(t+ T, s+ T ) = G(t, s), G (t, t+ T ) = G (t, t) exp (ρT ) ,

∂

∂t
G(t, s) = (exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s) +

∫ t+T

t

F (t, σ)G1 (σ, s) dσ,

∂

∂s
G(t, s) = ρG (t, s) ,

and
m ≤ G(t, s) ≤M,

where

m =
T 2

(exp (l)− 1)
2

(exp (ρT )− 1)
, M =

T 2 exp
(
ρT +

∫ T

0
a (v) dv

)
(exp (l)− 1)

2
(exp (ρT )− 1)

.

3. Main Results

In this section we will study the existence of positive periodic solutions of (1.1).

Lemma 3.1. Suppose (h1)-(h3) and (2.4) hold. The function x ∈ PT is a solution of (1.1) if and
only if

x (t) = Z (t) (exp (ρT )− 1)G (t, t)x (t− τ (t))

+

∫ t+T

t

G (t, s) {f (s, x (s) , x (s− τ (s)))−R (s)x (s− τ (s))} ds, (3.1)

where

R (s) =
(c′ (s) + c (s) ρ) (1− τ ′ (s)) + c (s) τ ′′ (s)

(1− τ ′ (s))2
, (3.2)

Z (t) =
c (t)

1− τ ′ (t)
. (3.3)

Proof. Let x ∈ PT be a solution of (1.1). From Lemma 2.5, we have

x (t) =

∫ t+T

t

G (t, s) [f (s, x (s) , x (s− τ (s))) + c (s)x′ (s− τ (s))] ds

=

∫ t+T

t

G (t, s) f (s, x (s) , x (s− τ (s))) ds+

∫ t+T

t

G (t, s) c (s)x′ (s− τ (s)) ds. (3.4)
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Performing an integration by parts, we get∫ t+T

t

G (t, s) c (s)x′ (s− τ (s)) ds

=

∫ t+T

t

c (s) (1− τ ′ (s))x′ (s− τ (s))

1− τ ′ (s)
G (t, s) ds

=

∫ t+T

t

c (s)

1− τ ′ (s)
G (t, s) dx (s− τ (s))

=
c (s)

1− τ ′ (s)
G (t, s)x (s− τ (s))

∣∣∣∣t+T

t

−
∫ t+T

t

∂

∂s

[
c (s)

1− τ ′ (s)
G (t, s)

]
x (s− τ (s)) ds

= Z (t) (exp (ρT )− 1)x (t− τ (t))G (t, t)−
∫ t+T

t

R (s)G (t, s)x (s− τ (s)) ds, (3.5)

where R and Z are given by (3.2) and (3.3), respectively. We obtain (3.1) by substituting (3.5) in
(3.4). Since each step is reversible, the converse follows easily. This completes the proof. �

Define the mapping H : PT → PT by

(Hϕ) (t) =

∫ t+T

t

G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))−R (s)ϕ (s− τ (s))} ds

+ Z (t) (exp (ρT )− 1)G (t, t)ϕ (t− τ (t)) . (3.6)

Note that to apply Krasnoselskii’s fixed point theorem we need to construct two mappings, one is a
contraction and the other is compact. Therefore, we express (3.6) as

(Hϕ) (t) = (H1ϕ) (t) + (H2ϕ) (t) .

where H1, H2 : PT → PT are given by

(H1ϕ) (t) =

∫ t+T

t

G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))−R (s)ϕ (s− τ (s))} ds, (3.7)

and

(H2ϕ) (t) = Z (t) (exp (ρT )− 1)G (t, t)ϕ (t− τ (t)) . (3.8)

To simplify notations, we introduce the constants

α = max
t∈[0,T ]

|Z (t)| , β = max
t∈[0,T ]

{b(t)} , δ =
exp (L)

exp (l)− 1
, γ = exp (ρT )− 1. (3.9)

In this section we obtain the existence of a positive periodic solution of (1.1) by considering the two
cases; c (t) ≥ 0 and c (t) ≤ 0 for all t ∈ R. For a non-negative constant K and a positive constant L
we define the set

D = {ϕ ∈ PT : K ≤ ϕ ≤ L} ,

which is a closed convex and bounded subset of the Banach space PT .
In case c (t) ≥ 0, we assume that there exist a positive constant η such that

η ≤ Z (t) , for all t ∈ [0, T ] , (3.10)

αMγ < 1, (3.11)

and for all s ∈ [0, T ] , x, y ∈ D

K (1− ηmγ)

mT
≤ f (s, x, y)−R (s) y ≤ L (1− αMγ)

MT
. (3.12)

Lemma 3.2. Suppose (h1)-(h3), (2.4), (2.7) and (3.10)-(3.12) hold. Then H1 : D→ PT is compact.
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Proof. LetH1 be defined by (3.7). Obviously, H1ϕ is continuous and it is easy to show that (H1ϕ) (t+ T ) =
(H1ϕ) (t). For t ∈ [0, T ] and for ϕ ∈ D, we have

|(H1ϕ) (t)| =

∣∣∣∣∣
∫ t+T

t

G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))−R (s)ϕ (s− τ (s))} ds

∣∣∣∣∣
≤MT

L (1− αMγ)

MT
= L (1− αMγ) .

Thus from the estimation of |(H1ϕ) (t)| we have

‖H1ϕ‖ ≤ L (1− αMγ) .

This shows that H1 (D) is uniformly bounded.
To show that H1 (D) is equicontinuous, let ϕn ∈ D, where n is a positive integer. Next we calculate

d
dt (H1ϕn) (t) and show that it is uniformly bounded. By using (h1), (h2) and (h3) we obtain by taking
the derivative in (3.7) that

d

dt
(H1ϕn) (t)

=

∫ t+T

t

[
(exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s) +

∫ t+T

t

F (t, σ)G1 (σ, s) dσ

]
× [f (s, ϕn (s) , ϕn (s− τ (s)))−R (s)ϕn (s− τ (s))] ds.

Consequently, by invoking (3.9) and (3.12), we obtain∣∣∣∣ ddt (H1ϕn) (t)

∣∣∣∣ ≤ [(1− exp (−ρT ))M1M2 +Mβ +M1δT ]
L (1− αMγ)

M
≤ D,

for some positive constant D. Hence the sequence (H1ϕn) is equicontinuous. The Ascoli-Arzela
theorem implies that a subsequence (H1ϕnk

) of (H1ϕn) converges uniformly to a continuous T -periodic
function. Thus H1 is continuous and H1 (D) is contained in a compact subset of D. �

Lemma 3.3. Suppose that (3.11) holds. If H2 is given by (3.8), then H2 : D→ PT is a contraction.

Proof. Let H2 be defined by (3.8). It is easy to show that (H2ϕ) (t+ T ) = (H2ϕ) (t). Let ϕ,ψ ∈ D,
we have

‖H2ϕ−H2ψ‖ = sup
t∈[0,T ]

|(H2ϕ) (t)− (H2ψ) (t)| ≤ αγM ‖ϕ− ψ‖ .

Hence H2 : D→ PT is a contraction by (3.11). �

Theorem 3.1. Suppose that conditions (h1)-(h3), (2.4), (2.7) and (3.10)-(3.12) hold. Then equation
(1.1) has a positive T -periodic solution x in the subset D.

Proof. By Lemma 3.2, the operator H1 : D→ PT is compact and continuous. Also, from Lemma 3.3,
the operator H2 : D→ PT is a contraction. Moreover, if ϕ,ψ ∈ D, we see that

(H2ψ) (t) + (H1ϕ) (t)

= γZ (t)G (t, t)ϕ (t− τ (t)) +

∫ t+T

t

G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))−R (s)ϕ (s− τ (s))} ds

≤ γαML + L (1− αMγ) = L.

On the other hand

(H2ψ) (t) + (H1ϕ) (t)

= γZ (t)G (t, t)ϕ (t− τ (t)) +

∫ t+T

t

G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))−R (s)ϕ (s− τ (s))} ds

≥ γαmK + K (1− αmγ) = K.

This shows that H2ψ+H1ϕ ∈ D. Clearly, all the Hypotheses of Theorem 1.1, are satisfied. Thus there
exists a fixed point x ∈ D such that x = H1ψ + H2ϕ. By Lemma 3.1 this fixed point is a solution of
(1.1) and the proof is complete. �



142 NOUIOUA, ARDJOUNI, MERZOUGUI AND DJOUDI

In the case c (t) ≤ 0, we substitute conditions (3.10)-(3.12) with the following conditions respectively.
We assume that there exist a negative constant z1 and a non-positive constant z2 such that

z1 ≤ Z (t) ≤ z2, for all t ∈ [0, T ] , (3.13)

− z1Mγ < 1, (3.14)

and for all s ∈ [0, T ] , x, y ∈ D
K− z1MγL

mT
≤ f (s, x, y)−R (s) y ≤ L− z2mγK

MT
. (3.15)

Theorem 3.2. Suppose that conditions (h1)-(h3), (2.4), (2.7) and (3.13)-(3.15) hold. Then equation
(1.1) has a positive T -periodic solution x in the subset D.

The proof follows along the lines of Theorem 3.1, and hence we omit it.
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