SOME DISCUSSIONS ON A KIND OF IMPROPER INTEGRALS

FENG QI ${ }^{1,2,3, *}$ AND VIERA ČERŇANOVÁ ${ }^{4}$

Abstract. In the paper, the improper integral

$$
I(a, b ; \lambda, \eta)=\int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{\ln ^{\lambda} t}{t^{\eta}} \mathrm{d} t
$$

for $b>a>0$ and $\lambda, \eta \in \mathbb{R}$ is discussed, some explicit formulas for special cases of $I(a, b ; \lambda, \eta)$ are presented, and several identities of $I(a, b ; k, \eta)$ for $k \in \mathbb{N}$ are established.

1. Motivation

The motivation of this paper origins from investigating central Delanoy numbers in [11]. For proving the main result [11, Theorem 1.4], we need [11, Lemmas 2.4 and 2.5]. Lemma 2.4 in [11] states that, for $b>a$ and $z \in \mathbb{C} \backslash(-\infty,-a]$, the principal branch of the function $\frac{1}{\sqrt{(z+a)(z+b)}}$ can be represented as

$$
\begin{equation*}
\frac{1}{\sqrt{(z+a)(z+b)}}=\frac{1}{\pi} \int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{t+z} \mathrm{~d} t \tag{1.1}
\end{equation*}
$$

where \mathbb{C} denotes the complex plane. When taking $z=0$, the integral representation (1.1) becomes

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{t} \mathrm{~d} t=\frac{\pi}{\sqrt{a b}}, \quad b>a>0 \tag{1.2}
\end{equation*}
$$

Lemma 2.5 in [11] reads that the improper integral

$$
\int_{1 / \alpha}^{\alpha} \frac{1}{\sqrt{(t-1 / \alpha)(\alpha-t)}} \frac{\ln ^{2 k-1} t}{t^{\beta}} \mathrm{d} t \begin{cases}<0, & \beta>\frac{1}{2} \tag{1.3}\\ =0, & \beta=\frac{1}{2} \\ >0, & \beta<\frac{1}{2}\end{cases}
$$

for all $k \in \mathbb{N}$, where $\alpha>1$ and $\beta \in \mathbb{R}$.
Motivated by the above results, we naturally introduce the improper integral

$$
\begin{aligned}
I(a, b ; \lambda, \eta) & =\int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{\ln ^{\lambda} t}{t^{\eta}} \mathrm{d} t \\
& =\int_{0}^{1} \frac{1}{\sqrt{s(1-s)}} \frac{\ln ^{\lambda}[(b-a) s+a]}{[(b-a) s+a]^{\eta}} \mathrm{d} s
\end{aligned}
$$

for $b>a>0$ and $\lambda, \eta \in \mathbb{R}$ and consider a problem: how to compute the improper integral $I(a, b ; \lambda, \eta)$?

2. Explicit formulas for special cases of $I(a, b ; \lambda, \eta)$

In this section, we present several explicit formulas for special cases of the improper integral $I(a, b ; \lambda, \eta)$.

In the monograph [4], we do not find such a kind of integrals $I(a, b ; \lambda, \eta)$ for general $b>a>0$ and $\lambda, \eta \in \mathbb{R}$.

[^0]2.1. From (1.1) or (1.2), it follows that
\[

$$
\begin{equation*}
I(a, b ; 0,1)=\frac{\pi}{\sqrt{a b}}, \quad b>a>0 \tag{2.1}
\end{equation*}
$$

\]

2.2. From (1.3), it follows that

$$
I\left(a, \frac{1}{a} ; 2 k-1, \frac{1}{2}\right)=0, \quad 0<a<1, \quad k \in \mathbb{N} .
$$

2.3. It is straightforward by using Euler's substitution that

$$
I(a, b ; 0,0)=\int_{0}^{1} \frac{1}{\sqrt{s(1-s)}} \mathrm{d} s=\pi, \quad b>a>0
$$

2.4. When $\lambda=0, \eta \neq 0$, and $2 a>b>a>0$, we have

$$
\begin{aligned}
I(a, b ; 0, \eta) & =\frac{1}{a^{\eta}} \int_{0}^{1} \frac{[1+(b / a-1) s]^{-\eta}}{\sqrt{s(1-s)}} \mathrm{d} s \\
& =\frac{1}{a^{\eta}} \int_{0}^{1}(1-s)^{-1 / 2} \sum_{\ell=0}^{\infty}\langle-\eta\rangle_{\ell}\left(\frac{b}{a}-1\right)^{\ell} \frac{s^{\ell-1 / 2}}{\ell!} \mathrm{d} s \\
& =\frac{1}{a^{\eta}} \sum_{\ell=0}^{\infty} \frac{\langle-\eta\rangle_{\ell}}{\ell!}\left(\frac{b}{a}-1\right)^{\ell} \int_{0}^{1}(1-s)^{-1 / 2} s^{\ell-1 / 2} \mathrm{~d} s \\
& =\frac{1}{a^{\eta}} \sum_{\ell=0}^{\infty} \frac{\langle-\eta\rangle_{\ell}}{\ell!}\left(\frac{b}{a}-1\right)^{\ell} B\left(\frac{1}{2}, \ell+\frac{1}{2}\right) \\
& =\frac{1}{a^{\eta}} \sum_{\ell=0}^{\infty}(\eta)_{\ell} \frac{\Gamma(1 / 2) \Gamma(\ell+1 / 2)}{\Gamma(\ell+1)} \frac{1}{\ell!}\left(1-\frac{b}{a}\right)^{\ell} \\
& =\frac{\pi}{a^{\eta}} \sum_{\ell=0}^{\infty} \frac{(\eta)_{\ell}(1 / 2)_{\ell}}{(1)_{\ell}} \frac{1}{\ell!}\left(1-\frac{b}{a}\right)^{\ell} \\
& =\frac{\pi}{a^{\eta}}{ }_{2} F_{1}\left(\eta, \frac{1}{2} ; 1 ; 1-\frac{b}{a}\right),
\end{aligned}
$$

where

$$
\langle x\rangle_{n}=\prod_{k=0}^{n-1}(x-k)= \begin{cases}x(x-1) \cdots(x-n+1), & n \geq 1 \\ 1, & n=0\end{cases}
$$

and

$$
(x)_{\ell}=\prod_{k=0}^{\ell-1}(x+k)= \begin{cases}x(x+1)(x+2) \cdots(x+\ell-1), & \ell \geq 1 \\ 1, & \ell=0\end{cases}
$$

are respectively called the falling and rising factorials of $x \in \mathbb{R}$, the function $B(x, y)$ denotes the classical beta function, and ${ }_{2} F_{1}$ are the classical hypergeometric functions which are special cases of the generalized hypergeometric series

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

for complex numbers $a_{i} \in \mathbb{C}$ and $b_{i} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$ and for positive integers $p, q \in \mathbb{N}$. This result

$$
I(a, b ; 0, \eta)=\frac{\pi}{a^{\eta}}{ }_{2} F_{1}\left(\eta, \frac{1}{2} ; 1 ; 1-\frac{b}{a}\right), \quad \eta \neq 0, \quad 2 a>b>a>0
$$

can also be found in [3, p. xv, eq. (12)].
2.5. When $\lambda=k \in \mathbb{N}$ and $2 a>b>a>0$, the function $\ln ^{k}[(b-a) s+a]$ can be rewritten as

$$
\begin{aligned}
\ln ^{k}[(b-a) s+a] & =\left(\ln a+\ln \left[1+\left(\frac{b}{a}-1\right) s\right]\right)^{k} \\
& =\sum_{\ell=0}^{k}\binom{k}{\ell} \ln ^{k-\ell} a \ln ^{\ell}\left[1+\left(\frac{b}{a}-1\right) s\right] \\
& =\left(\ln ^{k} a\right) \sum_{\ell=0}^{k}\binom{k}{\ell} \frac{(-1)^{\ell}}{\ln ^{\ell} a}\left[\sum_{m=1}^{\infty} \frac{1}{m}\left(1-\frac{b}{a}\right)^{m} s^{m}\right]^{\ell} \\
& =\left(\ln ^{k} a\right) \sum_{\ell=0}^{k}\binom{k}{\ell} \frac{(-1)^{\ell}}{\ln ^{\ell} a} s^{\ell}\left[\sum_{m=0}^{\infty} \frac{1}{m+1}\left(1-\frac{b}{a}\right)^{m+1} s^{m}\right]^{\ell}
\end{aligned}
$$

When $0<a<b<1$ or $1<a<b<a^{2}$, if $\lambda \in \mathbb{R}$, then

$$
\begin{aligned}
\ln ^{\lambda}[(b-a) s+a] & =\left(\ln ^{\lambda} a\right)\left(1+\frac{\ln [1+(b / a-1) s]}{\ln a}\right)^{\lambda} \\
& =\left(\ln ^{\lambda} a\right) \sum_{\ell=0}^{\infty} \frac{\langle\lambda\rangle_{\ell}}{\ell!}\left(\frac{\ln [1+(b / a-1) s]}{\ln a}\right)^{\ell} \\
& =\left(\ln ^{\lambda} a\right) \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda\rangle_{\ell}}{\ell!\ln ^{\ell} a}\left[\sum_{m=1}^{\infty} \frac{1}{m}\left(1-\frac{b}{a}\right)^{m} s^{m}\right]^{\ell} \\
& =\left(\ln ^{\lambda} a\right) \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda\rangle_{\ell}}{\ell \ln ^{\ell} a} s^{\ell}\left[\sum_{m=0}^{\infty} \frac{1}{m+1}\left(1-\frac{b}{a}\right)^{m+1} s^{m}\right]^{\ell} .
\end{aligned}
$$

In $[4$, p. $18,0.314]$, it was stated that

$$
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)^{n}=\sum_{k=0}^{\infty} c_{n, k} x^{k}
$$

where $c_{n, 0}=a_{0}^{n}$ and

$$
c_{n, m}=\frac{1}{m a_{0}} \sum_{k=1}^{m}(k n-m+k) a_{k} c_{n, m-k}, \quad m \in \mathbb{N}
$$

Hence, it follows that

$$
\left[\sum_{m=0}^{\infty} \frac{1}{m+1}\left(1-\frac{b}{a}\right)^{m+1} s^{m}\right]^{\ell}=\sum_{m=0}^{\infty} c_{\ell, m} x^{m}
$$

where $c_{\ell, 0}=\left(1-\frac{b}{a}\right)^{\ell}$ and

$$
\begin{aligned}
c_{\ell, m} & =\frac{1}{m} \sum_{k=1}^{m} \frac{k \ell-m+k}{k+1}\left(1-\frac{b}{a}\right)^{k} c_{\ell, m-k} \\
& =\frac{1}{m}\left(1-\frac{b}{a}\right)^{m} \sum_{p=0}^{m-1} \frac{m \ell-(\ell+1) p}{m-p+1}\left(1-\frac{b}{a}\right)^{-p} c_{\ell, p}
\end{aligned}
$$

for $m \in \mathbb{N}$. Let $C_{\ell, m}=\left(1-\frac{b}{a}\right)^{-m} c_{\ell, m}$, the above recursive formula becomes

$$
\begin{equation*}
C_{\ell, m}=\frac{1}{m} \sum_{p=0}^{m-1} \frac{m \ell-p(\ell+1)}{m-p+1} C_{\ell, p} \tag{2.2}
\end{equation*}
$$

with $C_{\ell, 0}=c_{\ell, 0}$. Starting out from these points, it is much possible to find explicit formulas for computing the integral $I(a, b ; \lambda, \eta)$. For example, when $\lambda \neq 0$ and $\eta=1$,

$$
\begin{aligned}
& I(a, b ; \lambda, 1)= \frac{1}{(\lambda+1)(b-a)} \int_{0}^{1} \frac{1}{\sqrt{s(1-s)}} \frac{\mathrm{d} \ln ^{\lambda+1}[(b-a) s+a]}{\mathrm{d} s} \mathrm{~d} s \\
&= \frac{\ln ^{\lambda+1} a}{(\lambda+1)(b-a)} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda+1\rangle_{\ell}}{\ell!\ln ^{\ell} a} \\
&=\frac{\ln ^{\lambda+1} a}{(\lambda+1)(b-a)} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda+1\rangle_{\ell}}{\ell!\ln ^{\ell} a} \int_{0}^{1} \frac{1}{\sqrt{s(1-s)}} \frac{\mathrm{d}}{\mathrm{~d} s}\left[\sum_{m=0}^{\infty} \frac{1}{m}\left(1-\frac{b}{a}\right)^{m} s^{m}\right]^{\ell} \mathrm{d} s \\
&=\frac{\ln ^{\lambda+1} a}{(\lambda+1)(b-a)} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda+1\rangle_{\ell}}{\ell!\ln ^{\ell} a} \sum_{m=0}^{\infty}(m+1) c_{\ell, m+1}^{\infty} \int_{0}^{1}(1-s)^{-1 / 2} s^{m-1 / 2} s^{m} \mathrm{~d} s \\
&= \frac{\ln ^{\lambda+1} a}{(\lambda+1)(b-a)} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda+1\rangle_{\ell}}{\ell!\ln ^{\ell} a} \sum_{m=0}^{\infty}(m+1) c_{\ell, m+1} B\left(\frac{1}{2}, m+\frac{1}{2}\right) \\
&= \frac{\pi \ln ^{\lambda+1} a}{(\lambda+1)(b-a)} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}\langle\lambda+1\rangle_{\ell}}{\ell!\ln ^{\ell} a} \sum_{m=0}^{\infty}(m+1) c_{\ell, m+1} \frac{(1 / 2)_{m}}{(1)_{m}} .
\end{aligned}
$$

Hence, it would be important to derive a general formula for the recursive relation (2.2).
2.6. For $k \geq 0$, differentiating with respect to z on both sides of (1.1) gives

$$
\begin{equation*}
\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \frac{1}{\sqrt{(z+a)(z+b)}}=(-1)^{k} \frac{k!}{\pi} \int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{(t+z)^{k+1}} \mathrm{~d} t \tag{2.3}
\end{equation*}
$$

By the Faá di Bruno formula

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} f \circ h(t)=\sum_{k=0}^{n} f^{(k)}(h(t)) \mathrm{B}_{n, k}\left(h^{\prime}(t), h^{\prime \prime}(t), \ldots, h^{(n-k+1)}(t)\right), \quad n \geq 0
$$

in $[2$, p. 139 , Theorem C], where

$$
\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum_{\substack{1 \leq i \leq n, \ell_{i} \in \mathbb{N} \cup\{0\} \\ \sum_{i=1}^{n}=1 i \ell_{i}=n \\ \sum_{i=1}^{n} \ell_{i}=k}} \frac{n!}{\prod_{i=1}^{n-k+1} \ell_{i}!} \prod_{i=1}^{n-k+1}\left(\frac{x_{i}}{i!}\right)^{\ell_{i}}, \quad n \geq k \geq 0
$$

is called [2, p. 134, Theorem A] the Bell polynomials of the second kind, we obtain

$$
\begin{gathered}
\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \frac{1}{\sqrt{(z+a)(z+b)}}=\sum_{\ell=0}^{k}\left(\frac{1}{\sqrt{u}}\right)^{(\ell)} \mathrm{B}_{k, \ell}\left(u^{\prime}(z), u^{\prime \prime}(z), 0, \ldots, 0\right) \\
=\sum_{\ell=0}^{k}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{u^{\ell+1 / 2}} \mathrm{~B}_{k, \ell}(2 z+a+b, 2,0, \ldots, 0) \\
=\sum_{\ell=0}^{k}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{[(z+a)(z+b)]^{\ell+1 / 2}} \mathrm{~B}_{k, \ell}(2 z+a+b, 2,0, \ldots, 0) \\
\quad \rightarrow \sum_{\ell=0}^{k}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{(a b)^{\ell+1 / 2}} \mathrm{~B}_{k, \ell}(a+b, 2,0, \ldots, 0)
\end{gathered}
$$

as $z \rightarrow 0$, where $u=u(z)=(z+a)(z+b)$. Recall from [2, p. 135] that

$$
\begin{equation*}
\mathrm{B}_{n, k}\left(a b x_{1}, a b^{2} x_{2}, \ldots, a b^{n-k+1} x_{n-k+1}\right)=a^{k} b^{n} \mathrm{~B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right), \tag{2.4}
\end{equation*}
$$

where a and b are any complex numbers and $n \geq k \geq 0$. Recall from [5, Theoem 4.1], [17, Theorem 3.1], and [18, Lemma 2.5] that

$$
\begin{equation*}
\mathrm{B}_{n, k}(x, 1,0, \ldots, 0)=\frac{(n-k)!}{2^{n-k}}\binom{n}{k}\binom{k}{n-k} x^{2 k-n}, \quad n \geq k \geq 0 \tag{2.5}
\end{equation*}
$$

Accordingly, by (2.4) and (2.5), it follows that

$$
\begin{aligned}
\lim _{z \rightarrow 0} \frac{\mathrm{~d}^{k}}{\mathrm{~d} z^{k}} & \frac{1}{\sqrt{(z+a)(z+b)}}=\sum_{\ell=0}^{k}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{(a b)^{\ell+1 / 2}} 2^{\ell} \mathrm{B}_{k, \ell}\left(\frac{a+b}{2}, 1,0, \ldots, 0\right) \\
& =\sum_{\ell=0}^{k}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{(a b)^{\ell+1 / 2}} 2^{\ell} \frac{(k-\ell)!}{2^{k-\ell}}\binom{k}{\ell}\binom{\ell}{k-\ell}\left(\frac{a+b}{2}\right)^{2 \ell-k} .
\end{aligned}
$$

Letting $z \rightarrow 0$ on both sides of (2.3), employing the above result, and simplifying lead to

$$
\begin{aligned}
& \int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{t^{k+1}} \mathrm{~d} t \\
&=\frac{(-1)^{k} \pi}{(a+b)^{k} \sqrt{a b}} \sum_{\ell=0}^{k}(-1)^{\ell} 2^{2 \ell} \frac{(2 \ell-1)!!}{(2 \ell)!!}\binom{\ell}{k-\ell}\left(\frac{a+b}{2}\right)^{\ell}\left(\frac{1 / a+1 / b}{2}\right)^{\ell}
\end{aligned}
$$

that is,

$$
\begin{equation*}
I(a, b ; 0, k+1)=\frac{\pi}{G(a, b)} \frac{(-1)^{k}}{[2 A(a, b)]^{k}} \sum_{\ell=0}^{k}(-1)^{\ell} 2^{2 \ell} \frac{(2 \ell-1)!!}{(2 \ell)!!}\binom{\ell}{k-\ell}\left[\frac{A(a, b)}{H(a, b)}\right]^{\ell} \tag{2.6}
\end{equation*}
$$

for $b>a>0$ and $k \geq 0$, where $\binom{p}{q}=0$ for $q>p \geq 0$, the double factorial of negative odd integers $-(2 n+1)$ is defined by

$$
(-2 n-1)!!=\frac{(-1)^{n}}{(2 n-1)!!}=(-1)^{n} \frac{2^{n} n!}{(2 n)!}, \quad n=0,1, \ldots
$$

and the quantities

$$
A(a, b)=\frac{a+b}{2}, \quad G(a, b)=\sqrt{a b}, \quad \text { and } \quad H(a, b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}
$$

are respectively the well-known arithmetic, geometric, and harmonic means of two positive numbers a and b.

When $k=0$ in (2.6), the integral (1.2) or (2.1) is recovered.
In fact, the above argument implies that

$$
\begin{aligned}
& \int_{a}^{b} \frac{1}{\sqrt{(t-a)(b-t)}} \frac{1}{(t+z)^{k+1}} \mathrm{~d} t= \frac{(-1)^{k}}{[2 A(z+a, z+b)]^{k}} \frac{\pi}{G(z+a, z+b)} \\
& \quad \times \sum_{\ell=0}^{k}(-1)^{\ell} 2^{2 \ell} \frac{(2 \ell-1)!!}{(2 \ell)!}\binom{\ell}{k-\ell}\left[\frac{A(z+a, z+b)}{H(z+a, z+b)}\right]^{\ell}
\end{aligned}
$$

for $b>a>0$ and $k \geq 0$. This is equivalent to (2.6).
By the way, the ratio $\frac{(2 \ell-1)!!}{(2 \ell)!}$ is called the Wallis ratio. For more information, please refer to the paper [7] and plenty of references cited therein.

Alternatively differentiating with respect to z on both sides of (1.1) leads to

$$
\begin{aligned}
& \frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \frac{1}{\sqrt{(z+a)(z+b)}}=\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}}\left(\frac{1}{\sqrt{z+a}} \frac{1}{\sqrt{z+b}}\right) \\
& \quad=\sum_{\ell=0}^{k}\binom{k}{\ell}\left(\frac{1}{\sqrt{z+a}}\right)^{(\ell)}\left(\frac{1}{\sqrt{z+b}}\right)^{(k-\ell)}
\end{aligned}
$$

$$
\begin{gathered}
\quad=\sum_{\ell=0}^{k}\binom{k}{\ell}\left\langle-\frac{1}{2}\right\rangle_{\ell} \frac{1}{(z+a)^{\ell+1 / 2}}\left\langle-\frac{1}{2}\right\rangle_{k-\ell} \frac{1}{(z+b)^{k-\ell+1 / 2}} \\
=\sum_{\ell=0}^{k}\binom{k}{\ell}(-1)^{\ell} \frac{(2 \ell-1)!!}{2^{\ell}} \frac{1}{(z+a)^{\ell+1 / 2}}(-1)^{k-\ell} \frac{[2(k-\ell)-1]!!}{2^{k-\ell}} \frac{1}{(z+b)^{k-\ell+1 / 2}} \\
=\frac{(-1)^{k}}{2^{k}} \frac{1}{(z+a)^{1 / 2}} \frac{1}{(z+b)^{k+1 / 2}} \sum_{\ell=0}^{k}\binom{k}{\ell}(2 \ell-1)!![2(k-\ell)-1]!!\left(\frac{z+b}{z+a}\right)^{\ell} .
\end{gathered}
$$

Substituting this into (2.3) and taking the limit $z \rightarrow 0$ result in

$$
I(a, b ; 0, k+1)=\frac{\pi}{\sqrt{a b}} \frac{1}{b^{k}} \sum_{\ell=0}^{k} \frac{(2 \ell-1)!!}{(2 \ell)!!} \frac{[2(k-\ell)-1]!!}{[2(k-\ell)]!!}\left(\frac{b}{a}\right)^{\ell}
$$

for $b>a>0$ and $k \geq 0$. This is an alternative expression for $I(a, b ; 0, k+1)$.
2.7. Under different conditions from those discussed above on $b>a>0$ and $\lambda, \eta \in \mathbb{R}$, can one discover more explicit formulas for the improper integral $I(a, b ; \lambda, \eta)$?

3. Identities for $I(a, b ; k, \eta)$

In this section, we present several identities for the improper integral $I(a, b ; k, \eta)$.
3.1. Substituting $s=\frac{1}{t}$ into $I(a, b ; k, \eta)$ yields

$$
\begin{equation*}
I(a, b ; k, \eta)=\frac{(-1)^{k}}{\sqrt{a b}} I\left(\frac{1}{b}, \frac{1}{a} ; k, 1-\eta\right) \tag{3.1}
\end{equation*}
$$

for $k \geq 0, \eta \in \mathbb{R}$, and $a, b>0$ with $a \neq b$. In particular, it can be derived that

$$
I(a, b ; 0,1)=\frac{1}{\sqrt{a b}} I\left(\frac{1}{b}, \frac{1}{a} ; 0,0\right)
$$

and

$$
I\left(\frac{1}{b}, b ; k, \eta\right)=(-1)^{k} I\left(\frac{1}{b}, b ; k, 1-\eta\right) .
$$

3.2. Substituting $s=\frac{t}{a}$ into $I(a, b ; k, \eta)$ gives

$$
I(a, b ; k, \eta)=\frac{1}{a^{\eta}}\left[\left(\ln ^{k} a\right) I\left(1, \frac{b}{a} ; 0, \eta\right)+I\left(1, \frac{b}{a} ; k, \eta\right)\right]
$$

for $k \in \mathbb{N}, \eta \in \mathbb{R}$, and $a, b>0$ with $a \neq b$. In particular,

$$
\begin{equation*}
I(a, 1 ; k, \eta)=\frac{1}{a^{\eta}}\left[\left(\ln ^{k} a\right) I\left(1, \frac{1}{a} ; 0, \eta\right)+I\left(1, \frac{1}{a} ; k, \eta\right)\right] . \tag{3.2}
\end{equation*}
$$

3.3. From (3.1), it follows that

$$
\begin{equation*}
I(a, 1 ; k, \eta)=\frac{(-1)^{k}}{\sqrt{a}} I\left(1, \frac{1}{a} ; k, 1-\eta\right) \tag{3.3}
\end{equation*}
$$

Substituting (3.3) into (3.2) leads to

$$
I\left(1, \frac{1}{a} ; k, \eta\right)=\frac{(-1)^{k}}{a^{\eta-1 / 2}} I\left(1, \frac{1}{a} ; k, 1-\eta\right)-\left(\ln ^{k} a\right) I\left(1, \frac{1}{a} ; 0, \eta\right)
$$

for $1 \neq a>0, k \in \mathbb{N}$, and $\eta \in \mathbb{R}$. Consequently,

$$
I(1, b ; k, \eta)=\frac{(-1)^{k}}{b^{1 / 2-\eta}} I(1, b ; k, 1-\eta)+\left(\ln ^{k} b\right) I(1, b ; 0, \eta)
$$

for $1 \neq b>0, k \in \mathbb{N}$, and $\eta \in \mathbb{R}$.

4. Remarks

By the way, we list two remarks on (1.1) and integral representations of the weighted geometric means.

Remark 4.1. The integral representation (1.1) can be generalized as follows. For $a_{k}<a_{k+1}$ and $w_{k}>0$ with $\sum_{k=1}^{n} w_{k}=1$, the principal branch of the reciprocal of the weighted geometric mean $\prod_{k=1}^{n}\left(z+a_{k}\right)^{w_{k}}$ on $\mathbb{C} \backslash\left(-\infty,-a_{1}\right]$ can be represented by

$$
\frac{1}{\prod_{k=1}^{n}\left(z+a_{k}\right)^{w_{k}}}=\frac{1}{\pi} \sum_{m=1}^{n-1} \sin \left(\pi \sum_{\ell=1}^{m} w_{\ell}\right) \int_{a_{m}}^{a_{m+1}} \frac{1}{\prod_{k=1}^{n}\left|t-a_{k}\right|^{w_{k}}} \frac{1}{t+z} \mathrm{~d} t
$$

Remark 4.2. Before getting the integral representation (1.1), the following integral representation for the weight geometric mean $\prod_{k=1}^{n}\left(z+a_{k}\right)^{w_{k}}$ was obtained. Let $w_{k}>0$ and $\sum_{k=1}^{n} w_{k}=1$ for $1 \leq k \leq n$ and $n \geq 2$. If $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a positive and strictly increasing sequence, that is, $0<a_{1}<a_{2}<\cdots<a_{n}$, then the principal branch of the weighted geometric mean

$$
G_{w, n}(a+z)=\prod_{k=1}^{n}\left(a_{k}+z\right)^{w_{k}}, \quad z \in \mathbb{C} \backslash\left(-\infty,-a_{1}\right]
$$

has the Lévy-Khintchine expression

$$
\begin{equation*}
G_{w, n}(a+z)=G_{w, n}(a)+z+\int_{0}^{\infty} m_{a, w, n}(u)\left(1-e^{-z u}\right) \mathrm{d} u \tag{4.1}
\end{equation*}
$$

where the density

$$
m_{a, w, n}(u)=\frac{1}{\pi} \sum_{\ell=1}^{n-1} \sin \left(\pi \sum_{j=1}^{\ell} w_{j}\right) \int_{a_{\ell}}^{a_{\ell+1}} \prod_{k=1}^{n}\left|a_{k}-t\right|^{w_{k}} e^{-u t} \mathrm{~d} t
$$

For more detailed information, please refer to $[1,6,8,9,12,13,14,15,16]$ and closely-related references therein.

Remark 4.3. Letting $n=2$ and $w_{1}=w_{2}=\frac{1}{2}$ in (4.1) or setting $n=2$ in [14, Theorem 1.1] leads to

$$
\begin{aligned}
\sqrt{(z+a)(z+b)}=\sqrt{a b}+z+\frac{1}{\pi} & \int_{0}^{\infty}\left[\int_{a}^{b} \sqrt{(b-t)(t-a)} e^{-u t} \mathrm{~d} t\right]\left(1-e^{-z u}\right) \mathrm{d} u \\
& =\sqrt{a b}+z+\frac{1}{\pi} \int_{a}^{b} \sqrt{(b-t)(t-a)}\left[\int_{0}^{\infty} e^{-u t}\left(1-e^{-z u}\right) \mathrm{d} u\right] \mathrm{d} t \\
& =\sqrt{a b}+z+\frac{z}{\pi} \int_{a}^{b} \frac{\sqrt{(b-t)(t-a)}}{t} \frac{1}{t+z} \mathrm{~d} t
\end{aligned}
$$

that is,

$$
\int_{a}^{b} \frac{\sqrt{(b-t)(t-a)}}{t} \frac{1}{t+z} \mathrm{~d} t=\pi\left[\frac{\sqrt{(z+a)(z+b)}-\sqrt{a b}}{z}-1\right]
$$

for $b>a>0$. Taking the limit $z \rightarrow 0$ on both sides of (4.2) yields

$$
\begin{equation*}
\int_{a}^{b} \frac{\sqrt{(b-t)(t-a)}}{t^{2}} \mathrm{~d} t=\pi\left(\frac{a+b}{2 \sqrt{a b}}-1\right)=\pi\left[\frac{A(a, b)}{G(a, b)}-1\right], \quad b>a>0 \tag{4.2}
\end{equation*}
$$

For $k \in \mathbb{N}$, differentiating k times with respect to z procures

$$
\begin{gathered}
\frac{1}{\pi} \int_{a}^{b} \frac{\sqrt{(b-t)(t-a)}}{t} \frac{(-1)^{k} k!}{(t+z)^{k+1}} \mathrm{~d} t=\left[\frac{\sqrt{(z+a)(z+b)}-\sqrt{a b}}{z}\right]^{(k)} \\
=\sqrt{a b}\left[\frac{1}{z}\left(\sqrt{1+\frac{a+b}{a b} z+\frac{1}{a b} z^{2}}-1\right)\right]^{(k)}
\end{gathered}
$$

$$
\begin{aligned}
& =\sqrt{a b}\left[\frac{1}{z} \sum_{\ell=1}^{\infty}\left\langle\frac{1}{2}\right\rangle_{\ell} \frac{1}{\ell!}\left(\frac{a+b}{a b} z+\frac{1}{a b} z^{2}\right)^{\ell}\right]^{(k)}, \quad\left|\frac{a+b}{a b} z+\frac{1}{a b} z^{2}\right|<1 \\
& =\sqrt{a b} \sum_{\ell=1}^{\infty}(-1)^{\ell-1} \frac{(2 \ell-3)!!}{2^{\ell}} \frac{1}{\ell!} \frac{1}{(a b)^{\ell}}\left[z^{\ell-1}(a+b+z)^{\ell}\right]^{(k)} \\
& =\sqrt{a b} \sum_{\ell=1}^{\infty}(-1)^{\ell-1} \frac{(2 \ell-3)!!}{2^{\ell}} \frac{1}{\ell!} \frac{1}{(a b)^{\ell}} \sum_{q=0}^{k}\binom{k}{q}\left(z^{\ell-1}\right)^{(q)}\left[(a+b+z)^{\ell}\right]^{(k-q)} \\
& \rightarrow \sqrt{a b} \sum_{\ell=1}^{k+1}(-1)^{\ell-1} \frac{(2 \ell-3)!!}{2^{\ell}} \frac{1}{\ell!} \frac{1}{(a b)^{\ell}}\binom{k}{\ell-1}(\ell-1)!\lim _{z \rightarrow 0}\left[(a+b+z)^{\ell}\right]^{(k-\ell+1)} \\
& =\sqrt{a b} \sum_{\ell=1}^{k+1}(-1)^{\ell-1} \frac{(2 \ell-3)!!}{2^{\ell}} \frac{1}{\ell} \frac{1}{(a b)^{\ell}}\binom{k}{\ell-1}\langle\ell\rangle_{k-\ell+1}(a+b)^{2 \ell-k-1} \\
& =\frac{1}{(a+b)^{k-1} \sqrt{a b}} \sum_{\ell=0}^{k}(-1)^{\ell} \frac{(2 \ell-1)!!}{2^{\ell+1}} \frac{1}{\ell+1}\binom{k}{\ell}\langle\ell+1\rangle_{k-\ell} \frac{(a+b)^{2 \ell}}{(a b)^{\ell}} \\
& =\frac{1}{(a+b)^{k-1} \sqrt{a b}} \sum_{\ell=0}^{k}(-1)^{\ell} \frac{(2 \ell-1)!!}{2^{\ell+1}} \frac{1}{\ell+1}\binom{k}{\ell} \frac{(\ell+1)!}{(2 \ell-k+1)!} \frac{(a+b)^{2 \ell}}{(a b)^{\ell}} \\
& =\frac{k!}{(a+b)^{k-1} \sqrt{a b}} \sum_{\ell=0}^{k}(-1)^{\ell} \frac{(2 \ell-1)!!}{[2(\ell+1)]!!}\binom{\ell+1}{k-\ell} \frac{(a+b)^{2 \ell}}{(a b)^{\ell}}
\end{aligned}
$$

as $z \rightarrow 0$. As a result, we have

$$
\int_{a}^{b} \frac{\sqrt{(b-t)(t-a)}}{t^{k+2}} \mathrm{~d} t=\pi \frac{(-1)^{k}}{(a+b)^{k}} \sum_{\ell=0}^{k}(-1)^{\ell} \frac{(2 \ell-1)!!}{[2(\ell+1)]!!}\binom{\ell+1}{k-\ell}\left(\frac{a+b}{\sqrt{a b}}\right)^{2 \ell+1}
$$

for $b>a>0$ and $k \in \mathbb{N}$.
Remark 4.4. This paper is a slightly modified version of the preprint [10].

References

[1] Á. Besenyei, On complete monotonicity of some functions related to means, Math. Inequal. Appl. 16 (2013), no. 1, 233-239.
[2] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, With a foreword by Richard Askey, Second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015.
[5] B.-N. Guo and F. Qi, Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/2.1.3794.8808.
[6] B.-N. Guo and F. Qi, On the degree of the weighted geometric mean as a complete Bernstein function, Afr. Mat. 26 (2015), no. 7, 1253-1262.
[7] B.-N. Guo and F. Qi, On the Wallis formula, Internat. J. Anal. Appl. 8 (2015), no. 1, 30-38.
[8] F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number Theory 133 (2013), no. 7, 2307-2319.
[9] F. Qi and S.-X. Chen, Complete monotonicity of the logarithmic mean, Math. Inequal. Appl. 10 (2007), no. 4, 799-804.
[10] F. Qi and V. Čerňanová, Some discussions on a kind of improper integrals, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.2500.6969.
[11] F. Qi, B.-N. Guo, V. Čerňanová, and X.-T. Shi, Explicit expressions, Cauchy products, integral representations, convexity, and inequalities of central Delannoy numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.4889.6886.
[12] F. Qi, X.-J. Zhang, and W.-H. Li, An elementary proof of the weighted geometric mean being a Bernstein function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 1, 35-38.
[13] F. Qi, X.-J. Zhang, and W.-H. Li, An integral representation for the weighted geometric mean and its applications, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 1, 61-68.
[14] F. Qi, X.-J. Zhang, and W.-H. Li, Lévy-Khintchine representation of the geometric mean of many positive numbers and applications, Math. Inequal. Appl. 17 (2014), no. 2, 719-729.
[15] F. Qi, X.-J. Zhang, and W.-H. Li, Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean, Mediterr. J. Math. 11 (2014), no. 2, 315-327.
[16] F. Qi, X.-J. Zhang, and W.-H. Li, The harmonic and geometric means are Bernstein functions, Bol. Soc. Mat. Mex. (3) 22 (2016), in press; Available online at http://dx.doi.org/10.1007/s40590-016-0085-y.
[17] F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput. 258 (2015), 597-607.
[18] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015 (2015), Art. ID 219.
${ }^{1}$ Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
${ }^{2}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
${ }^{3}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
${ }^{4}$ Institute of Computer Science and Mathematics, Slovak University of Technology, Bratislava, Slovak Republic

* Corresponding author: qifeng618@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 40C10; Secondary 26A39, 26A42, 33C05, 33C20, 33E05, 33E20, 40A10, 97I50.

 Key words and phrases. improper integral; explicit formula; identity; hypergeometric function; generalized hypergeometric series.

