ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY METHODS

HİKMET SEYHAN ÖZARSLAN*

ABSTRACT. In this paper, we prove a general theorem dealing with absolute matrix summability methods of infinite series. This theorem also includes some new and known results.

1. INTRODUCTION

Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

(1)
$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

The sequence-to-sequence transformation

(2)
$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (σ_n) of the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [5]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [1])

(3)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\sigma_n - \sigma_{n-1}\right|^k < \infty.$$

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

(4)
$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$

The series $\sum a_n$ is said to be summable $|A, p_n|_k, k \ge 1$, if (see [6])

(5)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\bar{\Delta}A_n(s)\right|^k < \infty,$$

where

$$\bar{\Delta}A_n(s) = A_n(s) - A_{n-1}(s).$$

Let (φ_n) be any sequence of positive real numbers. The series $\sum a_n$ is summable $\varphi - |A, p_n|_k, k \ge 1$, if

(6)
$$\sum_{n=1}^{\infty} \varphi_n^{k-1} |\bar{\Delta}A_n(s)|^k < \infty.$$

If we take $\varphi_n = \frac{P_n}{p_n}$, then $\varphi - |A, p_n|_k$ summability reduces to $|A, p_n|_k$ summability. If we set $\varphi_n = n$ for all $n, \varphi - |A, p_n|_k$ summability is the same as $|A|_k$ summability (see [7]). Also, if we take $\varphi_n = \frac{P_n}{p_n}$

C2016 Authors retain the copyrights of

²⁰¹⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.

Key words and phrases. Riesz mean; summability factors; absolute matrix summability; infinite series, Hölder inequality; Minkowski inequality.

their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

and $a_{nv} = \frac{p_v}{P_n}$, then we get $|\bar{N}, p_n|_k$ summability. If we take $\varphi_n = n$ and $a_{nv} = \frac{p_v}{P_n}$, then we get $|R, p_n|_k$ summability (see [2]). Furthermore, if we take $\varphi_n = n$, $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, then $\varphi - |A, p_n|_k$ summability reduces to $|C, 1|_k$ summability (see [4]).

Before stating the main theorem we must first introduce some further notations. Given a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

(7)
$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$

and

(8)
$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, .$$

It may be noted that \overline{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

(9)
$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \bar{a}_{nv} a_v$$

and

(10)
$$\bar{\Delta}A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v.$$

2. KNOWN RESULT

Bor [3] has proved the following theorem for $|\bar{N}, p_n|_k$ summability method. **Theorem 1.** Let (p_n) be a sequence of positive numbers such that

(11)
$$P_n = O(np_n) \quad as \quad n \to \infty.$$

If (X_n) is a positive monotonic non-decreasing sequence such that

(12)
$$|\lambda_m| X_m = O(1) \quad as \quad m \to \infty,$$

(13)
$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = O(1) \quad as \quad m \to \infty$$

and

(14)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \quad m \to \infty,$$

where

$$t_n = \frac{1}{n+1} \sum_{v=1}^n v a_v,$$

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

3. Main Result

The aim of this paper is to generalize Theorem 1 to $\varphi - |A, p_n|_k$ summability. Now we shall prove the following theorem.

Theorem 2. Let $A = (a_{nv})$ be a positive normal matrix such that

(15)
$$\bar{a}_{n0} = 1, \quad n = 0, 1, ...,$$

(16)
$$a_{n-1,v} \ge a_{nv}, \quad for \quad n \ge v+1,$$

(17)
$$a_{nn} = O\left(\frac{p_n}{P_n}\right),$$

(18)
$$|\hat{a}_{n,v+1}| = O\left(v \left| \Delta_v \hat{a}_{nv} \right| \right).$$

ÖZARSLAN

Let (X_n) be a positive monotonic non-decreasing sequence and $\left(\frac{\varphi_n p_n}{P_n}\right)$ be a non-increasing sequence. If conditions (12)-(13) of Theorem 1 and

(19)
$$\sum_{n=1}^{m} \varphi_n^{k-1} \left(\frac{p_n}{P_n}\right)^k |t_n|^k = O(X_m) \quad as \quad m \to \infty,$$

are satisfied, then the series $\sum a_n \lambda_n$ is summable $\varphi - |A, p_n|_k, k \ge 1$. It should be noted that if we take $\varphi_n = \frac{P_n}{p_n}$ and $a_{nv} = \frac{P_v}{P_n}$ in Theorem 2, then we get Theorem 1. In this case, condition (19) reduces to condition (14), condition (18) reduces to condition (11). Also, the condition " $\left(\frac{\varphi_n p_n}{P_n}\right)$ is a non-increasing sequence" and the conditions (15)-(17) are automatically satisfied. We require the following lemma for the proof of Theorem 2.

Lemma 1 ([3]). Under the conditions of Theorem 2, we have that

(20)
$$nX_n|\Delta\lambda_n| = O(1) \quad as \quad n \to \infty,$$

(21)
$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty.$$

4. Proof of Theorem 2

Let (I_n) denotes A-transform of the series $\sum a_n \lambda_n$. Then, by (9) and (10), we have

$$\bar{\Delta}I_n = \sum_{v=0}^n \hat{a}_{nv} a_v \lambda_v = \sum_{v=1}^n \frac{\hat{a}_{nv} \lambda_v}{v} v a_v.$$

Applying Abel's transformation to this sum, we get that

$$\bar{\Delta}I_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv}\lambda_v}{v}\right) \sum_{r=1}^v ra_r + \frac{\hat{a}_{nn}\lambda_n}{n} \sum_{r=1}^n ra_r$$

$$= \frac{n+1}{n} a_{nn}\lambda_n t_n + \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_v \left(\hat{a}_{nv}\right) \lambda_v t_v$$

$$+ \sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n,v+1} \Delta \lambda_v t_v + \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v+1} \frac{t_v}{v}$$

$$= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}.$$

To complete the proof of Theorem 2, by Minkowski's inequality, it is sufficient to show that

(22)
$$\sum_{n=1}^{\infty} \varphi_n^{k-1} \mid I_{n,r} \mid^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$

First, by using Abel's transformation, we have that

$$\begin{split} \sum_{n=1}^{m} \varphi_{n}^{k-1} |I_{n,1}|^{k} &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} a_{nn}^{k} |\lambda_{n}|^{k} |t_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left(\frac{p_{n}}{P_{n}}\right)^{k} |\lambda_{n}|^{k-1} |\lambda_{n}| |t_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left(\frac{p_{n}}{P_{n}}\right)^{k} |\lambda_{n}| |t_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_{n}| \sum_{v=1}^{n} \varphi_{v}^{k-1} \left(\frac{p_{v}}{P_{v}}\right)^{k} |t_{v}|^{k} + O(1) |\lambda_{m}| \sum_{n=1}^{m} \varphi_{n}^{k-1} \left(\frac{p_{n}}{P_{n}}\right)^{k} |t_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_{n}| X_{n} + O(1) |\lambda_{m}| X_{m} \\ &= O(1) \ as \ m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Now, applying Hölder's inequality with indices k and k', where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$, as in $I_{n,1}$, we have that

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,2}|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \, |\lambda_v| \, |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \, |\lambda_v|^k \, |t_v|^k \right) \times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \, |\lambda_v|^k \, |t_v|^k \right) \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^k |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^k |t_v|^k \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^{k-1} |\lambda_v| |t_v|^k a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} \varphi_v^{k-1} \left(\frac{p_v}{P_v} \right)^k |\lambda_v| \, |t_v|^k \\ &= O(1) \sum_{v=1}^{m} \varphi_v^{k-1} \left(\frac{p_v}{P_v} \right)^k |\lambda_v| \, |t_v|^k \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Now, using Hölder's inequality we have that

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,3}|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} v |\Delta_v(\hat{a}_{nv})| |\Delta \lambda_v| |t_v| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} (v |\Delta \lambda_v|)^k |t_v|^k |\Delta_v(\hat{a}_{nv})| \right) \times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} (v |\Delta \lambda_v|)^k |t_v|^k |\Delta_v(\hat{a}_{nv})| \right) \\ &= O(1) \sum_{v=1}^{m} (v |\Delta \lambda_v|)^k |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} (v |\Delta \lambda_v|)^{k-1} (v |\Delta \lambda_v|) |t_v|^k \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} \varphi_v^{k-1} \left(\frac{p_v}{P_v} \right)^k v |\Delta \lambda_v| |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v |\Delta \lambda_v|) \sum_{r=1}^{v} \varphi_r^{k-1} \left(\frac{p_r}{P_r} \right)^k |t_r|^k + O(1)m |\Delta \lambda_m| \sum_{v=1}^{m} \varphi_v^{k-1} \left(\frac{p_v}{P_v} \right)^k |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} v X_v |\Delta^2 \lambda_v| + O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1)m |\Delta \lambda_m| X_m \\ &= O(1) as m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 2 and Lemma 1. Finally by using (18), as in $I_{n,1}$, we have that

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,4}|^k &\leq \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|}{v} \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_{v+1}|^k |t_v|^k \right) \times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_{v+1}|^k |t_v|^k \right) \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_{v+1}|^k |t_v|^k \right) \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}|^{k-1} |\lambda_{v+1}| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \sum_{n=v+1}^{n-v+1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv} \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{vv}| \left(\frac{\varphi_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{v+1}| |t_v|^k \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k |a_{v+1}| |t_v|^k \\ &= O(1) \sum_{v=1}^{m} |A_v|^k |a_v|^k \\ &= O(1) \sum_{v=1}^{m} |A_v|^k |a_v|^k \\ &= O(1) \sum_{v=1}^{m} |A_v|^k |a_v|^k |a_v|^k |a_v|^k \\ &= O(1) \sum_{v=1}^{m} |A_v|^k |a_v|^k |a_v|^k |a_$$

by virtue of hypotheses of Theorem 2 and Lemma 1. This completes the proof of Theorem 2.

5. Conclusions

It should be noted that, if we take $\varphi_n = \frac{P_n}{p_n}$, then we get a theorem dealing with $|A, p_n|_k$ summability. Also, if we take $a_{nv} = \frac{p_v}{P_n}$, then we have a result dealing with $\varphi - |\bar{N}, p_n|_k$ summability. Furthermore, if we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, then we get another result dealing with $\varphi - |C, 1|_k$ summability. When we take $\varphi_n = n$, $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n, then we get a result for $|C, 1|_k$ summability. Finally, if we take k = 1 and $a_{nv} = \frac{p_v}{P_n}$, then we get a result for $|\bar{N}, p_n|$ summability and in this case the condition " $\left(\frac{\varphi_n p_n}{P_n}\right)$ is a non-increasing sequence" is not needed.

References

- [1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149.
- [2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 1009-1012.
- [3] H. Bor, On absolute summability factors, Proc. Amer. Math. Soc. 118 (1993), 71-75.
- [4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
- [5] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
- [6] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (11) (2003), 1547-1557.
- [7] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III 14 (34) (1979), 87-97.

DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, 38039 KAYSERI, TURKEY

*CORRESPONDING AUTHOR: seyhan@erciyes.edu.tr