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APPROXIMATION THEOREMS FOR q− ANALOUGE OF A LINEAR POSITIVE

OPERATOR BY A. LUPAS

KARUNESH KUMAR SINGH1, ASHA RAM GAIROLA2 AND DEEPMALA3,∗

Abstract. The purpose of the present paper is to introduce q− analouge of a sequence of linear

and positive operators which was introduced by A. Lupas [1]. First, we estimate moments of the

operators and then prove a basic convergence theorem. Next, a local direct approximation theorem
is established. Further, we study the rate of convergence and point-wise estimate using the Lipschitz

type maximal function.

1. Introduction

At the International Dortmund Meeting held in Written (Germany, March, 1995), A. Lupas [1]
introduced the following Linear positive operators:

(1) Ln(f ;x) = (1− a)nx
∞∑
k=0

(nx)k
k!

akf

(
k

n

)
, x ≥ 0.

with f : [0,∞] → R. If we impose that Lne1 = e1 we find that a = 1/2. Therefore operator (1)
becomes

Ln(f ;x) = 2−nx
∞∑
k=0

(nx)k
2kk!

f

(
k

n

)
, x ≥ 0,

where

(α)0 = 1, (α)k = α(α+ 1)...(α+ k − 1), k ≥ 1.

The q− analouge of the above operators is defined as:

Ln,q(f ;x) = 2−[n]qx
∞∑
k=0

([n]qx)k
2k[k]q!

f

(
[k]q
[n]q

)
, x ≥ 0,

We denote CB [0,∞) the space of real valued bounded continuous function f on the interval [0,∞),
the norm on the space is defined as

‖f‖ = sup
0≤x<∞

|f(x)|.

Let W 2 = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)}. The Peetre’s K− functional is defined as

K2(f, δ) = inf
g∈W 2

{‖f − g‖+ δ‖g′′‖},

where δ > 0.
For f ∈ CB [0,∞) a usual modulus of continuity is given by

ω(f, δ) = sup
0<h≤δ

sup
0≤x<∞

|f(x+ h)− f(x))|.

The second order modulus of smoothness is given by

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
0≤x<∞

|f(x+ 2h)− 2f(x+ h) + f(x))|.
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By [[3], p.177, Theorem 2.4] there exists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ).

In recent years, many results about the generalization of linear positive operators have been obtained
by several mathematicians ([6]-[17]).

2. Moment estimates

Lemma 1. The following relations hold:

Ln,q(1;x) = 1, Ln,q(t;x) = x and Ln,q(t
2;x) = qx2 +

1 + q

[n]
x.

Proof. We have

Ln,q(1;x) = 2−[n]qx
∞∑
k=0

([n]qx)k
2k[k]q!

= 1

Now,

Ln,q(t;x) = 2−[n]qx
∞∑
k=0

([n]qx)k
2k[k]q!

[k]q
[n]q

= 2−[n]qx
∞∑
k=0

([n]qx)k
2k[k − 1]q![n]q

=
2−[n]qx−1

[n]q

∞∑
k=1

[n]qx([n]qx+ 1)k−1
2k−1[k − 1]q!

= 2−[n]qx−1x

∞∑
k=1

([n]qx+ 1)k−1
2k−1[k − 1]q!

= 2−[n]qx−1x

∞∑
k=0

([n]qx+ 1)k
2k[k]q!

= x.

Next,

Ln,q(t
2;x) = 2−[n]qx

∞∑
k=0

([n]qx)k
2k[k]q!

[k]2q
[n]2q

= 2−[n]qx
∞∑
k=0

[n]qx([n]qx+ 1)k−1
2k[k]q[k − 1]q!

[k]2q
[n]2q

= 2−[n]qx−1x

∞∑
k=1

([n]qx+ 1)k−1
2k−1[k − 1]q!

[k]q
[n]q

=
2−[n]qx−1x

[n]q

∞∑
k=1

([n]qx+ 1)k−1[k]q
2k−1[k − 1]q!

=
2−[n]qx−1x

[n]q

∞∑
k=0

([n]qx+ 1)k[k + 1]q
2k[k]q!

=
2−[n]qx−1x

[n]q

∞∑
k=0

([n]qx+ 1)k(1 + q[k]q)

2k[k]q!

=
2−[n]qx−1x

[n]q

∞∑
k=0

([n]qx+ 1)k
2k[k]q!

+
2−[n]qx−1x

[n]q

∞∑
k=0

([n]qx+ 1)kq[k]q
2k[k]q!

= I1 + I2, say.
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We find that I1 = x
[n]q

.

Now,

I2 =
2−[n]qx−1x

[n]q

∞∑
k=0

([n]qx+ 1)kq[k]q
2k[k]q!

=
2−[n]qx−2qx

[n]q

∞∑
k=1

([n]qx+ 1)([n]qx+ 2)k−1
2k−1[k − 1]q!

=
2−[n]qx−2qx([n]qx+ 1)

[n]q

∞∑
k=1

([n]qx+ 2)k−1
2k−1[k − 1]q!

=
2−[n]qx−2qx([n]qx+ 1)

[n]q

∞∑
k=0

([n]qx+ 2)k
2k[k]q!

=
qx([n]qx+ 1)

[n]q
.

Hence, on combining I1 and I2, we get

Ln,q(t
2;x) =

(1 + q)x

[n]q
+ qx2.

�

Let us define mth order moment by ψn,m(q;x) = Ln,q((t− x)m;x).

Lemma 2. Let 0 < q < 1, then for x ∈ [0,∞) we have

ψn,1(q;x) = 0 and ψn,2(q;x) =
x([2]− (1− q)[n]qx)

[n]q
.

Proof. We have

ψn,1(q;x) = Ln,q(t− x;x) = 0.

Now,

ψn,2(q;x) = Ln,q((t− x)2;x)

= Ln,q(t
2 + x2 − 2tx;x)

=
(1 + q)x

[n]q
+ (q − 1)x2.

�

3. Basic Pointwise Convergence

The operators Ln,q do not satisfy the conditions of the Bohman-Korovkin theorem in case 0 < q < 1.
To make this theorem applicable, we can choose a sequence (qn) in place of the number q such that
qn → 1 and qnn → 0 as n→∞. With this modification we obtain the following Korovkin type result:

Theorem 1. Let f ∈ CB [0,∞) and qn be a real sequence in (0, 1) such that qn → 1 and qnn → 0 as
n→∞. Then, for each x ∈ [0,∞) we have

lim
n→∞

Ln,qn(f ;x) = f(x).

Proof. The proof is based on the well known Korovkin theorem regarding the convergence of a sequence
of linear positive operators. So, it is enough to prove the conditions

lim
n→∞

Ln,qn(tm;x) = xm,m = 0, 1, 2.

Now, using Lemma 1 we obtain

lim
n→∞

Ln,qn(1;x) = 1,

lim
n→∞

Ln,qn(t;x) = x
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and

lim
n→∞

Ln,qn(t;x) = lim
n→∞

qnx
2 +

1 + qn
[n]qn

x

= x2.

This completes the proof. �

4. Direct results

Theorem 2. Let f ∈ CB [0,∞) and q ∈ (0, 1). Then, for each x ∈ [0,∞) and n ∈ N there exists an
absolute constant C > 0 such that

|Ln,q(f ;x)− f(x)| 6 Cω2

(
f,

√
x([2]− (1− q)[n]qx)

[n]q

)
.

Proof. Let g ∈W 2 and x, t ∈ [0,∞). Using Taylor’s expansion we can write

g(t) = g(x) + g′(x)(t− x) +

t∫
x

(t− v)g′′(v)dv.

On application of Lemma 2 we obtain

Ln,q
(
g(t);x)− g(x)

)
= Ln,q

 t∫
x

(t− v)g′′(v)dv;x

 .

Now, we have

∣∣∣∣ t∫
x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖. Therefore

|Ln,q(g(t);x)− g(x)| ≤ Ln,q
(
(t− x)2;x

)
‖g′′‖ =

x([2]− (1− q)[n]qx)

[n]q
‖g′′‖.

By Lemma 1, we have

|Ln,q(f ;x)| ≤ 2−[n]qx
∞∑
k=0

([n]qx)k
2k[k]q!

∣∣∣∣f ( [k]q
[n]q

)∣∣∣∣ ≤ ‖f‖.
Thus

|Ln,q(f ;x)− f(x)| ≤ |Ln,q(f − g;x)− (f − g)(x)|+ |Ln,q(g;x)− g(x)|

≤ 2‖f − g‖+
x([2]−(1−q)[n]qx)

[n]q
‖g′′‖.

At last, taking the infimum over all g ∈W 2 and on application of the inequalityK2(f, δ) ≤ Cω2(f, δ1/2), δ >
0, we get the required result. This completes the proof of the theorem.

�

5. Pointwise Estimates

In this section, we obtain some pointwise estimates of the rate of convergence of the q− Baskakov-
Durrmeyer operators. First, we discuss the relationship between the local smoothness of f and the
local approximation.

Theorem 3. Let 0 < α ≤ 1 and E be any bounded subset of the interval [0,∞). If f ∈ CB [0,∞) ∩
LipM (α) then we have

|Ln,q(f ;x)− f(x)| ≤M{ψ
α
2
n,2(q;x) + 2(d(x,E))α}, x ∈ [0,∞),

where M is a constant depending on α and f , d(x,E) is the distance between x and E defined as
d(x,E) = inf{|t− x|; t ∈ E} and ψn,2(q;x) = Ln,q((t− x)2;x) .
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Proof. From the property of infimum, it follows that there exists a point t0 ∈ Ē such that d(x,E) =
|t0 − x|.

In view of the triangle inequality we have

|f(t)− f(x)| ≤ |f(t)− f(t0)|+ |f(t0)− f(x)|.

Using the definition of LipM (α), we get

|Ln,q(f ;x)− f(x)| ≤ Ln,q(|f(t)− f(t0)|;x) + Ln,q(|f(x)− f(t0)|;x)

≤ M{Ln,q(|t− t0|α;x) + |x− t0|α}
≤ M{Ln,q(|t− x|α;x) + 2|x− t0|α}.

Choosing p1 = 2
α and p2 = 2

2−α , we get 1
p1

+ 1
p2

= 1. Then, Hölder’s inequality yields

|Ln,q(f ;x)− f(x)| ≤ M{(Ln,q(|t− x|αp1 ;x))1/p1 [Ln,q(1
p2 ;x)]1/p2 + 2(d(x,E))α}

≤ M{(Ln,q((t− x)2;x))α/2 + 2(d(x,E))α}

= M{ψα/2n,2 (q;x) + 2(d(x,E))α}.

This completes the proof of the theorem. �

Next, we obtain a local direct estimate of operators Ln,q using the Lipschitz-type maximal function
of order α introduced by Lenze [2] as

(2) ω̃α(f, x) = sup
t 6=x,t∈[0,∞)

|f(t)− f(x)|
|t− x|α

, x ∈ [0,∞) andα ∈ (0, 1].

Theorem 4. Let 0 < α ≤ 1 and f ∈ CB [0,∞), then for all x ∈ [0,∞) we have

|Ln,q(f ;x)− f(x)| ≤ ω̃α(f, x)ψ
α/2
n,2 (q;x).

Proof. In view of (2), we get

|f(t)− f(x)| ≤ ω̃α(f, x)|t− x|α

and hence

|Ln,q(f ;x)− f(x)| ≤ Ln,q(|f(t)− f(x)|;x) ≤ ω̃α(f, x)Ln,q(|t− x|α;x).

Now, using the Hölder’s inequality with p = 2
α and 1

q = 1− 1
p , we obtain

|Ln,q(f ;x)− f(x)| ≤ ω̃α(f, x)(Ln,q(|t− x|2;x))α/2 = ω̃α(f, x)ψ
α/2
n,2 (x).

Thus, the proof is completed.
�

6. Weighted Approximation

In this section, we discuss about the weighted approximation theorem for the operators Ln,q(f).

Let C∗x2 [0,∞) be the subspace of all functions f ∈ Cx2 [0,∞) for which limx→∞
|f(x)|
1+x2 is finite.

Theorem 5. Let qn be a sequence in (0, 1) such that qn → 1 and qnn → 0, as n → ∞. For each
C∗x2 [0,∞), we have

(3) lim
n→∞

‖Ln,qn(f)− f‖x2 = 0.
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Proof. In order to proof (3) it is sufficient to show that ([5])

(4) lim
n→∞

‖Ln,qn(tν ;x)− xν‖x2 = 0, ν = 0, 1, 2.

Since, Ln,qn(1;x) = 1, (4) holds true for ν = 0.
Now, by Lemma 1, we have

‖Ln,qn(t;x)− x‖x2 = sup
x∈[0,∞)

|Ln,qn(t;x)− x|
1 + x2

→ 0, as n→∞.
Therefore, (4) is true for ν = 1.

Again, by Lemma 1, we may write

‖Ln,qn(t2;x)− x2‖x2 = sup
x∈[0,∞)

|Ln,qn(t2;x)− x2|
1 + x2

= sup
x∈[0,∞)

∣∣∣ (1+qn)x+qn[n]qnx2

[n]qn
− x2

∣∣∣
1 + x2

≤ 1 + qn
[n]qn

sup
x∈[0,∞)

x

1 + x2

+ (qn − 1) sup
x∈[0,∞)

x2

1 + x2

=
1 + qn
[n]qn

+ (qn − 1).

Hence, (4) follows for ν = 2. This completes the proof of the theorem. �

Theorem 6. Let f ∈ Cx2 [0,∞), q = qn ∈ (0, 1) such that qn → 1 and qnn → 0 as n → ∞ and ωa+1be
its modulus of continuity on the finite interval [0, a+ 1] ⊂ [0,∞), a > 0. Then, for every n ≥ 1

‖Ln,q(f)− f‖C[0,a] ≤
12Mf (1+a

2)a
[n]q

+ 2ωa+1

(
f,
√

2a
[n]q

)
.

Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤ Mf (2 + x2 + t2)

≤ Mf (2 + 3x2 + 2(t− x)2)

≤ 3Mf (1 + x2 + (t− x)2)

≤ 6Mf (1 + x2)(t− x)2

≤ 6Mf (1 + a2)(t− x)2.(5)

For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ),(6)

where δ > 0.
From (5) and (6), we can write

|f(t)− f(x)| ≤ 6Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ)(7)

For x ∈ [0, a] and t ≥ 0 and applying Schwarz inequality, we obtain

|Ln,q(f ;x)− f(x)| ≤ Ln,q(|f(t)− f(x)|;x)

≤ 6Mf (1 + a2)Ln,q((t− x)2;x)

+ ωa+1(f, δ)

(
1 +

1

δ
Ln,q((t− x)2;x)

1
2

)
.
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Hence, using Lemma 2, for every q ∈ (0, 1) and x ∈ [0, a]

|Ln,q(f ;x)− f(x)| ≤ 6Mf (1 + a2)
x([2]− (1− q)[n]qx)

[n]q

+ Cωa+1(f, δ)

(
1 +

1

δ

√
x([2]− (1− q)[n]qx)

[n]q

≤ 12Mf (1 + a2)a

[n]q

+ ωa+1(f, δ)

(
1 +

1

δ

√
2a

[n]q

)
.

Taking δ =
√

2a
[n]q

, we get the required result.

This completes the proof of Theorem. �

Now, we prove a theorem to approximate all functions in Cx2 [0,∞). Such type of results are given
in [4] for locally integrable functions.

Theorem 7. Let q = qn ∈ (0, 1) such that qn → 1 and qnn → 0, as n → ∞. For each f ∈ C∗x2 [0,∞),
and α > 1, we have

lim
n→∞

sup
x∈[0,∞)

|Ln,qn(f ;x)− f(x)|
(1 + x2)α

= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|Ln,qn(f ;x)− f(x)|
(1 + x2)α

≤ sup
x≤x0

|Ln,qn(f ;x)− f(x)|
(1 + x2)α

+ sup
x>x0

|Ln,qn(f ;x)− f(x)|
(1 + x2)α

≤ ‖Ln,qn(f)− f‖C[0,x0] + ‖f‖x2 sup
x≥x0

|Ln,qn(1 + t2;x)|
(1 + x2)α

(8)

+ sup
x≥x0

|f(x)|
(1 + x2)α

.

Since, |f(x)| ≤Mf (1 + x2), we have

sup
x≥x0

|f(x)|
(1 + x2)α

≤ sup
x≥x0

Mf

(1 + x2)α−1
≤ Mf

(1 + x20)α−1
.

Let ε > 0 be arbitrary. We can choose x0 to be large that

(9)
Mf

(1 + x20)α−1
<
ε

3

and in view of Lemma 1, we obtain

‖f‖x2 lim
n→∞

|Ln,qn(1 + t2;x)|
(1 + x2)α

=
1 + x2

(1 + x2)α
‖f‖x2

=
‖f‖x2

(1 + x2)α−1

≤ ‖f‖x2

(1 + x20)α−1

<
ε

3
.(10)

Using Theorem 6 we can see that the first term of the inequality (8) implies that

(11) ‖Ln,qn(f ; .)− f‖C[0,x0] <
ε

3
, as n→∞.

Combining (8)-(11), we get the desired result.
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