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FACTS ABOUT THE FOURIER-STIELTJES TRANSFORM OF

VECTOR MEASURES ON COMPACT GROUPS

YAOGAN MENSAH

Abstract. This paper gives an interpretation of the Fourier-Stieltjes trans-

form of vector measures by means of the tensor product of Hilbert spaces. It

also extends the Kronecker product to some operators arising from the Fourier-
Stieltjes transformation and associated with the equivalence classes of unitary

representations of a compact group. We obtain among other results the effect

of this product on convolution of vector measures.

1. Introduction

This paper inspects mainly two things: the Fourier-Stieltjes transformation and
the Kronecker product. The importance of the Fourier transformation in math-
ematical science and ingeneering, for instance in signal processing, is well known
and so we need not to lay emphasis on it. On the other hand, among the ways to
bring together matrices there is the Kronecker product. It is extensively used in
group theory and physics, specially in quantum information theory to determine for
instance exact spin hamiltonian [9], [13]. In quantum physics the quantum states
of a system is described by an hermitian positive semi-definite matrix with trace
one. If X and Y represent the states of two quantum systems then the Kronecker
product X ⊗ Y describes the joint system. Some other fundamental applications
of the Kronecker product in signal processing, image processing or quantum com-
puting can be found in [7], [11], [2], [10] and [14]. This paper aims to deepen the
link between the Kronecker product and the Fourier-Stieltjes transform of vector
measures.
The rest of the paper is organized as follows. In section 2 we recall the definition
of vector measures on compact groups. The section 3 is divided into two parts. In
the first part we give an interpretation of the Fourier-Stieltjes transform of vector
measures as a bounded vector valued mappings on the tensor product of Hilbert s-
paces. The next part extends the Kronecker product to some operators arising from
the Fourier-Stieltjes transformation and associated with the equivalence classes of
unitary representations of a compact group. Here the effect of this product on the
convolution of vector measures is obtained.

2. Preliminaries

We summarize the definition of a vector measure on a compact group G following
[3] and [6]. We denote by B(G) the σ-field of Borel subsets of the compact group
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G and by A (in the whole paper) a complex Banach algebra with topological dual
A∗. Also denote by 〈x∗, x〉 the duality between A∗ and A.
A vector measure is a countably additive set function µ : B(G) → A, that is, for
any sequence (An) of pairwise disjoint subsets of B(G), one has

(1) µ(
∞
∪
n=1

An) =

∞∑
n=1

µ(An),

where the second member of the above equality is convergent in the norm topology
of A. If µ is a vector measure on G then for each x∗ ∈ A∗ the measure defined by

(2) x∗µ(A) := 〈x∗, µ(A)〉, A ∈ B(G)

is a complex measure. Let f be a complex measurable Borel function f defined on
G. The function f is said to be µ−integrable if the following two conditions are
satisfied:

(1) ∀x∗ ∈ A∗, f is x∗µ−integrable,

(2) ∀A ∈ B(G) , ∃ y ∈ A, ∀x∗ ∈ A∗, 〈x∗, y〉 =

∫
A

fdx∗µ.

Then we set y =

∫
G

f dµ.

Let µ : B(G) → A be a vector measure. The semivariation [3] of µ is the
nonnegative function |µ| defined on B(G) by

(3) |µ|(A) = sup{|x∗µ|(A) : x∗ ∈ A, ‖x∗‖ ≤ 1}, ∀A ∈ B(G)

where |x∗µ| is the variation of x∗µ.
We recall that the variation of a scalar (real or complex) measure m is the extended
nonnegative mapping |m| defined on B(G) by

(4) |m|(A) = sup
π

∑
E∈π
|m(E)|

where the supremum is taken over all partitions π of A into finite number of pair-
wise disjoint members of B(G) [3, page 2].
A vector measure µ is said to be of bounded semivariation if |µ|(G) < ∞. The
range of a vector measure is bounded if and only if it is of bounded semivariation
[3, page 4]. So a vector measure is said to be bounded if it is of bounded semivari-
ation. Denote by M1(G,A) the set of bounded A−valued measures on G. The set
M1(G,A) is equipped with the norm

(5) ‖µ‖ :=

∫
G

χGd|µ| = |µ|(G)

where χG is the characteristic function of G.
Let µ, ν be in M1(G,A). The convolution product of µ with ν is given by :

(6) µ ∗ ν(f) =

∫ ∫
G

f(gh)dµ(g)dν(h) , f ∈ C(G,A).

where C(G,A) is the set of A−valued continuous functions on G. Equipped with
this product and the above norm, the space M1(G,A) is a complex Banach algebra.



FACTS ABOUT THE FOURIER-STIELTJES TRANSFORM 21

3. Main results

3.1. Fourier-Stieltjes transformation: a tensor product interpretation.
The Fourier(-Stieltjes) transform of a complex valued function (or measure) on a
compact group is well-known [5]. For a given function f , the Fourier transform of
f is a collection of bounded operators on some Hilbert spaces. In [1], Assiamoua
defined the Fourier-Stieltjes transform of a Banach algebra valued measure on a
compact group by interpreting it as a collection of some continuous sesquilinear
mappings. In this section, we use the modern technique of tensor product to keep
the interpretation of the Fourier-Stieltjes transform of a vector measure as a collec-
tion of operators.

Let Ĝ be the unitary dual of the compact group G i.e. the set of equivalence classes
of unitary irreducible representations of G. In any equivalence class σ belonging to

Ĝ, we choose an element Uσ and denoted its hilbertian representation space by Hσ.
Since G is compact, the Hilbert space Hσ is finite dimensional [4], and we denote
its dimension by dσ. We fix definitively a canonical basis (ξσ1 , . . . , ξ

σ
dσ

) of Hσ. For
g ∈ G, we set

(7) uσij(g) = 〈Uσg ξσj , ξσi 〉

where 〈 , 〉 is the inner product in Hσ, and denote by Uσ the contragredient of the
representation Uσ, that is the representation of G on Hσ which matrix elements
are given by

(8) 〈Uσg ξσj , ξσi 〉 = uσij(g),

where uσij(g) is the complex conjugate of uσij(g). Let us denote by Hσ the conjugate

Hilbert space to Hσ. We denote by Hσ⊗̂Hσ the tensor product of Hilbert spaces
Hσ ⊗ Hσ equipped with the projective tensor product norm. A basis of Hσ⊗̂Hσ

is
(
ξσi ⊗ ξσj

)
1≤i,j≤dσ

. Then the Fourier-Stieltjes transform of a bounded A−valued

measure µ is the collection of linear operators (µ̂(σ))σ∈Ĝ from Hσ⊗̂Hσ into A
defined by :

(9) µ̂(σ)(ξ ⊗ η) =

∫
G

〈Uσg ξ, η〉dµ(g), ξ, η ∈ Hσ.

Now, let B(Hσ⊗̂Hσ,A) be the space of bounded linear mappings from Hσ⊗̂Hσ

into the Banach algebra A. Let B(Ĝ,A) be the bundle over Ĝ whose fiber at σ is
B(Hσ⊗̂Hσ,A), that is

(10) B(Ĝ,A) =
∏
σ∈Ĝ

B(Hσ⊗̂Hσ,A).

For ϕ ∈ B(Ĝ,A), set

(11) ‖ϕ‖∞ = sup{‖ϕ(σ)‖ : σ ∈ Ĝ}

where ‖ϕ(σ)‖ denotes the operator norm of ϕ(σ). Define

(12) B∞(Ĝ,A) = {ϕ ∈ B(Ĝ,A) : ‖ϕ‖∞ <∞}.

Theorem 3.1. For µ ∈M1(G,A), we have µ̂ ∈ B∞(Ĝ,A).
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Proof. It is clear that for each σ, the object µ̂(σ) is linear from Hσ⊗̂Hσ into A.
Now

‖µ̂(σ)(ξ ⊗ η)‖ = ‖
∫
G

〈Uσg ξ, η〉dµ(g)‖

≤
∫
G

|〈Uσg ξ, η〉|d|µ|(g)

≤ ‖ξ‖‖η‖‖µ‖ = ‖ξ ⊗ η‖‖µ‖.
Thus ‖µ̂(σ)‖ ≤ ‖µ‖ for each σ. Therefore ‖µ̂‖∞ ≤ ‖µ‖ <∞. �

Let µ ∈ M1(G,A) and σ ∈ Ĝ. We associate with the operator û(σ) the matrix
denoted by M(û(σ)) which (i, j)−entry belongs to the Banach algebra A and is
given by

(13) [M(µ̂(σ))]ij = µ̂(σ)(ξσj ⊗ ξσi ).

For vector measures µ and ν we denote by (µ̂× ν̂)(σ) the operator from Hσ⊗̂Hσ

into A associated with the product of matrices M(ν̂(σ))M(µ̂(σ)), that is

(14) (µ̂× ν̂)(σ)(ξσj ⊗ ξσi ) =

dσ∑
k=1

ν̂(σ)(ξσk ⊗ ξσi )µ̂(σ)(ξσj ⊗ ξσk ).

The following theorem is the analogue of the convolution theorem.

Theorem 3.2. For µ, ν ∈M1(G,A), we have µ̂ ∗ ν = µ̂× ν̂.

Proof.

(̂µ ∗ ν)(σ)(ξσj ⊗ ξσi ) =

∫
G

〈Uσt ξσj , ξσi 〉 d(µ ∗ ν)(t)

=

∫ ∫
G

〈Uσstξσj , ξσi 〉dµ(s)dν(t)

=

∫ ∫
G

〈Uσt Uσs ξσj , ξσi 〉dµ(s)dν(t).

Now, we express Uσs ξ
σ
j in the canonical basis of Hσ:

(15) Uσs ξ
σ
j =

dσ∑
k=1

〈Uσs ξσj , ξσk 〉ξσk .

So

(̂µ ∗ ν)(σ)(ξσj ⊗ ξσi ) =
dσ∑
k=1

∫ ∫
G

〈Uσs ξσj , ξσk 〉〈Uσt ξσk , ξσi 〉dµ(s)dν(t)

=
dσ∑
k=1

∫
G

〈Uσt ξσk , ξσi 〉dν(t)

∫
G

〈Uσs ξσj , ξσk 〉dµ(s)

=
dσ∑
k=1

ν̂(σ)(ξσk ⊗ ξσi )µ̂(σ)(ξσj ⊗ ξσk )

= (µ̂× ν̂)(σ)(ξσj ⊗ ξσi ).

�

Remark: Application to convolution equations
The above result can be useful in the resolution of the convolution equation

(16) f ∗ h = g
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where f , g and h (the unknown function) are A-valued functions on G. Here f, g
and h can be viewed as the vector measures fdx, gdx and hdx respectively where

dx denotes the normalized Haar measure of G. For each σ ∈ Ĝ, the equation (16)
is transformed into

(17) f̂(σ)× ĥ(σ) = ĝ(σ).

Therefore if the operator f̂(σ) is invertible, ĥ(σ) can be derived from (17) and h is
recovered by the following reconstruction formula

(18) h =
∑
σ∈Ĝ

dσ

dσ∑
i=1

dσ∑
j=1

ĥ(σ)(ξσj ⊗ ξσi )uσij .

3.2. The mappings Tσ and their Kronecker product. Now we turn our at-
tention over some matrix valued mappings acting on the set of bounded vector
measures. Let Mdσ (A) be the set of dσ × dσ matrices with entries in the Banach
algebra A.

We denote by Tσ the linear mapping

Tσ : M1(G,A) → Mdσ (A)
µ 7→ Tσ(µ) =M(µ̂(σ)).

We set

∆(Ĝ) = {Tσ : σ ∈ Ĝ}.
The following result shows the effect of each Tσ on convolution of vector measures.

Theorem 3.3. For Tσ ∈ ∆(Ĝ), µ, ν ∈M1(G,A), we have:

(19) Tσ(µ ∗ ν) = Tσ(ν)Tσ(µ).

Proof.

Tσ(µ ∗ ν) = M(µ̂ ∗ ν(σ))
= M((µ̂× ν̂)(σ)) according to Theorem 3.2.
= M(ν̂(σ))M(µ̂(σ))
= Tσ(ν)Tσ(µ).

�

Now we are going to extend the Kronecker product to the mappings Tσ. We also
give some basic properties of this extension. The following definition of Kronecker
product of matrices can be found in [8].

Definition 3.4. Let X = (xij) and Y be two matrices. The Kronecker product
(also called tensor product) of X by Y is the matrix

(20) X ⊗ Y =


x11Y x12Y . . . x1nY

x21Y · · ·
...

...
... · · ·

...
xm1Y xm2Y · · · xmnY

 .

The Kronecker product of matrices is associative, noncommutative and verifies,
among other properties, the equality:

(21) (X1X2)⊗ (Y1Y2) = (X1 ⊗ Y1)(X2 ⊗ Y2).
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where Xi, Yj , i = 1, 2; j = 1, 2 are matrices such that the product X1X2 and Y1Y2
exist; see [8] and [12].

Definition 3.5. Let Tσ1 , Tσ2 be in ∆(Ĝ). The Kronecker product of Tσ1 by
Tσ2 , denoted by Tσ1 � Tσ2 , is the mapping from M1(G,A) into Mdσ1

dσ2
(A)

such that

(22) ∀µ ∈M1(G,A), [Tσ1
� Tσ2

](µ) =M(µ̂(σ1))⊗M(µ̂(σ2)).

Remark. Since the Kronecker product of matrices is noncommutative, so is the
extended Kronecker product �.

Many properties of the Kronecker product of matrices are easily extended to the
Kronecker product of the mappings Tσ. As an example we prove the associativity
in the following theorem.

Theorem 3.6. Let σi, i = 1, 2, 3, be in Ĝ and µ, ν be in M1(G,A).
We have the following associative relation:

(23) (Tσ1
� Tσ2

) � Tσ3
= Tσ1

� (Tσ2
� Tσ3

).

And we have the following effect on the convolution of vector measures:

(24) [Tσ1 � Tσ2 ](µ ∗ ν) = [Tσ1 � Tσ2 ](ν)[Tσ1 � Tσ2 ](µ).

Proof.

1. [(Tσ1 � Tσ2) � Tσ3 ](µ) = [M(µ̂(σ1))⊗M(µ̂(σ2))]⊗M(µ̂(σ3)).

The proof can be completed by using the fact that the Kronecker product of matrices
is associative.

2. [Tσ1 � Tσ2 ](µ ∗ ν) = M(µ̂ ∗ ν(σ1))⊗M(µ̂ ∗ ν(σ2))
= [M(ν̂(σ1))M(µ̂(σ1))]⊗ [M(ν̂(σ2))M(µ̂(σ2))]
= [M(ν̂(σ1))⊗M(ν̂(σ2))][M(µ̂(σ1))⊗M(µ̂(σ2))]
= [Tσ1

� Tσ2
](ν)[Tσ1

� Tσ2
](µ),

using meanwhile the property (21) of Kronecker product of matrices. �

4. Conclusion

We interpreted the Fourier-Stieltjes transform of A (Banach algebra)-valued
measures on a compact group G as a collection of operators from a tensor product
of Hilbert spaces into the Banach algebra A. Therefore it was possible to associate
a matrix with each of such operators. Then we extended the Kronecker product
of matrices to some matrix valued mappings acting on vector measures. We also
computed the effect of these mappings and that of their Kronecker product on the
convolution of vector measures. Many other properties could be found if this dis-
cussion is deepened. These are the aims of some forthcoming papers. What can
be the possible applications to Physics (for example) for joining Kronecker product
with Fourier-Stieltjes transform of vector measures?
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