ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY METHODS

HİKMET SEYHAN ÖZARSLAN*

Abstract. In this paper, we prove a general theorem dealing with absolute matrix summability methods of infinite series. This theorem also includes some new and known results.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [5]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{5}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{6}
\end{equation*}
$$

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability. If we set $\varphi_{n}=n$ for all $n, \varphi-\left|A, p_{n}\right|_{k}$ summability is the same as $|A|_{k}$ summability (see [7]). Also, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$

[^0]and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $\varphi_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|R, p_{n}\right|_{k}$ summability (see [2]). Furthermore, if we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability (see [4]).
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:
\[

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{7}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{8}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{10}
\end{equation*}
$$

2. Known Result

Bor [3] has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability method.
Theorem 1. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

If $\left(X_{n}\right)$ is a positive monotonic non-decreasing sequence such that

$$
\begin{gather*}
\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{12}\\
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{14}
\end{equation*}
$$

where

$$
t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem 1 to $\varphi-\left|A, p_{n}\right|_{k}$ summability. Now we shall prove the following theorem.
Theorem 2. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots, \tag{15}\\
a_{n-1, v} \geq a_{n v}, \quad \text { for } \quad n \geq v+1, \tag{16}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{17}\\
\left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right) . \tag{18}
\end{gather*}
$$

Let $\left(X_{n}\right)$ be a positive monotonic non-decreasing sequence and $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If conditions (12)-(13) of Theorem 1 and

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{19}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 2, then we get Theorem 1. In this case, condition (19) reduces to condition (14), condition (18) reduces to condition (11). Also, the condition " $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence" and the conditions (15)-(17) are automatically satisfied. We require the following lemma for the proof of Theorem 2.
Lemma 1 ([3]). Under the conditions of Theorem 2, we have that

$$
\begin{gather*}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty, \tag{20}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{21}
\end{gather*}
$$

4. Proof of Theorem 2

Let $\left(I_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (9) and (10), we have

$$
\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v} .
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
& =\frac{n+1}{n} a_{n n} \lambda_{n} t_{n}+\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 2, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{22}
\end{equation*}
$$

First, by using Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Now, applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} a_{v v}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Now, using Hölder's inequality we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right) \\
& =O(1) \sum_{v=1}^{m}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(v\left|\Delta \lambda_{v}\right|\right)^{k-1}\left(v\left|\Delta \lambda_{v}\right|\right)\left|t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k}\left|t_{r}\right|^{k}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} a s X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =\infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Finally by using (18), as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 4}\right|^{k} & \leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{t_{v} \mid}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} a_{v v}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of Theorem 2 and Lemma 1.
This completes the proof of Theorem 2.

5. Conclusions

It should be noted that, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get a theorem dealing with $\left|A, p_{n}\right|_{k}$ summability. Also, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have a result dealing with $\varphi-\left|\bar{N}, p_{n}\right|_{k}$ summability. Furthermore, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get another result dealing with $\varphi-|C, 1|_{k}$ summability. When we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result for $|C, 1|_{k}$ summability. Finally, if we take $k=1$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get a result for $\left|\bar{N}, p_{n}\right|$ summability and in this case the condition " $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence" is not needed.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149.
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 10091012.
[3] H. Bor, On absolute summability factors, Proc. Amer. Math. Soc. 118 (1993), 71-75.
[4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
[5] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[6] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (11) (2003), 1547-1557.
[7] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III 14 (34) (1979), 87-97.
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
*CORRESPONDING AUTHOR: seyhan@erciyes.edu.tr

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.
 Key words and phrases. Riesz mean; summability factors; absolute matrix summability; infinite series, Hölder inequality; Minkowski inequality.

