# SOME RESULTS ON FIXED POINT THEOREMS IN BANACH ALGEBRAS 

DIPANKAR DAS ${ }^{1}$, NILAKSHI GOSWAMI ${ }^{1}$ AND VISHNU NARAYAN MISHRA ${ }^{2,3, *}$


#### Abstract

Let $X$ be a Banach algebra and $D$ be a nonempty subset of $X$. Let $\left(T_{1}, T_{2}\right)$ be a pair of self mappings on $D$ satisfying some specific conditions. Here we discuss different situations for existence of solution of the operator equation $u=T_{1} u T_{2} u$ in $D$. Similar results are established in case of reflexive Banach algebra $X$ with the subset $D$. Again, considering a bounded, open and convex subset $B$ in a uniformly convex Banach algebra $X$ with three self mappings $T_{1}, T_{2}, T_{3}$ on $\bar{B}$, we derive the conditions for existence of solution of the operator equation $u=T_{1} u T_{2} u+T_{3} u$ in $B$. Application of some of these results to the tensor product is also shown here with some examples.


## 1. Introduction

In 1988, Dhage initiated application of fixed point theorems in Banach algebras. Many papers ( [4], [5], [6]) of Dhage deals with the study of non-linear integral equations via fixed point theorems in Banach algebras. In 2010, Amar et al. [1], introduced a class of Banach algebras satisfying certain sequential conditions and gave applications of non-linear integral equations using fixed point theorems under certain conditions. In 2012, Pathak and Deepmala [24], defined $\mathcal{P}$-Lipschitzian maps and derived some fixed points theorem of Dhage on a Banach algebra with examples. In [12], Kilbas et al. gave many applications in the field of integral equations. In [20] different application of convergent sequence can be seen. Many researchers viz., Mishra et al. ( [13], [14], [15], [16], [17], [18]), Deepmala ( [8], [9]), Mishra [19] etc., proved some results concerning the existence of solutions for some nonlinear functionalintegral equations in Banach algebra and some interesting results.
In 1982, Hadzic [11] proved a generalization of Rzepecki fixed point theorem for the sum of operators in Hausdorff topological vector space. In ( [25], [26], [27]), Vijayaraju proved the existance of fixed points for asymptotic 1-set contraction mappings in real Banach spaces and also for the sum of two mappings in reflexive Banach spaces.
In this paper, for a Banach algebra $X$ with a subset $D$, we take a pair of self-mappings $\left(T_{1}, T_{2}\right)$ on $D$ and study the conditions under which the operator equation $u=T_{1} u T_{2} u$ has a solution in $D$. An application of the results to the tensor product of Banach algebras is also discussed here with some suitablle examples. Also, give an apllication for nonlinear functional-integral equation.

## Preliminaries

Def. 1 [3] Let $X$ be a Banach space and $f$ be a continuous (not necessarily linear) mapping of $X$ into itself. The mapping $f$ is said to be completely continuous if the image under $f$ of each bounded set of $X$ is contained in a compact set.
Def. 2 Let $X$ be a Banach algebra and $T_{1}, T_{2}$ be two self mappings on $X$. Then $T_{1}, T_{2}$ are said to satisfy the nonvacuous condition if for every sequence $\left\{x_{n}\right\} \subset X$ the operator equation $\lim _{n \rightarrow \infty} T_{1}(u) T_{2}\left(x_{n}\right)=$ $u, u \in X$ has one and only one solution $\left(x_{n}\right)^{0}$ in $X$.
Def. 3 [21] $T$ is demiclosed if $\left\{x_{n}\right\} \subset D(T), x_{n} \rightarrow x$ and $T\left(x_{n}\right) \rightarrow y$ (weakly) implies $x \in D(T)$ and $T x=y$.
Def. 4 [21] $T$ is closed if if $\left\{x_{n}\right\} \subset D(T), x_{n} \rightarrow x$ and $T\left(x_{n}\right) \rightarrow y$ implies $x \in D(T)$ and $T x=y$.

[^0]Def. 5 [22] $T$ is said to be demicompact at $a$ if for any bounded sequence $\left\{x_{n}\right\}$ in $D$ such that $x_{n}-T x_{n} \rightarrow a$ as $n \rightarrow \infty$, there exists a subsequence $x_{n_{i}}$ and a point $b$ in $D$ such that $x_{n_{i}} \rightarrow b$ as $i \rightarrow \infty$ and $b-T(b)=a$
Def. 6 ( [10], [23]) Let $T: D \rightarrow D$ be a mapping.
(1) $T$ is said to be uniformly $L$-Lipschitzian if there exists $L>0$ such that, for any $x, y \in D$

$$
\left\|T^{n} x-T^{n} y\right\| \leqslant L\|x-y\| \forall n \in \mathbb{N}
$$

(2) $T$ is said to be asymptotically nonexpansive if there exists a sequence $b_{n} \subset[1, \infty)$ with $b_{n} \rightarrow 1$ such that, for any $x, y \in D$

$$
\left\|T^{n} x-T^{n} y\right\| \leqslant b_{n}\|x-y\| \forall n \in \mathbb{N}
$$

Algebric tensor product: [2] Let $X, Y$ be normed spaces over $F$ with dual spaces $X^{*}$ and $Y^{*}$ respectively. Given $x \in X, y \in Y$, Let $x \otimes y$ be the element of $B L\left(X^{*}, Y^{*} ; F\right)$ (which is the set of all bounded bilinear forms from $X^{*} \times Y^{*}$ to $F$ ), defined by

$$
x \otimes y(f, g)=f(x) g(y),\left(f \in X^{*}, g \in Y^{*}\right)
$$

The algebraic tensor product of $X$ and $Y, X \otimes Y$ is defined to be the linear span of $\{x \otimes y: x \in X, y \in Y\}$ in $B L\left(X^{*}, Y^{*} ; F\right)$.
Projective tensor norm: [2] Given normed spaces $X$ and $Y$, the projective tensor norm $\gamma$ on $X \otimes Y$ is defined by

$$
\|u\|_{\gamma}=\inf \left\{\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i} x_{i} \otimes y_{i}\right\}
$$

where the infimum is taken over all (finite) representations of $u$.
The completion of $(X \otimes Y, \gamma)$ is called projective tensor product of $X$ and $Y$ and it is denoted by $X \otimes_{\gamma} Y$.
Lemma 1: [28] Let $X$ and $Y$ be Banach spaces. Then $\gamma$ is a cross norm on $X \otimes Y$ and $\|x \otimes y\|_{\gamma}=\|x\|\|y\|$ for every $x \in X, y \in Y$.
Lemma 2: [2] $X \otimes_{\gamma} Y$ can be represented as a linear subspace of $B L\left(X^{*}, Y^{*} ; F\right)$ consisting of all elements of the form $u=\sum_{i} x_{i} \otimes y_{i}$ where $\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|<\infty$. Moreover, $\|u\|_{\gamma}=\inf \left\{\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|\right\}$ over all such representations of $u$.
Lemma 3: [2] Let $X$ and $Y$ be normed algebras over $\mathbb{F}$. There exists a unique product on $X \otimes Y$ with respect to which $X \otimes Y$ is an algebra and

$$
(a \otimes b)(c \otimes d)=a c \otimes b d \quad(a, c \in X, b, d \in Y)
$$

Lemma 4: [2] Let $X$ and $Y$ be normed algebras over $\mathbb{F}$. Then projective tensor norm on $X \otimes Y$ is an algebra norm.
Clearly, we can conclude that if $X$ and $Y$ are Banach algebras over $\mathbb{F}$ then $X \otimes_{\gamma} Y$ becomes a Banach algebra.

## 2. Main Results

Theorem 1: Let $D$ be a non-empty compact convex subset of a Banach Algebra $X$ and let $\left(T_{1}, T_{2}\right)$ be a pair of self-mappings on $D$ such that
(a) $T_{1}$ and $T_{2}$ are continuous,
(b) $T_{1} u T_{2} u \in D$ for all $u \in D$

Then the operator equation $u=T_{1} u T_{2} u$ has a solution in $D$.
Proof. We define $J: D \rightarrow D$ by $J(u)=T_{1} u T_{2} u$. Let $\left\{q_{n}\right\}$ be a sequence in $D$ converging to a point q. So, $q \in D$ as $D$ is closed. Now,

$$
\begin{aligned}
\|J(u)-J(v)\| & =\left\|T_{1} u T_{2} u-T_{1} v T_{2} v\right\| \\
& \leqslant\left\|T_{1} u-T_{1} v\right\|\left\|T_{2} u\right\|+\left\|T_{1} v\right\|\left\|T_{2} u-T_{2} v\right\|
\end{aligned}
$$

Since $T_{1}$ and $T_{2}$ are continuous so, $J$ is continuous. By an application of Schauder's fixed point theorem we have fixed point for $J$. Hence the operator equation $u=T_{1} u T_{2} u$ has a solution.

Corollary 1: Let $D_{X}, D_{Y}$ and $D_{X} \otimes D_{Y}$ be closed, convex and bounded subsets of Banach algebras $X, Y$ and $X \otimes_{\gamma} Y$ respectively. Let $\left(T_{1}, T_{2}\right)$ be a pair of self mappings on $D_{X} \otimes D_{Y}$ such that
(a) $T_{1}$ and $T_{2}$ are completely continuous
(b) $T_{1} u T_{2} u \in D_{X} \otimes D_{Y}$ for all $u \in D_{X} \otimes D_{Y}$
then the operator equation $u=T_{1} u T_{2} u$ has a solution in $D_{X} \otimes D_{Y}$.
Example 1: Let $D_{l^{1}}, D_{\mathbb{K}}$ and $D_{l^{1}} \otimes D_{\mathbb{K}}$ be subsets of Banach algebras $l^{1}, \mathbb{K}$ and $l^{1} \otimes_{\gamma} \mathbb{K}$ respectively. Define

$$
D_{l^{1}}=\left\{x \in D_{l^{1}}:\|x\| \leqslant M_{1}\right\} \text { and } D_{\mathbb{K}}=\left\{y \in D_{\mathbb{K}}:\|y\| \leqslant M_{2}\right\}
$$

then clearly $D_{l^{1}}, D_{\mathbb{K}}$ and $D_{l^{1}} \otimes D_{\mathbb{K}}$ are closed, convex and bounded.
We define $T_{1}, T_{2}: D_{l^{1}} \otimes_{\gamma} D_{\mathbb{K}} \rightarrow D_{l^{1}} \otimes_{\gamma} D_{\mathbb{K}}$ by $T_{1}\left(\sum_{i} a_{i} \otimes x_{i}\right)=\sum_{i}\left\{\frac{a_{i_{n}} x_{i}}{n}\right\}_{n}=T_{2}\left(\sum_{i} a_{i} \otimes x_{i}\right)$, where $a_{i}=\left\{a_{i_{n}}\right\}_{n} . \quad\left[l^{1} \otimes_{\gamma} X=l^{1}(X)\right.$ by [28]].
To show that $T_{1}$ is compact:
Let $T_{1 m}: D_{l^{1}} \otimes_{\gamma} D_{\mathbb{K}} \rightarrow D_{l^{1}} \otimes_{\gamma} D_{\mathbb{K}}$ be defined by

$$
T_{1 m}\left(\sum_{i} a_{i} \otimes x_{i}\right)=\sum_{i}\left\{a_{i_{1}} x_{i}, \frac{a_{i_{2}} x_{i}}{2}, \frac{a_{i_{3}} x_{i}}{3}, \ldots \ldots, \frac{a_{i_{m}} x_{i}}{m}, 0,0,0, \ldots .\right\}
$$

Then each $T_{1 m}$ is linear, bounded and compact [7]. Also,

$$
\begin{aligned}
\left\|\left(T_{1 m}-T_{1}\right)\left(\sum_{i} a_{i} \otimes x_{i}\right)\right\| & =\| \sum_{i}\left\{a_{i_{1}} x_{i}, \frac{a_{i_{2}} x_{i}}{2}, \frac{a_{i_{3}} x_{i}}{3}, \ldots \ldots, \frac{a_{i_{m}} x_{i}}{m}, 0,0,0, \ldots .\right\} \\
& -\sum_{i}\left\{a_{i_{1}} x_{i}, \frac{a_{i_{2}} x_{i}}{2}, \frac{a_{i_{3}} x_{i}}{3}, \ldots \ldots, \frac{a_{i_{m}} x_{i}}{m}, \frac{a_{i_{m+1}} x_{i}}{m+1}, \ldots\right\} \| \\
& =\left\|\sum_{i}\left\{0,0, \ldots \ldots, 0, \frac{a_{i_{m+1}} x_{i}}{m+1}, \frac{a_{i_{m+2}} x_{i}}{m+2}, \ldots .\right\}\right\| \\
& \leqslant \sum_{i} \sum_{j=m+1}^{\infty} \frac{1}{j}\left|a_{i j}\right| \cdot\left|x_{i}\right|<\frac{1}{m+1} \sum_{i} \sum_{j=m+1}^{\infty}\left|a_{i j}\right| \cdot\left|x_{i}\right| \\
& \leqslant \frac{1}{m+1} \sum_{i} \sum_{j=1}^{\infty}\left|a_{i j}\right| \cdot\left|x_{i}\right|=\frac{1}{m+1} \sum_{i}\left\|a_{i}\right\| \cdot\left|x_{i}\right|
\end{aligned}
$$

So, taking the projective tensor norm,

$$
\left\|\left(T_{1 m}-T_{1}\right)\left(\sum_{i} a_{i} \otimes x_{i}\right)\right\|<\frac{1}{m+1}\left\|\sum_{i} a_{i} \otimes x_{i}\right\|
$$

Therefore, $T_{1 m} \rightarrow T_{1}$ and so, $T_{1}$ is compact. Similarly, $T_{2}$ is compact. Since every compact operator in Banach space is completely continuous, so $T_{1}$ and $T_{2}$ are completely continuous. Then, by Corollary 1, the operator equation has a solution.
Theorem 2: Let $X$ be a non-empty Banach Algebra and let $T_{1}, T_{2}$ be three self mappings on $X$ such that
(a) $S$ is a homomorphism and it has a unique fixed point
(b) $T_{1} S=S T_{1}$ and $T_{2} S=S T_{2}$
then the unique fixed point of $S$ is a solution of the operator equation $u=T_{1} u T_{2} u$ in $X$.
Proof. Defne $J: X \rightarrow X$ by $J(u)=T_{1} u T_{2} u$. Let $a$ be the unique fixed point of $S$. Now,

$$
J(S(u))=T_{1}(S(u)) T_{2}(S(u))=S\left(T_{1}(u)\right) S\left(T_{2}(u)\right)=S\left(T_{1} u T_{2} u\right)=S(J u)
$$

Hence, $S(J a)=J(S(a))=J a$ so $J a=a$ as $S$ has unique fixed point. Hence the operator equation $u=T_{1} u T_{2} u$ has a solution.

Example 2: Given a closed and bounded interval $I=\left[\frac{1}{10}, \frac{10}{10}\right]$ in $\mathbb{R}^{+}$the set of real numbers, consider the nonlinear functional integral equation (in short FIE)

$$
\begin{equation*}
x(s)=[x(\alpha(s))]^{2}\left[q(s)+\int_{0}^{s} g(t, x(\beta(t))) d t\right]^{2} \tag{2.1}
\end{equation*}
$$

for all $s \in I$, where $\alpha, \beta: I \rightarrow I, q: I \rightarrow \mathbb{R}^{+}$and $g: I \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are continuous.
By a solution of the FIE (1) we mean a continuous function $x: I \rightarrow \mathbb{R}^{+}$that satisfies FIE (1) on $I$. Let $X=C\left(I, \mathbb{R}^{+}\right)$be a Banach algebra of all continuous real-valued functions on $I$ with the norm $\|x\|=\sup _{s \in I}|x(s)|$. We shall obtain the solution of FIE (1) under some suitable conditions on the functions involved in (1).
Suppose that the function $g$ satisfy the condition $|g(s, x)| \leqslant 1-q,\|q\|<1$ for all $s \in I$ and $x \in \mathbb{R}^{+}$. Consider the two mappings $T_{1}, T_{2}: X \rightarrow X$ defined by

$$
T_{1} x(s)=[x(\alpha(s))]^{2}, s \in I \quad \text { and } \quad T_{2} x(s)=\left[q(s)+\int_{0}^{s} g(t, x(\beta(t))) d t\right]^{2}, s \in I
$$

Then the FIE (1) is equivalent to the operator equation $x(s)=T_{1} x(s) T_{2} x(s), s \in I$. Let $S: X \rightarrow X$ defined by $S(y)=\sqrt{y}, y \in X$, where $\sqrt{y}(t)=\sqrt{y(t)}$, (positive squareroot) $t \in I$. Clearly, $S$ is a homomorphism and it has a unique fixed point 1 , where $1(s)=1, s \in I$. It is obvious that $T_{1} S=S T_{1}$ and $T_{2} S=S T_{2}$. So, 1 is a solution of $\operatorname{FIE}(1)$.
Theorem 3: Let $D$ be a non-empty compact convex subset of a Banach Algebra $X$ and let $T_{1}, T_{2}$ : $D \rightarrow D$ be two continuous self maps such that $T_{1}$ and $T_{2}$ satisfies nonvacuous condition, then there exists a solution of the operator equation $u=T_{1} u T_{2} u$ in $D$.

Proof. We define $J: D \rightarrow D$ by $J\left(x_{n}\right)=\left(x_{n}\right)^{0}$. First we show that $J$ is continuous. Let $\left\{y_{n}\right\}_{n}$ be a sequence in $D$ such that $y_{n} \rightarrow y$ as $n \rightarrow \infty$. Since, $T_{1}$ and $T_{2}$ satisfies nonvacuous condition so we have

$$
\begin{aligned}
J\left(y_{n}\right) & =\left(y_{n}\right)^{0}=\lim _{n \rightarrow \infty} T_{1}\left(y_{n}\right)^{0} T_{2}\left(y_{n}\right) \\
\Rightarrow \lim _{n \rightarrow \infty} J\left(y_{n}\right) & =\lim _{n \rightarrow \infty} T_{1}\left(\lim _{n \rightarrow \infty} J\left(y_{n}\right)\right) T_{2}\left(y_{n}\right)
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} J\left(y_{n}\right)$ is a solution of the equation $\lim _{n \rightarrow \infty} T_{1}(u) T_{2}\left(x_{n}\right)=u, u \in X$. Now,

$$
\lim _{n \rightarrow \infty} J\left(y_{n}\right)=\left(\lim _{n \rightarrow \infty} y_{n}\right)^{0}=(y)^{0}=J(y)
$$

Therefore, $J$ is continuous. For $u \in D, J u=u^{0}=T_{1}\left(u^{0}\right) T_{2}(u)$. Clearly, we get $J$ has a fixed point by Schauder's theorem, say $\alpha$ in $D$. Therefore, $\alpha=J(\alpha)=T_{1} \alpha T_{2} \alpha$. Thus, $\alpha$ is a solution of the equation $u=T_{1} u T_{2} u \in D$

Theorem 4: Let $D$ be a nonempty closed bounded and convex subset of a weakly compact Banach algebra $X$. Let $T_{1}: D \rightarrow D$ and $T_{2}: D \rightarrow X$ be two mappings such that
(a) $T_{1}$ satisfies asymptotically nonexpansive mapping and $\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1} x-T_{1}^{n} x\right\|: x \in D\right]=0$
(b) $T_{2}$ is completely continuous and $M=\left\|T_{2}(D)\right\|<1$
(c) $I-T_{1} \diamond T_{2}$ is demiclosed and $T_{1}^{n} u T_{2} v \in D$ for $u, v \in D$ and $n \in \mathbb{N}$
then there exists a solution of the operator equation $u=T_{1} u T_{2} u\left(=\left(T_{1} \diamond T_{2}\right) u\right)$ in $D$.
Proof. First we show that $I-T_{1} \diamond T_{2}$ is closed. Let $c \in \overline{I-T_{1} \diamond T_{2}}$. Then there exists a sequence $\left\{c_{n}\right\} \subseteq I-T_{1} \diamond T_{2}$ such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$. Since $c_{n} \in I-T_{1} \diamond T_{2}$ so $c_{n}=\left(I-T_{1} \diamond T_{2}\right) z_{n}$ for some $z_{n} \in X$. Since $X$ is weakly compact so for every sequence $\left\{z_{n}\right\}$ in $D$ there exists weakly convergence subsequence $\left\{z_{n_{i}}\right\}$ i.e., $z_{n_{i}} \rightarrow z$ as $n \rightarrow \infty$. Now,

$$
z_{n_{i}}-T_{1} \diamond T_{2} z_{n_{i}} \rightarrow c \text { as } n \rightarrow \infty
$$

Since $I-T_{1} \diamond T_{2}$ is demiclosed so $c=\left(I-T_{1} \diamond T_{2}\right) z$. Therefore $c \in I-T_{1} \diamond T_{2}$. Hence $I-T_{1} \diamond T_{2}$ is closed.

For $u, v \in D$, we define $J_{n}: D \rightarrow D$ by $J_{n}(u)=q_{n} T_{1}^{n} u T_{2} v$. where $q_{n}=\frac{\left(1-\frac{1}{n}\right)}{b_{n}}$ and $\left\{b_{n}\right\} \rightarrow 1$ as $n \rightarrow$ $\infty$. Now,

$$
\begin{aligned}
\left\|J_{n}(u)-J_{n}(p)\right\| & =\left\|q_{n} T_{1}^{n} u T_{2} v-q_{n} T_{1}^{n} p T_{2} v\right\|=q_{n}\left\|T_{2} v\right\|\left\|T_{1}^{n} u-T_{1}^{n} v\right\| \\
& \leqslant q_{n} b_{n} M\|u-p\|=\left(1-\frac{1}{n}\right) M\|u-p\| \leqslant M\|u-p\|
\end{aligned}
$$

Since $J_{n}$ is contraction and so it has unique fixed point $K_{n}(v) \in D$ (say), where $K_{n}(v)=J_{n}\left(K_{n}(v)\right)=$ $q_{n} T_{1}^{n}\left(K_{n}(v)\right) T_{2} v$. Now, for any $v, y \in D$ we have

$$
\begin{align*}
\left\|K_{n}(v)-K_{n}(y)\right\| & =\left\|q_{n} T_{1}^{n}\left(K_{n} v\right) T_{2} v-q_{n} T_{1}^{n}\left(K_{n} y\right) T_{2} y\right\| \\
& \leqslant q_{n}\left\|T_{1}^{n}\left(K_{n} v\right)-T_{1}^{n}\left(K_{n} y\right)\right\|\left\|T_{2} v\right\|+q_{n}\left\|T_{1}^{n}\left(K_{n} y\right)\right\|\left\|T_{2} v-T_{2} y\right\| \tag{2.2}
\end{align*}
$$

For fixed $a \in D$, we have

$$
\begin{aligned}
\left\|T_{1}^{n}(u)\right\| & =\left\|T_{1}^{n}(u)-T_{1}^{n}(a)+T_{1}^{n}(a)\right\| \\
& \leqslant b_{n}\|u-a\|+\left\|T_{1}^{n}(a)\right\|=d(\text { say })<\infty
\end{aligned}
$$

From equation (2), we have

$$
\left\|K_{n}(v)-K_{n}(y)\right\| \leqslant \frac{d q_{n}}{1-M}\left\|T_{2} v-T_{2} y\right\|
$$

So, $K_{n}$ is completely continuous as $T_{2}$ is completely continuous. By Schauder's fixed point theorem $K_{n}$ has a fixed point $x_{n}$, say in $D$. Hence $x_{n}=K_{n} x_{n}=J_{n}\left(x_{n}\right)=q_{n} T_{1}^{n}\left(x_{n}\right) T_{2} x_{n}$. Now,

$$
\begin{align*}
& x_{n}-T_{1}^{n} x_{n} T_{2} x_{n}=\left(q_{n}-1\right) T_{1}^{n} x_{n} T_{2} x_{n} \rightarrow 0 \text { as } n \rightarrow \infty  \tag{2.3}\\
&\left\|x_{n}-T_{1} x_{n} T_{2} x_{n}\right\| \leqslant\left\|x_{n}-T_{1}^{n} x_{n} T_{2} x_{n}\right\|+\left\|T_{1}^{n} x_{n} T_{2} x_{n}-T_{1} x_{n} T_{2} x_{n}\right\| \\
&=\left\|x_{n}-T_{1}^{n} x_{n} T_{2} x_{n}\right\|+\left\|T_{2} x_{n}\right\|\left\|T_{1}^{n} x_{n}-T_{1} x_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty(\text { by }(3) \text { and condition (a) })
\end{align*}
$$

So, $0 \in I-T_{1} \diamond T_{2}$ as $I-T_{1} \diamond T_{2}$ is closed. Hence there exists a point $r$ such that $0=\left(I-T_{1} \diamond T_{2}\right) r$. Hence the theorem follows.

Theorem 5: Let $D$ be a nonempty closed bounded and convex subset of a reflexive Banach algebra $X$. Let $T_{1}: D \rightarrow D$ and $T_{2}: D \rightarrow X$ be two mappings such that
(a) $T_{1}$ satisfies uniformly $L$-Lipschitzian mapping and $\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1} x-T_{1}^{n} x\right\|: x \in D\right]=0$
(b) $T_{2}$ is completely continuous and $M=\left\|T_{2}(D)\right\|$ such that $L M<1$
(c) $I-T_{1} \diamond T_{2}$ is demiclosed and $T_{1}^{n} u T_{2} v \in D$ for $u, v \in D$ and $n \in \mathbb{N}$
then there exists a solution of the operator equation $u=T_{1} u T_{2} u\left(=\left(T_{1} \diamond T_{2}\right) u\right)$ in $D$.
Theorem 6: Let $D_{X}, D_{Y}$ and $D_{X} \otimes D_{Y}$ be closed bounded and convex subsets of a Banach algebras $X, Y$ and $X \otimes_{\gamma} Y$ respectively. Let $\left(T_{1}, T_{2}\right)$ be a pair of self mappings on $D_{X} \otimes D_{Y}$ such that
(a) $T_{1}$ satisfies uniformly $L$-Lipschitzian mapping and $\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1} x-T_{1}^{n} x\right\|: x \in D_{X} \otimes\right.$ $\left.D_{Y}\right]=0$
(b) $T_{2}$ is completely continuous and $M=\left\|T_{2}\left(D_{X} \otimes D_{Y}\right)\right\|$ such that $L M<1$
(c) if $\left\{x_{n}\right\} \subset D_{X} \otimes D_{Y}$ with $x_{n}-T_{1} x_{n} T_{2} x_{n} \rightarrow 0$ as $n \rightarrow \infty$ then there exists $b \in D_{X} \otimes D_{Y}$ such that $0=\left(I-T_{1} \diamond T_{2}\right) b$ and $T_{1}^{n} u T_{2} v \in D_{X} \otimes D_{Y}$ for $u, v \in D_{X} \otimes D_{Y}$ and $n \in \mathbb{N}$
then there exists a solution of the operator equation $u=T_{1} u T_{2} u$ in $D_{X} \otimes D_{Y}$.
Example 3: Let $D_{l^{1}}, D_{\mathbb{R}}$ and $D_{l^{1}} \otimes D_{\mathbb{R}}$ be subsets of Banach algebras $l^{1}, \mathbb{R}$ and $l^{1} \otimes_{\gamma} \mathbb{R}$ respectively. Define

$$
D_{l^{1}}=\left\{x \in D_{l^{1}}:\|x\| \leqslant 1\right\} \text { and } D_{\mathbb{R}}=\left\{y \in D_{\mathbb{R}}:\|y\| \leqslant 1\right\}
$$

then clearly $D_{l^{1}}, D_{\mathbb{R}}$ and $D_{l^{1}} \otimes D_{\mathbb{R}}$ are bounded closed and convex.

We define $T_{1}: D_{l^{1}} \otimes_{\gamma} D_{\mathbb{R}} \rightarrow D_{l^{1}} \otimes_{\gamma} D_{\mathbb{R}}$ is defined by

$$
\begin{aligned}
T_{1}\left(\sum_{i} a_{i} \otimes x_{i}\right) & =T_{1}\left(\sum_{i}\left\{\left(a_{i_{n}}\right) x_{i}\right\}_{n}\right) \\
& =T_{1}(u),(\text { say })=-u
\end{aligned}
$$

where if $u=\left\{y_{1}, y_{2}, \ldots\right\}$ then $-u=\left\{-y_{1},-y_{2}, \ldots\right\}$.
It is easy to see that $T_{1}$ satisfies uniformly $L$-Lipschitzian (where $L=1$ ) whether $n$ is odd or even. But

$$
\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1} x-T_{1}^{n} x\right\|: x \in D_{l^{1}} \otimes D_{\mathbb{R}}\right]=0
$$

only when $n$ is odd. Hence condition (a) of Theorem 6 is satisfied.
Now, let $T_{2}: D_{l^{1}} \otimes_{\gamma} D_{\mathbb{R}} \rightarrow D_{l^{1}} \otimes_{\gamma} D_{\mathbb{R}}$ be defined by $T_{2}\left(\sum_{i} a_{i} \otimes x_{i}\right)=\frac{1}{2} \sum_{i}\left\{\frac{a_{i_{n}} x_{i}}{n}\right\}_{n}$, where $a_{i}=\left\{a_{i_{n}}\right\}_{n}$. Clearly, condition (b) of Theorem 6 is satisfied with $M=\left\|T_{2}\left(D_{l^{1}} \otimes D_{\mathbb{R}}\right)\right\| \leqslant \frac{1}{2}$ hence $L M<1$. Proceeding as in Theorem 4, we have, for $\left\{x_{n}\right\} \subset D_{l^{1}} \otimes D_{\mathbb{R}}$

$$
x_{n}-T_{1} x_{n} T_{2} x_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Now we can take $b$ as the constant sequence $\{0,0,0, \ldots\}$ for which $0=\left(I-T_{1} \diamond T_{2}\right) b$ and $T_{1}^{n} u T_{2} v \in$ $D_{l^{1}} \otimes D_{\mathbb{R}}$ for $u, v \in D_{l^{1}} \otimes D_{\mathbb{R}}$. So, the condition (c) of Theorem 6 is satisfied. Hence the operator equation $u=T_{1} u T_{2} u$ has a solution.
Theorem 7: Let $B$ be the bounded, open and convex subset with $0 \in B$ in a uniformly convex Banach algebra $X$. Let $\left(T_{1}, T_{2}, T_{3}\right)$ be three self mappings on $\bar{B}$ such that
(a) $T_{1}$ satisfies uniformly $L$-Lipschitzian mapping on $\bar{B}$ and $\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1} x-T_{1}^{n} x\right\|: x \in B\right]=$ 0
(b) $T_{1}$ is demicompact on $\bar{B}$ and $M=\left\|T_{2}(B)\right\|$ such that $L M<1$
(c) $T_{2}, T_{3}$ are completely continuous and $T_{1}^{n} u T_{2} v+T_{3} v \in B$ for $u, v \in B$ and $n \in \mathbb{N}$
then there exists a solution of the operator equation $u=T_{1} u T_{2} u+T_{3} u\left(=\left(T_{1} \diamond T_{2}\right) u+T_{3} u\right)$ in $B$.
Proof. Since $T_{2}$ is a completely continuous, it is demicompact on $\bar{B}$. Also $T_{1}$ is demicompact by (b). So for a sequence $\left\{c_{n}\right\} \in \bar{B}$ such that $c_{n}-T_{1} c_{n} \rightarrow a, c_{n}-T_{2} c_{n} \rightarrow b$ as $n \rightarrow \infty$ in $\bar{B}$, there exists subsequence $\left\{c_{n_{k}}\right\}$ such that $c_{n_{k}} \rightarrow c$ as $k \rightarrow \infty$, where $c \in \bar{B}$.
Since $T_{1}, T_{2}$ and $T_{3}$ are continuous so $T_{1} c_{n_{k}} \rightarrow T_{1} c, T_{2} c_{n_{k}} \rightarrow T_{2} c$ and $T_{3} c_{n_{k}} \rightarrow T_{3} c$. Now we show that $I-T_{1} \diamond T_{2}-T_{3}$ is closed.
Let $z \in \overline{I-T_{1} \diamond T_{2}-T_{3}}$. Then for $\left\{z_{n}\right\} \subseteq\left(I-T_{1} \diamond T_{2}-T_{3}\right) c_{n}$ such that $z_{n} \rightarrow z$ as $n \rightarrow \infty$. We have as in Theorem 4,

$$
c_{n_{k}}-T_{1} \diamond T_{2} c_{n_{k}}-T_{3} c_{n_{k}} \rightarrow z \text { as } n \rightarrow \infty
$$

Since $I-T_{1} \diamond T_{2}-T_{3}$ is continuous so $c \in I-T_{1} \diamond T_{2}-T_{3}$. Hence $I-T_{1} \diamond T_{2}-T_{3}$ is closed. Define $J_{n}: \bar{B} \rightarrow \bar{B}$ by $J_{n}(u)=q_{n}\left(T_{1}^{n} u T_{2} v+T_{3} v\right)$, where $\left\{q_{n}\right\} \rightarrow 1$ as $n \rightarrow \infty$. Now,

$$
\left\|J_{n}(u)-J_{n}(p)\right\| \leqslant q_{n} L M\|u-p\|
$$

Since $J_{n}$ is contraction and so it has unique fixed point $K_{n} v \in \bar{B}$ (say)
$K_{n} v=J_{n}\left(K_{n} v\right)=q_{n}\left(T_{1}^{n}\left(K_{n} v\right) T_{2} v+T_{3} v\right)$. Now, for any $v, y \in \bar{B}$ we have

$$
\begin{equation*}
\left\|K_{n}(v)-K_{n}(y)\right\| \leqslant q_{n}\left\|T_{1}^{n}\left(K_{n} v\right)-T_{1}^{n}\left(K_{n} y\right)\right\|\left\|T_{2} v\right\|+q_{n}\left\|T_{1}^{n}\left(K_{n} y\right)\right\|\left\|T_{2} v-T_{2} y\right\|+\left\|T_{3} v-T_{3} y\right\| \tag{2.4}
\end{equation*}
$$

For fixed $a \in \bar{B}$, we have

$$
\left\|T_{1}^{n}(u)\right\| \leqslant L\|u-a\|+\left\|T_{1}^{n}(a)\right\|=d(\text { say })<\infty
$$

From equation (4), we have

$$
\left\|K_{n}(v)-K_{n}(y)\right\| \leqslant \frac{d q_{n}}{1-L M}\left\|T_{2} v-T_{2} y\right\|+\frac{q_{n}}{1-L M}\left\|T_{3} v-T_{3} y\right\|
$$

So, $K_{n}$ is completely continuous as $T_{2}$ and $T_{3}$ are completely continuous. By Schauder's fixed point theorem $K_{n}$ has a fixed point $x_{n}$, say in $\bar{B}$. Hence $x_{n}=K_{n} x_{n}=J_{n}\left(x_{n}\right)=q_{n}\left(T_{1}^{n}\left(x_{n}\right) T_{2} x_{n}+T_{3}\left(x_{n}\right)\right)$. Now,

$$
\begin{align*}
& x_{n}-T_{1}^{n} x_{n} T_{2} x_{n}-T_{3} x_{n}=\left(q_{n}-1\right)\left(T_{1}^{n} x_{n} T_{2} x_{n}+T_{3} x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty  \tag{2.5}\\
&\left\|x_{n}-T_{1} x_{n} T_{2} x_{n}-T_{3} x_{n}\right\| \leqslant\left\|x_{n}-T_{1}^{n} x_{n} T_{2} x_{n}-T_{3} x_{n}\right\|+\left\|T_{2} x_{n}\right\|\left\|T_{1}^{n} x_{n}-T_{1} x_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty(\text { by }(5) \text { and condition (a) })
\end{align*}
$$

Since, $0 \in I-T_{1} \diamond T_{2}-T_{3}$ and $I-T_{1} \diamond T_{2}-T_{3}$ is closed. Hence there exists a point $r$ such that $0=\left(I-T_{1} \diamond T_{2}-T_{3}\right) r$. Hence the theorem follows.

If $0 \notin B$ in the above Theorem 7 .
Theorem 8: Let $B$ be the bounded, open and convex subset in a uniformly convex Banach algebra $X$. Let $\left(T_{1}, T_{2}, T_{3}\right)$ be three self mappings on $\bar{B}$ such that
(a) there exists $r \in B$ such that $r=T_{1} c+T_{2} c$ for some $c \in B$
(b) all the conditions of above Theorem 7
then there exists a solution of the operator equation $u=T_{1} u T_{2} u+T_{3} u\left(=\left(T_{1} \diamond T_{2}\right) u+T_{3} u\right)$ in $B$.
Proof. Suppose that $K=B-r=\{x-r: x \in B\}$. Since $B$ is open and bounded, so is $K$, and $\bar{K}=\bar{B}-r$ and $0 \in K$.
Define $\left(T_{1}, T_{2}, T_{3}\right)$ are three self maps on $\bar{K}$ by
$T_{1}(c-r)=T_{1} c-r, T_{2}(c-r)=T_{2} c-r$ and $T_{3}(c-r)=T_{3} c-r$. Hence $\left(T_{1}, T_{2}, T_{3}\right)$ are three continuous self mappings in $\bar{K}$ and $I-T_{1} \diamond T_{2}-T_{3}$ is closed in $\bar{K}$. Then
(i) $T_{1}$ satisfies uniformly $L$-Lipschitzian mapping and

$$
\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1}(x-r)-T_{1}^{n}(x-r)\right\|: x-r \in K\right]=0
$$

(ii) Since $T_{1}$ is demicompact in $\bar{B}$, so $T_{1}$ is demicompact in $\bar{K}$. Also, $L M<1$.

Similarly, since $T_{2}$ and $T_{3}$ are completely continuous in $\bar{B}$, so $T_{2}$ and $T_{3}$ are completely continuous in $\bar{K}$.
(iii) Clearly $T_{1}^{n}(u-r) T_{2}(v-r)+T_{3}(v-r) \in K$ for $u-r, v-r \in K$ and $n \in \mathbb{N}$.

Hence all the conditions of Theorem 7 satisfied so, there exists a solution $m-r$ such that

$$
\begin{align*}
& m-r=T_{1}(m-r) T_{2}(m-r)+T_{3}(m-r)  \tag{2.6}\\
& T_{1}(a-r) T_{2}(a-r)+T_{3}(a-r)=\left[\left(T_{1}(a)-r\right]\left[T_{2}(a)-r\right]+T_{3}(a)-r\right. \\
&=T_{1} a T_{2} a+T_{3} a-r-\left[r\left(T_{1} a+T_{2} a\right)-r^{2}\right]
\end{align*}
$$

without loss of generality if $r=T_{1} m+T_{2} m, m \in B$ we have

$$
T_{1}(m-r) T_{2}(m-r)+T_{3}(m-r)=T_{1}(m) T_{2}(m)+T_{3}(m)-r
$$

Then from equation (6) we have a solution of the equation $u=T_{1} u T_{2} u+T_{3} u$.
Theorem 9: Let $B$ be the bounded, open and convex subset in a uniformly convex Banach algebra $X$. Let $\left(T_{1}, T_{2}, T_{3}\right)$ be three self mappings on $\bar{B}$ such that
(a) $T_{1}$ satisfies uniformly $L$-Lipschitzian mapping on $\bar{B}$, there exists $r \in D$ such that $\lim _{n \rightarrow \infty}\left[\sup \left\|T_{1}(x)-T_{1}^{n}(x)\right\|: x \in B\right]=0$ and $r=T_{1} c+T_{2} c$ for some $c \in B$
(b) $T_{2}$ and $T_{3}$ are completely continuous $M=\left\|T_{2}(B)\right\|$ such that $L M<1$ and $T_{1}^{n} u T_{2} v+T_{3} v \in B$ for $u, v \in B$ and $n \in \mathbb{N}$
(c) if $\left\{x_{n}\right\} \in \bar{B}$ with $x_{n}-T_{1} x_{n} T_{2} x_{n}-T_{3} x_{n} \rightarrow 0$ as $n \rightarrow \infty$ then there exists $b \in \bar{B}$ such that $0=\left(I-T_{1} \diamond T_{2}-T_{3}\right) b$.
then there exists a solution of the operator equation $u=T_{1} u T_{2} u+T_{3} u\left(=\left(T_{1} \diamond T_{2}\right) u+T_{3} u\right)$ in $B$.

## Acknowledgement

The authors are extremely grateful to the anonymous learned referee(s) for their keen reading, valuable suggestion and constructive comments for the improvement of the manuscript. The corresponding author VNM acknowledges that this project was supported by the Cumulative Professional Development Allowance (CPDA), SVNIT, Surat, Gujarat, India. All the authors carried out the proof of theorems in this manuscript. Vishnu Narayan Mishra conceived the study and participated in its design and coordination.

## References

[1] Afif Ben Amar, Soufiene Chouayekh, Aref Jeribi, New fixed point theorems in Banach algebras under weak topology features and applications to nonlinear integral equations, Journal of Functional Analysis 259 (2010), 2215-2237.
[2] F. F. Bonsal and J. Duncan, Complete Normed algebras, Springer-Verlag, Berlin Heidelberg New York, 1973.
[3] Felix. E. Browder On a Generalization of the Schauder Fixed Point Theorem, Duke Mathematical Journal, 26 (2) (1959), 291-303.
[4] B.C. Dhage On a fixed point theorem in Banach algebras with applications, Applied Mathematics Letters 18 (2005), 273-280.
[5] B.C. Dhage, On some variants of Schauders fixed point principle and applications to nonlinear integral equations, J. Math. Phys. Sci. 25 (1988) 603-611.
[6] B.C. Dhage, On Existance Theorems for Nonlinear Integral Equations in Banach Algebra via Fixed Point Techniques, East Asian Math. J. 17(2001), 33-45.
[7] D. Das, N. Goswami, Some Fixed Point Theorems on the Sum and Product of Operators in Tensor Product Spaces, IJPAM, 109(2016) 651-663.
[8] Deepmala and H.K. Pathak, On solutions of some functional-integral equations in Banach algebra, Research J. Science and Tech. 5 (3) (2013), 358-362.
[9] Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India, 2014.
[10] K. Goebeli and W. A. Kirk, A Fixed Point Theorem for Asymptotically Nonexpansive Mappings, Proc. of the American Math. Soc. 35 (1) (1972), 171-174.
[11] Olga Hadzic, A Fixed Point Theorem For The Sum of Two Mappings, Proc. Amer. Math. Soc. 85 (1) (1982), 37-41,
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Math. Std., vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[13] L.N. Mishra, H.M. Srivastava, M. Sen, On existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., 11 (1) (2016), 1-10.
[14] L.N. Mishra, S.K. Tiwari, V.N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, J. of App. Anal. and Comp., 5 (4) 2015, 600-612.
[15] L.N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Applied Mathematics and Computation 285 (2016), 174-183.
[16] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval, Progress in Fractional Differentiation and Applications 2 (3) (2016), 153-168.
[17] L.N. Mishra, M. Sen, R.N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, in press.
[18] L.N. Mishra, S.K. Tiwari, V.N. Mishra, I.A. Khan, Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, 2015 (2015), Article ID 960827, 8 pages.
[19] V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis, Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India, 2007.
[20] M. Mursaleen, H.M. Srivastava, S.K. Sharma, Generalized statistically convergent sequences of fuzzy numbers, J. Intelligent Fuzzy Systems 30 (2016), 1511-1518.
[21] W. V. Petryshyn and T. S. Tucker, On the Functional Equations Involving Nonlinear Generalized P-Compact Operators, Transactions of the American Mathematical Society, 135 (1969), 343-373
[22] W. V. Petryshyn and T. E. Williamson, JR. Strong and Weak Convergence of the Sequence of Successive Approximations for Quasi-Nonexpansive Mappings, J. of Math. Ana. and Appl. 43 (1973), 459-497.
[23] J. Schu, Iterative Construction of Fixed Points of Asymptotically Nonexpansive Mappings, J. of Math. Ana. and Appl. 158 (1991) , 407-413
[24] H.K. Pathak and Deepmala, Remarks on some fixed point theorems of Dhage, Applied Mathematics Letters, 25 (11) (2012), 1969-1975.
[25] P. Vijayaraju, A fixed point theorem for a sum of two mappings in reflexive Banach spaces, Math. J. Toyoma Univ. 14 (1991), 41-50.
[26] P. Vijayaraju, Iterative Construction of Fixed Points of Asymptotic 1-Set Contraction in Banach Spaces, Taiwanese J. of Math. 1 (3) (1997), 315-325.
[27] P. Vijayraju, Fixed Point Theorems For a Sum of Two Mappings in Locally Convex Spaces, Int. J. Math. and Math. Sci., 17(4) (1994), 681-686.
[28] A. Raymond Ryan, Introduction to Tensor Product of Banach Spaces, London, Springer -Verlag, 2002.
${ }^{1}$ Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India
${ }^{2}$ Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchhanath Mahadev Dumas Road, Surat 395 007, Gujarat, India
${ }^{3}$ L. 1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road Faizabad 224 001, Uttar Pradesh, India
*CORRESPONDING AUTHOR: vishnunarayanmishra@gmail.com, vishnu_narayanmishra@yahoo.co.in


[^0]:    Received $13^{\text {th }}$ July, 2016; accepted $19^{\text {th }}$ September, 2016; published $3^{\text {rd }}$ January, 2017.
    2010 Mathematics Subject Classification. 47B48; 46B28; 47A80; 47H10.
    Key words and phrases. Banach algebras; fixed points; projective tensor product.

