ON THE GROWTH AND APPROXIMATION OF TRANSCENDENTAL ENTIRE FUNCTIONS ON ALGEBRAIC VARIETIES

DEVENDRA KUMAR*

Abstract

Let X be a complete intersection algebraic variety of codimension $m>1$ in \mathbb{C}^{m+n}. In this paper we characterized the classical growth parameters order and type for transcendental entire functions $f \in \oplus(X)$, the space of holomorphic functions on the complete intersection algebraic variety X, in terms of the best polynomial approximation error in L^{p}-norm, $0<p \leq \infty$, on a L - regular non-pluripolar compact subset K of \mathbb{C}^{m+n}.

1. Introduction

The growth of transcendental entire functions in one complex variable case is well represented in the work of B.Ja Levin [11] and Boas [2]. In several complex variables the standard reference is the work of P.Lelong and L.Gruman [10] and Ronkin's book [14]. Einstein-Matthews and Kasana [3] studied the growth parameters (p, q) - order and (p, q) - type introduced by Juneja et al.([6],[7]) of transcendental entire functions $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$. Einstein-Matthews and Clement Lutterodt [4] extended the results studied in [3] to transcendental entire functions $f: X \rightarrow \mathbb{C}$, defined on a complete intersection algebraic variety X in \mathbb{C}^{m+n} of codimension $m>1$, and obtained the growth parameters in terms of the sequence of extremal polynomials occurring in the development of f. It has been noticed that the growth parameters of $f: X \rightarrow \mathbb{C}$ in terms of approximation errors is not studied so far. The aim of this paper is to bridge this gap and to study the results obtained in [4] in terms of the best approximation errors in L^{p}-norm, $0<p \leq \infty$.
A.R. Reddy ([13],[14]) characterized the growth parameters in terms of approximation errors for a function continuous on $[-1,1]$. T. Winiarski ([21],[22]) studied the growth of entire functions in terms of Lagrange polynomial approximation errors with respect to sup norm on a compact subset K (positive capacity) of \mathbb{C} and $\mathbb{C}^{n}, n>1$. Kasana and Kumar [8] generalized the results of Winiarski [22] by using the concept of index-pair (p, q). Adam Janik [5] characterized the generalized order of entire functions by means of polynomial approximation and interpolation on compact subsets of \mathbb{C}^{n}, using the Siciak extremal function ([18],[19]). In [5] Adam Janik extended the results of S.M. Shah [17] in the case $n=1, K=[-1,1]$ and Winiarski [22]. Srivastava and Kumar [20] extended and improved the results of Adam Janik [5]. But our work is different from all these authors.

The text has been divided into four parts. Section 1 consists of an introductory exposition of the topic and Section 2 contains some definitions and notations. In Section 3, we have given Zeriahi's Bernstein-Markov type inequality with two lemmas in which first one is due to Zeriahi extending the classical Cauchy inequality and second is concerned with a sequence of extremal polynomials. Finally, in Section 4, we prove two theorems for a transcendental entire function $f \in \oplus\left(\mathbb{C}^{m+n}\right)$, the space of holomorphic functions on the complete intersection algebraic variety X and studied the growth parameters order and type in terms of L^{p}-approximation error on a L-regular non-pluripolar compact subset of \mathbb{C}^{m+n}.

[^0]
2. Definitions and Notations

Following the definition of Einstein and Kasana [3], we have
Let $v: \mathbb{C}^{m+n} \rightarrow \mathbb{R}_{+}:=r \in \mathbb{R}: r>0$ be a real-valued function such that the following properties hold:
(i) $v(z+w) \leq v(z)+v(w): z, w \in \mathbb{C}^{m+n}$,
(ii) $v(b z)=|b| v(z): z \in \mathbb{C}^{m+n}, b \in \mathbb{C}$,
(iii) $v(z)=0 \Longleftrightarrow z=0$.

Here v is a norm on \mathbb{C}^{m+n} and it exhausts the complex space \mathbb{C}^{m+n} by a family of sublevel sets $\left\{\Omega_{c}\right\}_{c \geq 1}$ which are defined by

$$
\Omega_{c}=\left\{z \in \mathbb{C}^{m+n}: v(z) \leq c, c \in \mathbb{R}\right\}
$$

Let $\varphi: \mathbb{C}^{m+n} \rightarrow \mathbb{R}_{+}$. Define $M_{\varphi, v}(r)=\sup _{v(z) \leq r} \varphi(z)$, the maximum modulus of φ with respect to the norm v for each $r \in \mathbb{R}_{+}$. We say that the transcendental entire function $f: \mathbb{C}^{m+n} \rightarrow \mathbb{C}$ is of order ρ, if $\log |f|$ is of order ρ, where

$$
\begin{equation*}
\rho=\limsup _{r \rightarrow \infty} \frac{\log M_{f, v}(r)}{\log r} \tag{2.1}
\end{equation*}
$$

If $\rho<+\infty, f$ is said to have maximal, normal or minimal type if

$$
\begin{equation*}
\sigma=\limsup _{r \rightarrow \infty} \frac{M_{f, v}(r)}{r^{\rho}} \tag{2.2}
\end{equation*}
$$

is infinite, finite or zero.
Let K be a compact subset of \mathbb{C}^{m+n}, which is nonpluripolar on each irreducible component of a complete intersection variety X. The Siciak extremal function V_{K} associated to K has been studied extensibly by Siciak [18] and Sadullaev ([15],[16]) and is defined as:

$$
V_{K}=\sup \{u(z): u \in \curlywedge(X) ; u(\zeta) \leq 0, \zeta \in K, z \in X\}
$$

where the subcone $\curlywedge(X)$ is given by

$$
\curlywedge(X)=\left\{u(z): u \in P S H(X) ; u(z) \leq \log (\|z\|+1)+C_{u}, z \in X\right\}
$$

here C_{u} is a constant depending only on the cone of plurisubharmonic function $(P S H) u$ and $\|$.$\| is$ the Euclidean norm on \mathbb{C}^{m+n}.
The upper semi-continuous regularization of V_{K} is defined on X by

$$
V_{K}^{*}(z)=\limsup _{\zeta \rightarrow z} V_{K}(\zeta), \zeta \in K, z \in X
$$

$V_{K}^{*}(z)$ is $P S H(X)$ and satisfies

$$
V_{K}^{*}(z) \leq \log (\|z\|+1)+O(1), \text { as }\|z\| \rightarrow+\infty
$$

If V_{K} is continuous on \mathbb{C}^{m+n}, then $V_{K}=V_{K}^{*} \in 人$. It is given in [18] that if, for all $z \in K, V_{K}$ is continuous, then V_{K} is continuous on X. In this case we say that K is L-regular in X. We define the sublevel sets of the extremal function V_{K} by setting

$$
\Omega_{\alpha}=\left\{z \in X: V_{K}(z) \leq \alpha\right\}, \alpha>1, \alpha \in \mathbb{R}
$$

and sublevel sets of the upper semi-continuous regularization V_{K}^{*} of V_{K} by

$$
\Omega_{r}=\left\{z \in \mathbb{C}^{m+n}: \exp V_{K}^{*}(z) \leq r\right\}, r>1
$$

It has been observe that the sequence of sublevel sets $\left\{\Omega_{r}\right\}_{r>1}$ exhausts the complex space \mathbb{C}^{m+n}. For $f: \mathbb{C}^{m+n} \rightarrow \mathbb{C}$ a transcendental entire function, set

$$
M_{K, f}(r)=\sup _{z \in \bar{\Omega}_{r}}|f(z)|, r>1
$$

It can be easily shown that $\log ^{+} M_{K, f}(r)$ and $\log ^{+} M_{K, v}(r)$ give the same order given by

$$
\begin{equation*}
\rho \equiv \rho(f)=\limsup _{r \rightarrow \infty} \frac{\log \log ^{+} M_{K, f}(r)}{\log r} \tag{2.3}
\end{equation*}
$$

If $0<\rho<+\infty$, the type of $f: \mathbb{C}^{m+n} \rightarrow \mathbb{C}$ is defined by

$$
\begin{equation*}
\sigma \equiv \sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{+} M_{K, f}(r)}{r^{\rho}} \tag{2.4}
\end{equation*}
$$

Zeriahi [23] constructed an orthogonal polynomial basis $\left\{A_{k}\right\}_{k \geq 1}$ for the space $\oplus(X)$. The basis is orthogonal in the Hilbert space $L^{2}(X, \mu)$, essentially by means of the Hilbert-Schmidt process, here μ be the extremal capacity measure on K given by $\mu=\left(d d^{c} V_{K}\right.$. Further details on this positive Borel measure μ supported on K can be obtained from the paper of E. Bedford and B.A. Taylor [1].

Let $P_{d}\left(\mathbb{C}^{m+n}\right)$ denote the \mathbb{C}-vector space of polynomials $\pi_{d}: \mathbb{C}^{m+n} \rightarrow \mathbb{C}$ of degree $\leq d$ for $d \geq 1$. Let $L_{P}^{2}(K, \mu)$ denote the closed subspace of the Hilbert space $L^{2}(K, \mu)$ generated by the restriction to K of polynomials $\pi_{d} \in P_{d}\left(\mathbb{C}^{m+n}\right)$ of degree $\left(\pi_{d}\right) \leq d$, for $d \geq 1$. Then every function $f \in L_{P}^{2}(K, \mu)$ has a power series expansion of the form

$$
\begin{equation*}
f=\Sigma_{k \geq 1} f_{k} A_{k} \tag{2.5}
\end{equation*}
$$

with

$$
f_{k}=\frac{1}{\Delta_{k}^{2}(K)} \int_{K} f \cdot \bar{A}_{k} d \mu, \Delta_{k}(K)=\left(\int_{K}\left|A_{k}\right|^{2} d \mu\right)^{\frac{1}{2}}, k \geq 1
$$

here . is the dot product of vectors.
Let $L^{p}(K, \mu), p \geq 1$ denote the class of all functions such that

$$
\|f\|_{L^{p}(K, \mu)}=\left(\int_{K}|f|^{p} d \mu\right)^{\frac{1}{p}}<\infty
$$

then we define the best polynomial approximation error in L^{p}-norm, $p \geq 1$, by

$$
\begin{equation*}
E_{d}^{p}(K, f)=\inf \left\{\left\|f-\pi_{d}\right\|_{L^{p}(K, \mu)}, \pi_{d} \in P_{d}\left(\mathbb{C}^{m+n}\right)\right\} \tag{2.6}
\end{equation*}
$$

If the extremal function V_{K} associated with K is continuous for every $z \in K$, then V_{K} is continuous on X and L-regular, so instead of defining sublevel sets for the upper semi-continuous regularization, we define the same for V_{K} by setting

$$
\Omega_{r}=\left\{z \in X: V_{K}(z)<\log r, r \in \mathbb{R}, r>1\right\}
$$

Then we have

$$
V_{K}(z) \geq \frac{1}{s_{k}} \log \left(\frac{\left|A_{k}\right|}{a_{k}(K)}\right)
$$

where

$$
a_{k}(K)=\max _{z \in K}\left|A_{k}(z)\right|,\left|A_{k}\right|_{\bar{\Omega}_{r}} \leq a_{k}(K) r^{s_{k}}, s_{k}=\operatorname{degree}\left(A_{k}\right)
$$

Following the Siciak [18] we observe that if K is L-regular then

$$
\limsup _{d \rightarrow \infty}\left(E_{d}^{p}(K, f)\right)^{\frac{1}{d}}=\frac{1}{R}<1
$$

if and only if f has an analytic continuous to

$$
\left\{z \in \mathbb{C}^{m+n} ; V_{K}(z)<\log \left(\frac{1}{R}\right)\right\}
$$

3. Auxiliary Results

In this section we shall state some preliminary results which will be used in the sequel.
First we state Zeriahi's Bernstein-Markov type inequality [23]:
BM:For all $\epsilon>0$, there exists a constant $C_{\epsilon}>0$ such that

$$
\begin{equation*}
\sup _{z \in K}|f(z)| \leq C_{\epsilon}(1+\epsilon)^{\operatorname{deg}(f)}\left(\int_{K}|f|^{2} d \mu\right)^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

for every holomorphic function f with polynomial growth on the complete intersection algebraic variety X and K is a nonpluripolar compact subset of X.
Now we state the following lemmas of Zeriahi extending the classical Cauchy inequality.

Lemma 3.1. Let $f=\Sigma_{k \geq 0} f_{k} A_{k}$ be a holomorphic function on X. Then for every $\theta>1$, there exist an integer N_{θ} and a constant $C_{\theta}>0$ such that

$$
\begin{equation*}
\left|f_{k}\right| r^{s_{k}} \Delta_{k}(K) \leq C_{\theta} \frac{(r+1)^{N_{\theta}}}{(r-1)^{2 n-1}}\left|f_{k}\right|_{\bar{\Omega}_{r \theta}} \tag{3.2}
\end{equation*}
$$

for every $r>1, k \geq 1$, where C_{θ} and N_{θ} are independent of r, k and f.
Lemma 3.2. If K is an L-regular, then the sequence of extremal polynomials $\left\{A_{k}\right\}_{k \geq 1}$ satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{\left|A_{k}(z)\right|}{\nu_{k}}\right)^{\frac{1}{s_{k}}}=\exp \left(V_{K}(z)\right), \nu_{k}=\left\|A_{k}\right\|_{L^{2}(K, \mu)} \tag{3.3}
\end{equation*}
$$

for every $z \in \mathbb{C}^{m+n}$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{\left|A_{k}(z)\right|}{\nu_{k}}\right)^{\frac{1}{s_{k}}}=1 \tag{3.4}
\end{equation*}
$$

4. Main Results

In this section we shall prove our main theorems. Moreover, we shall characterize the classical growth parameters order and types of transcendental entire function in terms of L^{p}-approximation error defined by (2.6).

Theorem 4.1.If $f: X \rightarrow \mathbb{C}$ is a transcendental entire function on X with a series expansion (2.5) with respect to the orthogonal polynomial basis $\left\{A_{k}\right\}_{k \geq 1}$, then $f \in L^{p}(K, \mu), 1<p \leq \infty$ is of finite order if and only if

$$
\begin{equation*}
\rho=\limsup _{k \rightarrow \infty} \frac{s_{k} \log s_{k}}{-\log \left(E_{s_{k}}^{p}(K, f)\right)}<+\infty \tag{4.1}
\end{equation*}
$$

and $\rho=\rho_{1}$, where $E_{s_{k}}^{p}(K, f)$ is defined by (2.6).
Proof. First we have to prove that $\rho \leq \rho_{1}$. If $\rho_{1}=\infty$, then nothing to be prove. Assume that $\rho_{1}<\infty$ and let $\epsilon>0$. For a sufficiently large k , from (4.1) we have

$$
0 \leq \frac{s_{k} \log s_{k}}{-\log \left(E_{s_{k}}^{p}(K, f)\right)} \leq \rho_{1}+\epsilon
$$

or

$$
\begin{equation*}
E_{s_{k}}^{p}(K, f) \leq\left(s_{k}\right)^{\frac{-s_{k}}{\rho_{1}+\epsilon}} . \tag{4.2}
\end{equation*}
$$

Since adding a polynomial will not change the order of a function. Thus, for $r \geq 1$ and $a_{0}(K)=0$, we can assume that following inequality holds for every $k \geq 0$,

$$
\begin{equation*}
M_{K, f}(r) \leq \Sigma_{k \geq 1}\left|f_{k}\right| a_{k}(K) r^{s_{k}} \tag{4.3}
\end{equation*}
$$

Now we will proceed the proof in two steps $(p \geq 2)$ and $(1<p<2)$. Let $f=\Sigma_{k \geq 0} f_{k}$. A_{k} be an element of $L^{p}(K, \mu)$.

Step 1. If $f \in L^{p}(K, \mu)$ with $p \geq 2$, then $f=\sum_{k=0}^{\infty} f_{k} . A_{k}$ with convergence in $L^{2}(K, \mu)$,

$$
f_{k}=\frac{1}{\nu_{k}^{2}} \int_{K} f \cdot \bar{A}_{k} d \mu, k \geq 1, \nu_{k} \equiv \Delta_{k}(K)
$$

or

$$
=\frac{1}{\nu_{k}^{2}} \int_{K}\left(f-P_{s_{k}-1}\right) \cdot \bar{A}_{k} d \mu
$$

It gives

$$
\left|f_{k}\right| \leq \frac{1}{\nu_{k}^{2}} \int_{K}\left|\left(f-P_{s_{k}-1}\right)\right| \cdot\left|\bar{A}_{k}\right| d \mu
$$

now using Bernstein - Walsh inequality and Hölder's inequality we have for any $\epsilon>0$

$$
\begin{equation*}
\left|f_{k}\right| \nu_{k} \leq C_{\epsilon}(1+\epsilon)^{s_{k}} E_{s_{k}-1}^{p}(K, f), k \geq 0 \tag{4.4}
\end{equation*}
$$

Step 2. If $1 \leq p<2$, let p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ then $p^{\prime} \geq 2$. By Hölder's inequality we get

$$
\left|f_{k}\right| \nu_{k}^{2} \leq\left\|f-P_{s_{k}-1}\right\|_{L^{p}(K, \mu)}\left\|A_{k}\right\|_{L^{p^{\prime}}(K, \mu)}
$$

But $\left\|A_{k}\right\|_{L^{p^{\prime}}(K, \mu)} \leq C\left\|A_{k}\right\|_{K}=C a_{k}(K)$, now by Bernstein - Markov inequality we have

$$
\left|f_{k}\right| \nu_{k}^{2} \leq C C_{\epsilon}(1+\epsilon)^{s_{k}}\left\|f-P_{s_{k}-1}\right\|_{L^{p}(K, \mu)}
$$

it gives

$$
\begin{equation*}
\left|f_{k}\right| \nu_{k}^{2} \leq C_{\epsilon}^{\prime}(1+\epsilon)^{s_{k}} E_{s_{k}}^{p}(K, f) \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5), we get for $p \geq 1$

$$
\begin{equation*}
\left|f_{k}\right| \nu_{k} \leq A_{\epsilon}(1+\epsilon)^{s_{k}} E_{s_{k}}^{p}(K, f) \tag{4.6}
\end{equation*}
$$

where A_{ϵ} is a constant depends only on ϵ.
Now using Zeriahi'sBernstein - Markov type inequality in (4.3) and (4.6), we obtain

$$
M_{K, f}(r) \leq \Sigma_{k \geq 0}\left|f_{k}\right| C_{\epsilon}(1+\epsilon)^{s_{k}} \nu_{k} r^{s_{k}} \leq \Sigma_{k \geq 0} A_{\epsilon} C_{\epsilon}(1+\epsilon)^{2 s_{k}} E_{s_{k}}^{p}(K, f) r^{s_{k}}
$$

using inequality (4.2) in above, we get

$$
M_{K, f}(r) \leq C_{\epsilon}^{\prime} \Sigma_{k \geq 0}(1+\epsilon)^{2 s_{k}}\left(s_{k}\right)^{\frac{-s_{k}}{\rho_{1}+\epsilon}} r^{s_{k}}=\Sigma_{1}+\Sigma_{2}
$$

where

$$
\Sigma_{1}=\Sigma_{1 \leq k \leq\left(2 r(1+\epsilon)^{2}\right)^{\left(\rho_{1}+\epsilon\right)}}(1+\epsilon)^{2 s_{k}}\left(s_{k}\right)^{\frac{-s_{k}}{\left(\rho_{1}+\epsilon\right)}} r^{s_{k}}
$$

and

$$
\Sigma_{1}=\Sigma_{k \geq\left(2 r(1+\epsilon)^{2}\right)^{\left(\rho_{1}+\epsilon\right)}}(1+\epsilon)^{2 s_{k}}\left(s_{k}\right)^{\frac{-s_{k}}{\left(\rho_{1}+\epsilon\right)}} r^{s_{k}}
$$

In Σ_{2}, we have $\left(r(1+\epsilon)^{2} k\right)^{\frac{-1}{\left(\rho_{1}+\epsilon\right)}} \leq \frac{1}{2}$, so that $\Sigma_{2} \leq 1$, and

$$
\Sigma_{1} \leq(F(r, \epsilon))^{\left(\rho_{1}+\epsilon\right)} \Sigma_{k \geq 1}\left(s_{k}\right)^{\frac{-s_{k}}{\left(\rho_{1}+\epsilon\right)}}
$$

where $F(r, \epsilon)=\left(r(1+\epsilon)^{2}\right)^{\left(2 r(1+\epsilon)^{2}\right)}$
or

$$
\Sigma_{1} \leq K_{1} \exp \left(\left(2 r(1+\epsilon)^{2}\right)^{\left(\rho_{1}+\epsilon\right)} \log \left(r(1+\epsilon)^{2}\right)\right) \leq K_{2} \exp \left(r^{\left(\rho_{1}+\epsilon\right)}\right)
$$

for some constants $K_{1}>0, K_{2}>0$. Hence it follows from definition of order given by (2.3) that $\rho \leq \rho_{1}+\epsilon$, since $\epsilon>0$ is arbitrary, it gives

$$
\begin{equation*}
\rho \leq \rho_{1} \tag{4.7}
\end{equation*}
$$

In order to prove the reverse inequality i.e., $\rho_{1} \leq \rho$ we consider the polynomial of degree s_{k} as

$$
P_{s_{k}}(z)=\Sigma_{j=0}^{k} f_{j} A_{j}
$$

then

$$
\begin{equation*}
E_{s_{k}-1}^{p}(K, f) \leq \Sigma_{s_{j}=s_{k}}^{\infty}\left|f_{j}\right|\left\|A_{j}\right\|_{L^{p}(K, \mu)} \leq C_{0} \Sigma_{s_{j}=s_{k}+1}^{\infty}\left|f_{j}\right|\left\|A_{j}\right\|_{K}, k \geq 0, p \geq 1 \tag{4.8}
\end{equation*}
$$

In the consequences of Lemmas 3.1 and 3.2 , we obtain the following inequality

$$
\begin{equation*}
\left|f_{k}\right| a_{k}(K) \leq \frac{M_{K, f}(r)}{r^{s_{k}}}, r>0 \tag{4.9}
\end{equation*}
$$

Using (4.9)in (4.8), we get

$$
\begin{equation*}
E_{s_{k}-1}^{p}(K, f) \leq C_{0} \Sigma_{s_{j}=s_{k}+1}^{\infty} M_{K, f}(r) r^{-s_{j}}=C_{0} M_{K, f}(r) \frac{\left.\left(r^{*} / r\right)^{\left(s_{k}+1\right.}\right)}{1-\left(r^{*} / r\right)} \tag{4.10}
\end{equation*}
$$

for all sufficiently large s_{k} and all $r>r^{*}, r^{*}>1$. Here C_{0} is some fixed number.
For all sufficiently large s_{k} and $r>2 r^{*}$, (4.10) gives

$$
\begin{equation*}
E_{s_{k}-1}^{p}(K, f) \leq \gamma M_{K, f}(r)\left(r^{*} / r\right)^{s_{k}} \tag{4.11}
\end{equation*}
$$

where γ is a constant independent of s_{k} and r.
If $\rho_{1}=0$, then nothing to be prove. Let us assume that $0<\rho_{1}<\infty$. If $\rho_{1}<\infty$, define $\rho^{*}=\rho_{1}-\epsilon$, for small $\epsilon>0$, so that $\rho_{1}>0$. Let $\rho^{*}>0$ be arbitrary if $\rho_{1}=+\infty$. Then for infinitely many indices $k \geq 1$, from (4.1) we have

$$
s_{k} \log s_{k} \geq \rho^{*} \log \left(E_{s_{k}}^{p}(K, f)\right)^{-1}
$$

or

$$
\begin{equation*}
\log E_{s_{k}}^{p}(K, f) \geq \frac{-s_{k} \log s_{k}}{\rho^{*}} \tag{4.12}
\end{equation*}
$$

Using (4.12) in (4.11) we get

$$
\begin{equation*}
\log M_{K, f}(r) \geq \frac{-s_{k} \log s_{k}}{\rho^{*}}+s_{k} \log \left(\frac{r}{r^{*}}\right)-\log \gamma \tag{4.13}
\end{equation*}
$$

The minimum value of right hand side of (4.13) is obtained at $\frac{r_{s_{k}}}{r^{*}}=\left(e s_{k}\right)^{\frac{1}{\rho^{*}}}$ and substituting the value of $\left(\frac{r_{s_{k}}}{r^{*}}\right)$ in (4.13) we obtain the following inequality

$$
\log M_{K, f}(r) \geq \frac{s_{k}}{\rho^{*}}-\log \gamma
$$

or

$$
\frac{\log \log M_{K, f}\left(r_{s_{k}}\right)}{\log r_{s_{k}}-\log r^{*}} \geq \rho^{*}\left(\frac{\log s_{k}-\log \rho^{*}}{\log s_{k}+1}\right)
$$

Proceeding the limits and taking the definition (2.3) into account, we get

$$
\begin{equation*}
\rho=\limsup _{r \rightarrow \infty} \frac{\log \log M_{K, f}(r)}{\log r} \geq \limsup _{r \rightarrow \infty} \frac{\log \log M_{K, f}\left(r_{s_{k}}\right)}{\log r_{s_{k}}} \geq \rho^{*} \tag{4.14}
\end{equation*}
$$

Since ρ^{*} is arbitrary real number, smaller than ρ, it gives that $\rho \geq \rho_{1}$. Now in view of (4.7) the result is immediate. Hence the proof is completed.
Theorem 4.2 If $f: X \rightarrow \mathbb{C}$ is a transcendental entire function on X with a series expansion (2.5) with respect to the orthogonal polynomial basis $\left\{A_{k}\right\}_{k \geq 1}$, then $f \in L^{p}(K, \mu)$ with a finite order $\rho(0<\rho<\infty)$ has finite type $\sigma(0<\sigma<\infty)$ if and only if

$$
e \rho \sigma=\limsup _{k \rightarrow \infty} s_{k}\left(E_{s_{k}}^{p}(K, f)\right)^{\frac{\rho}{s_{k}}}<+\infty
$$

and $\sigma_{1}=\sigma$, where $E_{s_{k}}^{p}(K, f)$ is given by (2.6).
Proof. Let $\delta_{1}=e \rho \sigma_{1}$. For given $\epsilon>0$ and $\delta_{1}>0$, we have for sufficiently large k

$$
\begin{equation*}
s_{k}\left(E_{s_{k}}^{p}(K, f)\right)^{\frac{\rho}{s_{k}}} \leq \delta_{1}+\epsilon \tag{4.15}
\end{equation*}
$$

or

$$
\frac{s_{k} \log s_{k}}{-\log \left(E_{s_{k}}^{p}(K, f)\right)} \leq \frac{\rho}{1-\log \left(\frac{\delta_{1}+\epsilon}{s_{k}}\right)}
$$

Now it follows from Theorem 4.1 that the order of f is at most ρ.
Now let us consider that $0<\delta_{1}<\infty$ and we have to show that $\sigma \leq \frac{\delta_{1}}{e \rho}=\sigma_{1}$. From (4.15) we get

$$
\begin{equation*}
E_{s_{k}}^{p}(K, f) \leq\left(\frac{\delta_{1}+\epsilon}{s_{k}}\right)^{\frac{s_{k}}{\rho}} . \tag{4.16}
\end{equation*}
$$

Consider

$$
\begin{equation*}
|f(z)| \leq \Sigma_{k \geq 1}\left|f_{k}\right|\left|A_{k}\right|_{\Omega_{r}} \leq \Sigma_{k \geq 1}\left|f_{k}\right| a_{k}(K) r^{s_{k}} \tag{4.17}
\end{equation*}
$$

Further we will proceed the proof by considering two cases:

Case 1. Let $p \geq 2$, then we have $f=\Sigma_{k \geq 0} f_{k} A k$ because $f \in L^{2}(K, \mu), L^{p}(K, \mu) \subset L^{2}(K, \mu)$ and $\left\{A_{k}\right\}_{k}$ is a basis of $L^{2}(K, \mu)$. Consider the series $\Sigma_{k \geq 0} f_{k} A k$ in \mathbb{C}^{m+n} and it can be easily seen that this series converges uniformly on every compact subsets of \mathbb{C}^{m+n} to an entire function. Using the Bernstein - Markov inequality (BM) in (4.17) we get

$$
|f(z)| \leq C_{\epsilon} \Sigma_{k \geq 1}\left|f_{k}\right|(1+\epsilon)^{s_{k}} \nu_{k} r^{s_{k}}
$$

it gives from (4.6) that

$$
|f(z)| \leq C_{\epsilon} \Sigma_{k \geq 1}\left|f_{k}\right|(1+\epsilon)^{2 s_{k}} E_{s_{k}}^{p}(K, f) r^{s_{k}}
$$

Now in view of (4.16) we have

$$
|f(z)| \leq C_{\epsilon}^{\prime} \Sigma_{k \geq 1}\left((1+\epsilon)^{2 \rho}\left(\frac{\delta_{1}+\epsilon}{s_{k}}\right) r^{\rho}\right)^{\frac{s_{k}}{\rho}}=C_{\epsilon}^{\prime} \Sigma_{1}+\Sigma_{2}
$$

Let us assume the function

$$
\phi(s)=\left(\left(r(1+\epsilon)^{2}\right)^{\rho}\left(\frac{\delta_{1}+\epsilon}{s}\right)\right)^{\frac{s}{\rho}}, s>0
$$

This function attains its maximum value at

$$
s=\left(\frac{\delta_{1}+\epsilon}{e}\right)\left(r(1+\epsilon)^{2}\right)^{\rho}
$$

and the value is equal to $\exp \left(\left(\frac{\delta_{1}+\epsilon}{e \rho}\right)\left(r(1+\epsilon)^{2}\right)^{\rho}\right)$. Hence for any constant $K_{1}>0$,

$$
\begin{aligned}
& C_{\epsilon}^{\prime} \Sigma_{1}=C_{\epsilon}^{\prime} \Sigma_{1 \leq k \leq 2\left(\delta_{1}+\epsilon\right)(1+\epsilon)^{2 \rho} r^{\rho}}\left(\left(\frac{\delta_{1}+\epsilon}{s_{k}}\right)(1+\epsilon)^{2 \rho} r^{\rho}\right)^{\frac{s_{k}}{\rho}} \\
& \leq 2\left(\delta_{1}+\epsilon\right)(1+\epsilon)^{2 \rho} r^{\rho} \exp \left(\left(\frac{\delta_{1}+\epsilon}{e \rho}\right)\left(r(1+\epsilon)^{2}\right)^{\rho}\right) \\
& \leq K_{1} \exp \left(\left(\frac{\delta_{1}+\epsilon}{e \rho}\right)\left(r(1+\epsilon)^{2}\right)^{\rho}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{\epsilon}^{\prime} \Sigma_{2}=C_{\epsilon}^{\prime} \Sigma_{k>2\left(\delta_{1}+\epsilon\right)(1+\epsilon)^{2 \rho} r^{\rho}}\left(\left(\frac{\delta_{1}+\epsilon}{s_{k}}\right)(1+\epsilon)^{2 \rho} r^{\rho}\right)^{\frac{s_{k}}{\rho}} \\
& \leq C_{\epsilon}^{\prime} \Sigma_{k \geq 1} \frac{1}{2^{k}}=K_{2}<\infty
\end{aligned}
$$

Thus from above discussion we get $\sigma \leq \frac{\delta_{1}}{e \rho}$.
Case 2. For the case $1 \leq p<2$ and $f \in L^{p}(K, \mu)$ by (BM) inequality and Hölder's inequality we get again the inequality (4.6). Now proceeding on the lines of proof of Case 1 , the result is immediate.

In order to prove the reverse inequality, we note that if $\delta_{1}>\epsilon>0$, then for infinitely many indices k

$$
\begin{equation*}
E_{s_{k}}^{p}(K, f) \geq\left(\frac{\delta_{1}-\epsilon}{s_{k}}\right)^{\frac{s_{k}}{\rho}} \tag{4.18}
\end{equation*}
$$

Now using (4.18) in (4.11) we obtain

$$
\log M_{K, f}\left(r_{s_{k}}\right) \geq \frac{s_{k}}{\rho} \log \left(\frac{\delta_{1}-\epsilon}{s_{k}}\right)+s_{k} \log \left(r_{s_{k}} / r^{*}\right)-\log \gamma
$$

The minimum value of right hand side is attains at $\frac{r_{s_{k}}}{r^{*}}=\frac{e s_{k}}{\left(\delta_{1}-\epsilon\right)}$. Thus we get

$$
M_{K, f}\left(r_{s_{k}}\right) \geq e^{\frac{s_{k}}{\rho}}=\exp \left(\left(\frac{\delta_{1}-\epsilon}{e \rho}\right) r_{s_{k}}^{\rho}\right)+O(1)
$$

Proceeding to limits and using the definition (2.4) of type of $f \in L^{p}(K, \mu)$, we get

$$
\sigma \geq \frac{\delta_{1}}{e \rho}
$$

This completes the proof of theorem.
Remark 4.3. Theorem 4.1 and 4.2 also holds for $(0<p<1)$ (see[9]).

References

[1] E. Bedford and B.A. Taylor, The complex equilibrium measure of a symmetric convex set in \mathbb{R}^{n}, Trans. Amer. Math. Soc. 294(1986), 705-717.
[2] R.P. Boas, Entire Functions, Academic Press, New York, 1954.
[3] S.M.Einstein-Matthews and H.S. Kasana, Proximate order and type of entire functions of several complex variables, Israel Journal of Mathematics 92(1995), 273-284.
[4] S.M. Einstein-Matthews and Clement H. Lutterodt, Growth of transcendental entire functions on algebraic varieties, Israel Journal of Mathematics 109(1999), 253-271.
[5] Adam Janik, On approximation of entire functions and generalized order,Univ. Iagel. Acta. Math. 24(1984), 321-326.
[6] O.P. Juneja, G.P. Kapoor and S.K. Bajpai, On the (p, q)-order and lower (p, q)-order of an entire function, J. Reine Angew. Math. 282(1976), 53-67.
[7] O.P. Juneja, G.P. Kapoor and S.K. Bajpai, On the (p, q)-type and lower (p, q)-type of an entire function, J. Reine Angew. Math. 290(1977), 180-190 .
[8] H.S. Kasana and D. Kumar, On approximation and interpolation of entire functions with index-pair (p, q), Publicacions Matematique 38 (1994), No. 4, 681-689.
[9] D. Kumar, Generalized growth and best approximation of entire functions in L_{p}-norm in several complex variables, Annali dell' Universitá di Ferrara VII, 57 (2011), 353-372.
[10] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren der Mathematischen Wissenschaften 282, Springer-Verlag, Berlin, 1986.
[11] B. Ja. Levin, Distributions of Zeros of Entire Functions, Translations of Mathematics Monographs 55, Amer. Math. Soc., Providence, R.I., 1994.
[12] A.R. Reddy, Approximation of an entire function, J. Approx. Theory 3(1970), 128-137.
[13] A.R. Reddy, Best polynomial approximation to certain entire functions, J. Approx. Theory 5(1972), 97-112.
[14] L.I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, R.I., 1974.
[15] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Mathematical Surveys 36(1981), 61-119.
[16] A. Sadullaev, An estimate for polynomials on analytic sets, Mathematics of the USSR-Izvestiya 20(1980), 493-502.
[17] S.M. Shah, Polynomial approximation of an entire function and generalized orders, J. Approx. Theory 19(1977), 315-324.
[18] J. Siciak, Extremal plurisubharmonic functions and capacities in \mathbb{C}^{n}, Lectures in Mathematics 14, Sofia University, Tokyo, 1982.
[19] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105(1962), 322-357.
[20] G.S. Srivastava and Susheel Kumar, On approximation and generalized type of entire functions of several complex variables, European J. Pure Appl. Math. 2, no. 4(2009), 520-531.
[21] T.N. Winiarski, Application of approximation and interpolation methods to the examination of entire functions of n complex variables, Ann. Polon. Math. 28(1973), 97-121.
[22] T.N. Winiarski, Approximation and interpolation of entire functions, Ann. Polon. Math. 23(1970), 259-273.
[23] A. Zeriahi, Meilleure approximation polynomiale et croissante des fonctions entieres sur certaines varievalgebriques affines, Annales Inst. Fourier (Grenoble) 37(1987), 79-104.

Department of Mathematics, Al-Baha University, P.O.Box-1988, Alaqiq, Al-Baha-65431, Saudi Arabia, K.S.A.

[^1]
[^0]: 2010 Mathematics Subject Classification. 41A20, 30E10.
 Key words and phrases. algebraic variety; approximation error; extremal polynomials and plurisubharmonic functions.

[^1]: *Corresponding author: d_kumar001@rediffmail.com

