APPLICATION OF HYPERGEOMETRIC DISTRIBUTION SERIES ON CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS

TRAILOKYA PANIGRAHI*

Abstract

The object of the present paper is to give some characterizations for hypergeometric distribution series to be in various subclasses of analytic functions.

1. Introduction

Let \mathcal{A} denote the family of all functions f analytic in $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ with the usual normalization condition $f(0)=f^{\prime}(0)-1=0$. Thus f has the following Taylor-Maclaurin series:

$$
\begin{equation*}
f(z)=z+\sum_{l=2}^{\infty} a_{l} z^{l} \tag{1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of all functions f of the form (1) which are univalent in \mathbb{U}. A function $f \in \mathcal{A}$ is said to be in $k-\mathcal{U C V}$, the class of k-uniformly convex function $(0 \leq k<\infty)$ if $f \in \mathcal{S}$ along with the property that for every circular arc γ contained in \mathbb{U} with center ξ where $|\xi|<k$, the image curve $f(\gamma)$ is a convex arc. It is well-known that [5] $f \in k-\mathcal{U C} \mathcal{V}$ if and only if the image of the function p, where $p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}(z \in \mathbb{U})$ is a subset of the conic region

$$
\begin{equation*}
\Omega_{k}=\left\{w=u+i v: u^{2}>k^{2}(u-1)^{2}+k^{2} v^{2}, 0 \leq k<\infty\right\} . \tag{2}
\end{equation*}
$$

The class $k-\mathcal{S T}$ consisting of k-uniformly starlike functions is defined via $k-\mathcal{U C V}$ by the Alexander transform i.e.

$$
f \in k-\mathcal{S T} \Longleftrightarrow g \in k-\mathcal{U C} \mathcal{V} \text { where } g(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

The class $k-\mathcal{S T}$ and its properties were investigated in [6]. The analytic characterization of $k-\mathcal{U C V}$ and $k-\mathcal{S T}$ are given as below:

$$
\begin{equation*}
k-\mathcal{U C V}=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|(z \in \mathbb{U})\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
k-\mathcal{S T}=\left\{f \in \mathcal{A}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|(z \in \mathbb{U})\right\} \tag{4}
\end{equation*}
$$

Note that for $k=0$ and $k=1$, we get $0-\mathcal{U C V}=\mathcal{K}, 0-\mathcal{S T}=\mathcal{S}^{*}, 1-\mathcal{U C V}=\mathcal{U C} \mathcal{V}$ and $1-\mathcal{S T}=\mathcal{S P}$, where $\mathcal{K}, \mathcal{S}^{*}, \mathcal{U C V}, \mathcal{S P}$ are respectively the familiar classes of univalent convex functions, univalent starlike functions [3], uniformly convex functions [4] (also, see [7, 12]) and parabolic starlike functions [12].
For two analytic functions f and g in \mathbb{U}, the function f is said to be subordinate to g or g is said to be superordinate to f, if there exists a function w analytic in \mathbb{U} with $|w| \leq|z|$ such that $f(z)=g(w(z))$. In such case, we write $f \prec g$ or $f(z) \prec g(z)$. If the function g is univalent in \mathbb{U}, then $f \prec g \Longleftrightarrow f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see, for detail [8]).

[^0]Making use of subordination between analytic functions, Aouf [1] introduced and studied the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ as follows:
Definition 1.(see[1, with p=1]) For $-1 \leq A<B \leq 1,|\lambda|<\frac{\pi}{2}$ and $0 \leq \alpha<1$, we say that a function $f(z) \in \mathcal{A}$ is in the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
e^{i \lambda} f^{\prime}(z) \prec \cos \lambda\left[(1-\alpha) \frac{1+A z}{1+B z}+\alpha\right]+i \sin \lambda . \tag{5}
\end{equation*}
$$

The subordination (5) is equivalent to the inequality (6) given below:

$$
\begin{equation*}
\left|\frac{e^{i \lambda}\left(f^{\prime}(z)-1\right)}{B e^{i \lambda} f^{\prime}(z)-\left[B e^{i \lambda}+(A-B)(1-\alpha) \cos \lambda\right]}\right|<1 \quad(z \in \mathbb{U}) . \tag{6}
\end{equation*}
$$

For particular values of parameters A, B, α and λ, we obtain various subclasses of analytic functions studied by different researchers (for details, see [2]).
In 1998, Ponnusamy and Ronning [10] introduced and studied the classes \mathcal{S}_{β}^{*} and \mathcal{C}_{β} consisting of functions of the form (1) satisfying the following conditions:

$$
\begin{equation*}
\mathcal{S}_{\beta}^{*}=\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\beta(z \in \mathbb{U}, \beta>0)\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{C}_{\beta}=\left\{f \in \mathcal{A}:\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\beta(z \in \mathbb{U}, \beta>0)\right\} \tag{8}
\end{equation*}
$$

It is worthy to mention here that

$$
f \in \mathcal{C}_{\beta} \Longleftrightarrow z f^{\prime} \in \mathcal{S}_{\beta}^{*}(\beta>0)
$$

Recently, we introduced a new series $H(M, N, n ; z)$ whose coefficient are probabilities of hypergeometric distribution as follows:

$$
\begin{equation*}
H(M, N, n ; z)=z+\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1} z^{l} \tag{9}
\end{equation*}
$$

Let us define the linear operator $\mathcal{J}(M, N, n): \mathcal{A} \longrightarrow \mathcal{A}$ given by

$$
\begin{equation*}
\mathcal{J}(M, N, n) f(z)=H(M, N, n ; z) \star f(z)=z+\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1} a_{l} z^{l} \quad(z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

where \star denote the convolution or Hadamard product between two analytic functions.
Motivated by the works of $[9,10,13]$, in this paper we investigate some characterization for hypergeometric distribution series to be in the subclasses \mathcal{S}_{β}^{*} and \mathcal{C}_{β} of analytic functions.

2. Preliminaries lemmas

To prove our main results, we need the following lemmas.
Lemma 1. (see [1], Theorem 4 with $\mathrm{p}=1$) A sufficient condition for $f(z)$ defined by (1) to be in the class $R^{\lambda}(A, B, \alpha)$ is

$$
\begin{equation*}
\sum_{l=2}^{\infty} l(1+|B|)\left|a_{l}\right| \leq(B-A)(1-\alpha) \cos \lambda \tag{11}
\end{equation*}
$$

Lemma 2. (see [6]) Let $f(z) \in \mathcal{A}$. If for some k, the following inequality

$$
\begin{equation*}
\sum_{l=2}^{\infty}(l+k(l-1))\left|a_{l}\right| \leq 1 \tag{12}
\end{equation*}
$$

holds true, then $f \in k-\mathcal{S T}$.
Lemma 3. (see [5, 11]) A function $f \in \mathcal{A}$ of the form (1) is in $k-\mathcal{U C V}$ if it satisfies the condition

$$
\begin{equation*}
\sum_{l=2}^{\infty} l[l(k+1)-k]\left|a_{l}\right| \leq 1 \tag{13}
\end{equation*}
$$

Another sufficient condition for the class $k-\mathcal{U C V}$ is given in [7] as follows:
Lemma 4. (see [7, 11]) Let $f \in \mathcal{S}$ be of the form (1). If for some $k(0 \leq k<\infty)$, the inequality

$$
\begin{equation*}
\sum_{l=2}^{\infty} l(l-1)\left|a_{l}\right| \leq \frac{1}{k+2} \tag{14}
\end{equation*}
$$

holds true, then $f \in k-\mathcal{U C V}$. The number $\frac{1}{k+2}$ cannot be increased.
Lemma 5. (see [11]) Let $f \in \mathcal{A}$ be of the form (1). If the inequality

$$
\begin{equation*}
\sum_{l=2}^{\infty}[\beta+l-1]\left|a_{l}\right| \leq \beta(\beta>0) \tag{15}
\end{equation*}
$$

is satisfied, then $f \in \mathcal{S}_{\beta}^{*}$.
Lemma 6. (see [11]) Let $f \in \mathcal{A}$ be of the form (1). If

$$
\begin{equation*}
\sum_{l=2}^{\infty} l[\beta+l-1]\left|a_{l}\right| \leq \beta \quad(\beta>0) \tag{16}
\end{equation*}
$$

then $f \in C_{\beta}$.
Lemma 7. (see [1], Theorem 1 with $\mathrm{p}=1$) Let the function $f(z)$ defined by (1) be in the class $\mathcal{R}^{\lambda}(A, B, \alpha)$, then

$$
\begin{equation*}
\left|a_{l}\right| \leq \frac{(B-A)(1-\alpha) \cos \lambda}{l} \quad(l \geq 2) \tag{17}
\end{equation*}
$$

3. Main Results

Unless otherwise stated, we assume throughout the sequel that $-1 \leq A<B \leq 1,|\lambda|<\frac{\pi}{2}, 0 \leq \alpha<1$. Theorem 1. Let $k \geq 0$. If the inequality

$$
\begin{equation*}
\frac{1}{\binom{N}{n}}\left[M(k+1) A_{1}-\binom{N-M}{n}\right] \leq \frac{\sec \lambda}{(B-A)(1-\alpha)}-1 \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\sum_{l=2}^{\infty}\binom{M-1}{l-2}\binom{N-M}{n-l+1} \tag{19}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)$ maps the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ into $k-\mathcal{U C} \mathcal{V}$.
Proof. Let the function f given by (1) be a member of $\mathcal{R}^{\lambda}(A, B, \alpha)$. By (10), we have

$$
\mathcal{J}(M, N, n) f(z)=z+\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1} a_{l} z^{l}
$$

In view of Lemma 3, it is sufficient to show that

$$
\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty} l[l(k+1)-k]\binom{M}{l-1}\binom{N-M}{n-l+1}\left|a_{l}\right| \leq 1
$$

By making use of Lemma 7, it is again sufficient to prove that

$$
\begin{equation*}
P_{1}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}[l(k+1)-k]\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{\sec \lambda}{(B-A)(1-\alpha)} \tag{20}
\end{equation*}
$$

Now

$$
\begin{gathered}
P_{1}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}[(l-1)(k+1)+1]\binom{M}{l-1}\binom{N-M}{n-l+1} \\
=\frac{1}{\binom{N}{n}}\left[\sum_{l=2}^{\infty}(k+1) \frac{M!}{(l-2)!(M-l+1)!}\binom{N-M}{n-l+1}+\sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1}\right] \\
=\frac{M(k+1)}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M-1}{l-2}\binom{N-M}{n-l+1}+\frac{1}{\binom{N}{n}}\left[\sum_{\left.\sum_{l=0}^{\infty}\binom{M}{l}\binom{N-M}{n-l}-\binom{N-M}{n}\right]}^{=\frac{M(k+1)}{\binom{N}{n}} A_{1}-\frac{\binom{N-M}{n}}{\binom{N}{n}}+1,}\right.
\end{gathered}
$$

where A_{1} is defined as in (19).
Thus, in view of (20), if the inequality (18) is satisfied, then $\mathcal{J}(M, N, n)(f) \in k-\mathcal{U C V}$ as asserted. The proof of Theorem 1 is complete.

Theorem 2. If the inequality

$$
\begin{equation*}
\frac{M}{\binom{N}{n}} A_{1} \leq \frac{\sec \lambda}{(k+2)(B-A(1-\alpha)} \tag{21}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)$ maps the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ into $k-\mathcal{U C} \mathcal{V}$.
Proof. Let the function f given by (1) be a member of $\mathcal{R}^{\lambda}(A, B, \alpha)$. By virtue of Lemma 4 , it is sufficient to show that

$$
\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty} l(l-1)\binom{M}{l-1}\binom{N-M}{n-l+1}\left|a_{l}\right| \leq \frac{1}{k+2}
$$

Using the coefficient estimate (17), it is again sufficient to show that

$$
\begin{equation*}
P_{2}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}(l-1)\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{\sec \lambda}{(k+2)(B-A)(1-\alpha)} \tag{22}
\end{equation*}
$$

Now,

$$
P_{2}=\frac{M}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M-1}{l-2}\binom{N-M}{n-l+1}=\frac{M}{\binom{N}{n}} A_{1}
$$

In view of (22), if the condition (21) is satisfied, then $\mathcal{J}(M, N, n)(f) \in k-\mathcal{U C} \mathcal{V}$ as asserted. This ends the proof of Theorem 2 .

Theorem 3. If the inequality

$$
\begin{equation*}
(1+k)-\frac{(1+k)}{\binom{N}{n}}\binom{N-M}{n}-\frac{k}{\binom{N}{n}(M+1)} B_{1} \leq \frac{\sec \lambda}{(B-A)(1-\alpha)} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{1}=\sum_{l=2}^{\infty}\binom{M+1}{l}\binom{N-M}{n-l+1} \tag{24}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)$ maps the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ into $k-\mathcal{S T}$.
Proof. Let the function f given by (1) be a member of $\mathcal{R}^{\lambda}(A, B, \alpha)$. By virtue of Lemma 2 , it is sufficient to show that

$$
\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}[l+k(l-1)]\binom{M}{l-1}\binom{N-M}{n-l+1}\left|a_{l}\right| \leq 1 .
$$

Using the coefficient estimate (17), it is again sufficient to show that

$$
\begin{equation*}
P_{3}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty} \frac{[l+k(l-1)]}{l}\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{\sec \lambda}{(B-A)(1-\alpha)} \tag{25}
\end{equation*}
$$

Now,

$$
\begin{aligned}
P_{3}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\left[1+\left(1-\frac{1}{l}\right) k\right]\binom{M}{l-1}\binom{N-M}{n-l+1}= & \frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\left[(1+k)-\frac{k}{l}\right]\binom{M}{l-1}\binom{N-M}{n-l+1} \\
& =(1+k)\left[1-\frac{\binom{N-M}{n}}{\binom{N}{n}}\right]-\frac{k}{(M+1)\binom{N}{n}} B_{1} .
\end{aligned}
$$

Therefore, in view of (25), if the inequality (23) is satisfied, then $\mathcal{J}(M, N, n)(f) \in k-\mathcal{S T}$ as asserted. This complete the proof of Theorem 3.

Theorem 4. If $f \in \mathcal{R}^{\lambda}(A, B, \alpha)$ and the inequality

$$
\begin{equation*}
1-\frac{\binom{N-M}{n}}{\binom{N}{n}} \leq \frac{1}{1+|B|} \tag{26}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)(f) \in \mathcal{R}^{\lambda}(A, B, \alpha)$.
Proof. Let the function $f \in \mathcal{A}$ given by (1) be a member of $\mathcal{R}^{\lambda}(A, B, \alpha)$. By virtue of Lemma 1 and the coefficient inequality (17) it is sufficient to show that

$$
\begin{equation*}
P_{4}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{1}{1+|B|} \tag{27}
\end{equation*}
$$

Now P_{4} is equivalently written as

$$
P_{4}=\sum_{l=1}^{\infty} \frac{\binom{M}{l}\binom{N-M}{n-l}}{\binom{N}{n}}=1-\frac{\binom{N-M}{n}}{\binom{N}{n}}
$$

Thus, in view of (27), if the inequality (26) is satisfied, then $\mathcal{J}(M, N, n)(f) \in \mathcal{R}^{\lambda}(A, B, \alpha)$. The proof of Theorem 4 is complete.

Theorem 5. Let $\beta>0, f \in \mathcal{R}^{\lambda}(A, B, \alpha)$ and the inequality

$$
\begin{equation*}
\frac{\beta-1}{(M+1)\binom{N}{n}} B_{1}-\frac{\binom{N-M}{n}}{\binom{N}{n}} \leq \frac{\beta \sec \lambda}{(B-A)(1-\alpha)}-1 \tag{28}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)(f) \in \mathcal{S}_{\beta}^{*}$.
Proof. By making use of Lemma 5, it is sufficient to show that

$$
\sum_{l=2}^{\infty}(\beta+l-1) \frac{\binom{M}{l-1}\binom{N-M}{n-l+1}}{\binom{N}{n}}\left|a_{l}\right| \leq \beta
$$

Since $f \in \mathcal{R}^{\lambda}(A, B, \alpha)$, using the coefficient estimate (17), it is sufficient to show that

$$
\begin{equation*}
P_{5}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\left[\frac{\beta+l-1}{l}\right]\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{\beta \sec \lambda}{(B-A)(1-\alpha)} \tag{29}
\end{equation*}
$$

Now,

$$
\begin{aligned}
P_{5}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\left(\frac{\beta-1}{l}\right)\binom{M}{l-1}\binom{N-M}{n-l+1} & +\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1} \\
& =\frac{\beta-1}{(M+1)\binom{N}{n}} B_{1}-\frac{\binom{N-M}{n}}{\binom{N}{n}}+1 .
\end{aligned}
$$

Thus, in view of (29), if the inequality (28) is satisfied, then $\mathcal{J}(M, N, n)(f) \in \mathcal{S}_{\beta}^{*}$ as asserted. This proof the Theorem 5.

Theorem 6. Let $\beta>0$. If the inequality

$$
\begin{equation*}
\frac{1}{\binom{N}{n}}\left[M A_{1}-\beta\binom{N-M}{n}\right] \leq \beta\left[\frac{\sec \lambda}{(B-A)(1-\alpha)}-1\right] \tag{30}
\end{equation*}
$$

is satisfied, then $\mathcal{J}(M, N, n)$ maps the class $\mathcal{R}^{\lambda}(A, B, \alpha)$ into \mathcal{C}_{β}.
Proof. In view of Lemma 6, it is sufficient to show that

$$
\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty} l[\beta+l-1]\binom{M}{l-1}\binom{N-M}{n-l+1}\left|a_{l}\right| \leq \beta
$$

Using coefficient inequality (17), it is enough to show that

$$
\begin{equation*}
P_{6}=\frac{1}{\binom{N}{n}} \sum_{l=2}^{\infty}[\beta+l-1]\binom{M}{l-1}\binom{N-M}{n-l+1} \leq \frac{\beta \sec \lambda}{(B-A)(1-\alpha)} \tag{31}
\end{equation*}
$$

Now the expression P_{4} can be equivalently written as

$$
\begin{aligned}
P_{6} & =\frac{\beta}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M}{l-1}\binom{N-M}{n-l+1}+\sum_{l=2}^{\infty} \frac{M!}{(l-2)!(M-l+1)!}\binom{N-M}{n-l+1} \\
& =\beta-\beta \frac{\binom{n-n}{n}}{\binom{N}{n}}+\frac{M}{\binom{N}{n}} \sum_{l=2}^{\infty}\binom{M-1}{l-2}\binom{N-M}{n-l+1} \\
& =\frac{M}{\binom{N}{n}} A_{1}-\frac{\beta\binom{N-M}{n}}{\binom{N}{n}}+\beta .
\end{aligned}
$$

Thus, in view of (31) if the inequality (30) is satisfied, then $\mathcal{J}(M, N, n)(f) \in \mathcal{C}_{\beta}$ as desired. The proof of Theorem 6 is thus completed.

References

[1] M. K. Aouf, On certain subclass of analytic p-valent functions of order alpha, Rend. Mat., 7(8) (1988), 89-104.
[2] M. K. Aouf, A. O. Mostafa and H. M. Zayed, Some constraints of hypergeometric functions to belong to certain subclasses of analytic functions, J. Egyptian Math. Soc., 24(3) (2016), 361-366.
[3] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol 259, Springer-Verlag, New York, 1983.
[4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math, 56(1)(1991), 87-92.
[5] S. Kanas and A. Wisnioska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327-336.
[6] S. Kanas and A. Wisnioska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(4) (2000), 647-657.
[7] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(2) (1992), 165-175.
[8] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
[9] A. K. Mishra and T. Panigrahi, Class-mapping properties of the Hohlov operator, Bull. Korean Math. Soc., 48(1) (2011), 51-65.
[10] S. Ponnusamy and F. Ronning, Starlikeness properties for convolution involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska I, II 1(16) (1998), 141-155.
[11] S. Porwal and S. Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., (2016), doi:10.1007/s13370-016-0422-3.
[12] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1) (1993), 189-196.
[13] A. K. Sharma, S. Porwal and K. K. Dixit, Class-mapping properties of convolution involving certain univalent function associated with hypergeometric function, Electronic J. Math. Anal. Appl., 1(2) (2013), 326-333.

Department of Mathematics, School of Applied Sciences, KiIt University, Bhubaneswar-751024, Orissa, IndiA
*Corresponding author: trailokyap6@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. analytic functions; k-uniformly convex functions; k-uniformly starlike functions; hypergeometric distribution series.

