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ON COMPARISON THEOREMS FOR CONFORMABLE FRACTIONAL

DIFFERENTIAL EQUATIONS

MEHMET ZEKI SARIKAYA∗ AND FUAT USTA

Abstract. In this paper the more general comparison theorems for conformable fractional differ-

ential equations is proposed and tested. Thus we prove some inequalities for conformable integrals

by using the generalization of Sturm’s separation and Sturm’s comparison theorems. The results
presented here would provide generalizations of those given in earlier works. The numerical example

is also presented to verify the proposed theorem.

1. Introduction

An important point is that the fractional derivative at a point x is a local property only when a is
an integer; in non-integer cases we cannot say that the fractional derivative at x of a function f depends
only on values of f very near x, in the way that integer-power derivatives certainly do. Therefore it
is expected that the theory involves some sort of boundary conditions, involving information on the
function further out. To use a metaphor, the fractional derivative requires some peripheral vision. As
far as the existence of such a theory is concerned, the foundations of the subject were laid by Liouville
in a paper from 1832. The fractional derivative of a function to order a is often now defined by means
of the Fourier or Mellin integral transforms. Various types of fractional derivatives were introduced:
Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud and Riesz are
just a few to name [9]-[14]. Recently a new local, limit-based definition of a so-called conformable
derivative has been formulated in [1], [6] as follows

Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε

provied the limits exits. Note that if f is fully differentiable at t, then the derivative is Dα (f) (t) =
t1−αf ′(t). The reader interested on the subject of conformable calculus is referred in [1]-[8].

The aim of this paper is to establish the comparison theorems for conformable fractional differential
equations which are based on conditions of mixed type, point-wise and integral inequalities. Thus we
provide the generalization for comparison of the solution of linear second order conformable differential
equations investigated in [13].

The remaining part of the paper proceeds as follows: the second section of this paper will review
the basic tools of conformable fractional calculus. The third section begins by laying out the main
results and looks at how can be applied it to the conformable fractional differential equations. The
fourth section concludes this study with some remarks.

2. Preliminary

Here we recall basic notions, and provide results helpful for the main section. The basic definition
is from [1]-[3].

Definition 1. (Conformable fractional derivative) Given a function f : [0,∞) → R. Then the
“conformable fractional derivative” of f of order α is defined by

(2.1) Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
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for all t > 0, α ∈ (0, 1) . If f is α−differentiable in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist, then define

(2.2) f (α) (0) = lim
t→0+

f (α) (t) .

We can write f (α) (t) for Dα (f) (t) to denote the conformable fractional derivatives of f of order α.
In addition, if the conformable fractional derivative of f of order α exists, then we simply say f is
α−differentiable. For 2 ≤ n ∈ N, we denote Dn

α (f) (t) = DαD
n−1
α (f) (t) (t)

Theorem 1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then

i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,

iv. Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2
.

If f is differentiable, then

(2.3) Dα (f) (t) = t1−α
df

dt
(t) .

Theorem 2 (Mean value theorem for conformable fractional differentiable functions). Let α ∈ (0, 1]
and f : [a, b] → R be a continuous on [a, b] and an α-fractional differentiable mapping on (a, b) with
0 ≤ a < b. Then, there exists c ∈ (a, b), such that

Dα (f) (c) =
f(b)− f(a)
bα

α −
aα

α

.

Definition 2 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b]→ R
is α-fractional integrable on [a, b] if the integral

(2.4)

∫ b

a

f (x) dαx :=

∫ b

a

f (x)xα−1dx

exists and is finite.

Remark 1.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Theorem 3. Let f : (a, b)→ R be differentiable and 0 < α ≤ 1. Then, for all t > a we have

(2.5) IaαD
a
αf (t) = f (t)− f (a) .

Theorem 4. (Integration by parts) Let f, g : [a, b] → R be two functions such that fg is differen-
tiable. Then

(2.6)

∫ b

a

f (x)Da
α (g) (x) dαx = fg|ba −

∫ b

a

g (x)Da
α (f) (x) dαx.

Theorem 5. Assume that f : [a,∞) → R such that f (n)(t) is continuous and α ∈ (n, n + 1]. Then,
for all t > a we have

Da
αf (t) Iaα = f (t) .

Definition 3. For two functions y1 and y2 satisfying the α-conformable fractional equation and α ∈
(0, 1], we set

Wα (y1, y2) =

∣∣∣∣ y1 y2
Dαy1 Dαy2

∣∣∣∣ .
In this paper, we establish the following comparison theorems for conformable fractional differential

equations are based in conditions of a mixed type, point-wise and integral inequalities, and generalizes
the results in [12] and [13]. The results presented here would provide generalizations of those given in
earlier works.
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3. Main results

In [13], Pospisil and Skripkova give the Sturm’s comparison theorems for conformable fractional
differential equations as follows:

Theorem 6 (Sturm Separation Theorem). Let x(t) and y(t) be linearly independent solutions of

(3.1) D2
αx(t) + p(t)Dαx(t) + q(t)x(t) = 0

where p(t) and q(t) are continuous functions, on an open interval (a, b) and 0 < α ≤ 1. Then x(t) has
a zero between any two successive zeros of y(t). Thus the zeros of x and y occur alternately.

Theorem 7 (Sturm Comparison Theorem). Let x(t) and y(t) be non-trivial solutions of

(3.2) D2
αx(t) + r(t)x(t) = 0

(3.3) D2
αy(t) + r1(t)y(t) = 0.

respectively, where r(t) ≥ r1(t) for t > a are given continuous functions. Then exactly one of the
following conditions holds:

(1) x(t) has at least one zero between any two zeros of y(t),
(2) r(t) = r1(t) for all t > a, and x(t) is a constant multiple of y(t).

The Sturm’s comparison theorem for conformable fractional differential equations deals with func-
tions x(t) and y(t) satisfying equations (3.2) and (3.3). If r1(t) ≥ r(t), then solutions of (3.3) oscillate
more rapidly than solutions of (3.2). More precisely, if x(t) is a non-trivial solution of (3.2) for which
x(t1) = x(t2), t1 < t2, and r1(t) ≥ r(t) for t1 ≤ t ≤ t2, then y(t) has a zero in (t1, t2]. Now, we give
the following Riccati equations for conformable fractional differential equations;

(3.4) Dαu(t) = u2(t) + r(t)

(3.5) Dαv(t) = v2(t) + r1(t).

Assume that r(t), r1(t) are given continuous functions on (τ1, τ2) . By the substitutions u(t) = −Dαx(t)
x(t) , v(t) =

−Dαy(t)
y(t) in (3.4) and (3.5), respectively, we obtain the equations (3.2) and (3.3). In the following the-

orems we give the comparison theorems for conformable fractional differential equations.

Theorem 8. Let x and y be non-trivial solutions of (3.2) and (3.3), respectively, such that x(t) does
not vanish on [τ1, τ2] , y(τ1) 6= 0 and the inequality

(3.6) −Dαx(τ1)

x(τ1)
+

t∫
τ1

r(s)dαs >

∣∣∣∣∣∣−Dαy(τ1)

y(τ1)
+

t∫
τ1

r1(s)dαs

∣∣∣∣∣∣
holds for all t on [τ1, τ2] . Then y(t) does not vanish on [τ1, τ2] and

(3.7) −Dαx(t)

x(t)
>

∣∣∣∣Dαy(t)

y(t)

∣∣∣∣ , τ1 ≤ t ≤ τ2.
Proof. Since x(t) does not vanish on [τ1, τ2] , u(t) = −Dαx(t)

x(t) is continuous on [τ1, τ2] and satisfies the

Riccati equation (3.4), which is equivalent to the integral equation. Then by using the (2.5) we have

(3.8) u(t) = u(τ1) +

t∫
τ1

u2(s)dαs+

t∫
τ1

r(s)dαs.

By the hypothesis (3.6), we get

(3.9) u(t) ≥ −Dαx(τ1)

x(τ1)
+

t∫
τ1

r(s)dαs > 0.
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Since y(τ1) 6= 0, v(t) = −Dαy(t)
y(t) is continuous on some interval [τ1, δ] , τ1 < δ ≤ τ2. On this interval,

the equation (3.4) is well defined and implies the following integral equation

(3.10) v(t) = v(τ1) +

t∫
τ1

v2(s)dαs+

t∫
τ1

r1(s)dαs.

Therefore, by using (3.6) and (3.9) in (3.10), we have

v(t) ≥ v(τ1) +

t∫
τ1

r1(s)dαs

≥ −u(τ1)−
t∫

τ1

r(s)dαs ≥ −u(t)

and consequently, u(t) ≥ −v(t). In order to obtain

(3.11) |v(t)| ≤ u(t) on τ1 ≤ x ≤ δ,

it is sufficient to show that u(t) ≥ v(t) on this interval. Suppose to the contrary that there exists a
point t0 on [τ1, δ] such that u(t0) < v(t0). Thus, since |v(τ1)| ≤ u(τ1) from (3.6) (with t = τ1) and u
and v are continuous on [τ1, δ] , there exists t1 in τ1 < t1 ≤ t0 such that v(t1) = u(t1) and v(t) ≤ u(t)
for τ1 < t ≤ t1. Because u(t) ≥ −v(t) was establishes, it follows that |v(t)| ≤ u(t) for τ1 < t ≤ t1, and
consequently

t∫
τ1

v2(s)dαs ≤
t∫

τ1

u2(s)dαs.

By using (3.6),(3.8), (3.10), it follows that

v(t1) = v(τ1) +

t1∫
τ1

v2(s)dαs+

t1∫
τ1

r1(s)dαs

< u(τ1) +

t1∫
τ1

u2(s)dαs+

t1∫
τ1

r(s)dαs = u(t1),

this is a contradiction with the fact that v(t1) = u(t1). Hence (3.11) holds on any interval [τ1, δ] of
continuity of v, τ1 < δ ≤ τ2, but this implies that v is continuous on the entire interval [τ1, τ2] , because
u(t) is bounded and v(t) has only poles at its points of discontinuity. Thus (3.11) holds on all of the
interval [τ1, τ2]. This result proves (3.7), and since the left member is bounded on [τ1, τ2] , y(t) cannot
have a zero on this interval. The proof is complete. �

Theorem 9. Let x and y be non-trivial solutions of (3.2) and (3.3), respectively, such that x(t) does
not vanish on [τ1, τ2] , y(τ1) 6= 0 and the inequality

(3.12)
Dαx(τ2)

x(τ2)
+

τ2∫
t

r(s)dαs >

∣∣∣∣∣∣Dαy(τ2)

y(τ2)
+

τ2∫
t

r1(s)dαs

∣∣∣∣∣∣
holds for all t on [τ1, τ2] . Then y(t) does not vanish on [τ1, τ2] and

(3.13)
Dαx(t)

x(t)
>

∣∣∣∣Dαy(t)

y(t)

∣∣∣∣ , τ1 ≤ t ≤ τ2.
Proof. Let new functions x1, y1, λ, λ1 be defined on τ1 ≤ t ≤ τ2 by the following equations

x1(t) = x(τ1 + τ2 − t) y1(t) = y(τ1 + τ2 − t)

λ(t) = r(τ1 + τ2 − t) λ1(t) = r1(τ1 + τ2 − t).
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Then x1(t) does not vanish on [τ1, τ2] , y1(τ1) = y(τ2) 6= 0 and

−Dαx(τ1)

x(τ1)
+

τ1+τ2−t∫
τ1

λ(s)dαs =
Dαx(τ2)

x(τ2)
+

τ2∫
t

r(s)dαs

−Dαy(τ1)

y(τ1)
+

τ1+τ2−t∫
τ1

λ1(s)dαs =
Dαy(τ2)

y(τ2)
+

τ2∫
t

r1(s)dαs.

Thus the hypothesis (3.12) is equivalent to the hypothesis (3.6). Since t ∈ [τ1, τ2] if and only if
τ1 + τ2 − t ∈ [τ1, τ2], and the conclusion (3.13) follows from Theorem 8. �

Theorem 10. Let x(t) and y(t) be non-trivial solutions of the equations

(3.14) D2
αx(t)− 2b(t)Dαx(t) + r(t)x(t) = 0, t > 0,

(3.15) D2
αy(t)− 2c(t)Dαy(t) + r1(t)y(t) = 0, t > 0,

respectively, where r and r1 are continuous functions such that r(t) ≤ r1(t) with the initial conditions:

(3.16) Dαx(t1) + σx(t1) = 0

(3.17) Dαy(t1) + τy(t1) = 0

where σ and τ are constants. If b(t)Dαy(t) > c(t)Dαx(t), Then between any two consecutive zeroes τ1
and τ2 of x(t), there exists at least one zero of y(t) unless r(t) ≡ r1(t) on [τ1, τ2].

Proof. Let τ1 and τ2 with 0 < τ1 < τ2 be consecutive zeroes of x(t). Assume x(t) > 0 on [τ1, τ2] (if
not, consider −x(t) or −y(t) which have these properties). Consequently, by arguments in the proof
of Theorem 6,

Dαx(τ1) > 0, and aDαx(τ2) < 0.

Suppose that y(t) does not have a zero on [τ1, τ2]. Let y(t) > 0 on [τ1, τ2]. Multiplying the equation
satisfied by x(t), with y(t), and vice versa, and then subtract the two equations we get[

y(t)D2
αx(t)− x(t)D2

αy(t)
]

+ 2 [cx(t)Dαy(t)− by(t)Dαx(t)] + x(t)y(t)(r − r1) = 0.

Rewriting the last equation as

Dα [y(t)Dαx(t)− x(t)Dαy(t)] = −2 [cx(t)Dαy(t)− by(t)Dαx(t)]− x(t)y(t)(r − r1)

Integrating on both sides of the last equation from τ1 to τ2, we obtain

y(t)Dαx(t)− x(t)Dαy(t)|τ2τ1 = −2Iα [cx(t)Dαy(t)− by(t)Dαx(t)]− Iα(x(t)y(t)(r − r1))

The left hand side of equation (7) is non-positive. The right hand side is strictly positive unless
r(t) ≡ r1(t) on [τ1, τ2]. Thus, if r(t) 6= r(t) on [τ1, τ2], we arrive at a contradiction. This finishes the
proof of theorem. �

Now in order to test the result of Theorem 6, we present a numerical example of equations 3.14 and
3.15.

Example 1. Let us consider the coupled of equations

(3.18) D2
αx(t) +

3

2
cot (
√
t+ π)Dαx(t) + x(t) = 0, t > 0,

(3.19) D2
αy(t) +

3

2
ε1 cot (

√
t+ π)Dαy(t) + ε1y(t) = 0, t > 0,
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where ε1 ∈ R. And x(t) and y(t) be non-trivial solutions of the equations such that

(3.20) x(t) = cos(
√
t+ π)

(3.21) y(t) = cos(
√
ε1t)

According to Figure 1 we can say that the solution y(t) oscillates faster than the solution x(t) whenever

50 100 150 200 250
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1

Figure 1. Function x(t) (black), function y(t) with ε1 = 0.3 (red) and ε1 = 5 (blue).

ε1 > 1. Otherwise the solution y(t) oscillates slower than the solution x(t) with ε1 < 1 and one of its
zeros will not lie between two consecutive zeros of x(t).

By means of the transformation

u(t) = −Dαx(t)

x(t)
, v(t) = −Dαy(t)

y(t)

equations (3.14) and (3.15) are transformed into Riccati equations

(3.22) Dαu(t) = u2(t) + 2b(t)u(t) + r(t)

(3.23) Dαv(t) = v2(t) + 2e(t)v(t) + r1(t).

and the initial conditions

−Dαx(τ1)

x(τ1)
= σ , −Dαy(τ1)

y(τ1)
= τ

for (3.14) and (3.15), become initial values

(3.24) u(τ1) = σ, v(τ1) = τ

for (3.22) and (3.23). The differential equations (3.14) and (3.15) subject to (3.24) can be written as
equivalent integral equations

(3.25) u(t) = σ +

t∫
τ1

u2(s)dαs+

t∫
τ1

2b(s)u(s)dαs+

t∫
τ1

r(s)dαs
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(3.26) v(t) = τ +

t∫
τ1

v2(s)dαs+

t∫
τ1

2e(s)v(s)dαs+

t∫
τ1

r1(s)dαs.

It is obvious from these equations that if τ ≥ σ ≥ 0, e(t) ≥ b(t) ≥ 0 and

t∫
τ1

r1(s)dαs ≥
t∫

τ1

r(s)dαs

on an interval [τ1, τ2] , then v(t) ≥ u(t) ≥ 0 as long as v(t) can be continued on [τ1, τ2] . Since the
singularities of u(t) and v(t) correspond to the zeros of x(t) and y(t), respectively, these observations
lead to the following comparison theorem for (3.14) and (3.15).

Theorem 11. Suppose x is a non-trivial solutions of (3.14) satisfying −Dαx(τ1)
x(τ1)

= σ ≥ 0, x(τ2) = 0.

If
i) e(t) ≥ b(t) ≥ 0 for τ1 ≤ t ≤ τ2

ii)
t∫
τ1

r1(s)dαs ≥
t∫
τ1

r(s)dαs ≥ 0, for τ1 ≤ t ≤ τ2,

then every solution of (3.15) satisfying −Dαy(τ1)
y(τ1)

= σ has a zero in (τ1, τ2].

We note that the integral equations (3.25) and (3.26) can be written as follows

u(t) = σ +

t∫
τ1

(u(s) + b(s))
2
dαs+

t∫
τ1

(
r(s)− b2(s)

)
dαs

v(t) = τ +

t∫
τ1

(v(s) + e(s))
2
dαs+

t∫
τ1

(
r1(s)− e2(s)

)
dαs.

This formulation shows that the condition ii) of Theorem 11 can be replaced by

t∫
τ1

(
r1(s)− e2(s)

)
dαs ≥

t∫
τ1

(
r(s)− b2(s)

)
dαs ≥ 0.

4. Concluding remarks

In this investigation, the aim was to present some inequalities for conformable fractional integrals
through the instrument of the Sturm’s comparison and separation theorems. Since the obtained results
are general forms of earlier works they would help for the future studies.
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