International Journal of Analysis and Applications ISSN 2291-8639 Volume 1, Number 2 (2013), 100-105 http://www.etamaths.com

A SUBORDINATION THEOREM INVOLVING A MULTIPLIER TRANSFORMATION

SUKHWINDER SINGH BILLING

ABSTRACT. We, here, study a certain differential subordination involving a multiplier transformation which unifies some known differential operators. As a special case to our main result, we find some new results providing the best dominant for $z^p/f(z)$, z/f(z) and $z^{p-1}/f'(z)$, 1/f'(z).

1. INTRODUCTION

Let \mathcal{A} be the class of all functions f analytic in the open unit disk $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions that f(0) = f'(0) - 1 = 0. Thus, $f \in \mathcal{A}$ has the Taylor series expansion

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

Let \mathcal{A}_p denote the class of functions of the form $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, p \in \mathbb{N} = \{1, 2, 3, \dots\}$, which are analytic and multivalent in the open unit disk \mathbb{E} . Note

 $\mathcal{A}_1 = \mathcal{A}$. For $f \in \mathcal{A}_p$, define the multiplier transformation $I_p(n, \lambda)$ as

$$I_p(n,\lambda)f(z) = z^p + \sum_{k=p+1}^{\infty} \left(\frac{k+\lambda}{p+\lambda}\right)^n a_k z^k, \ (\lambda \ge 0, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}).$$

The operator $I_p(n, \lambda)$ has been recently studied by Aghalary et al. [3]. $I_1(n, 0)$ is the well-known Sălăgean [1] derivative operator D^n , defined for $f \in \mathcal{A}$ as under:

$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k.$$

For two analytic functions f and g in the unit disk \mathbb{E} , we say that f is subordinate to g in \mathbb{E} and write as $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with w(0) = 0 and |w(z)| < 1, $z \in \mathbb{E}$ such that f(z) = g(w(z)), $z \in \mathbb{E}$. In case the function g is univalent, the above subordination is equivalent to: f(0) = g(0) and $f(\mathbb{E}) \subset g(\mathbb{E})$.

²⁰¹⁰ Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. Differential subordination, Multiplier transformation, Analytic function; Univalent function, *p*-valent function.

 $[\]odot 2013$ Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Let $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} such that $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

(1)
$$\Phi(p(z), zp'(z); z) \prec h(z), \ \Phi(p(0), 0; 0) = h(0).$$

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for each dominant q of (1), is said to be the best dominant of (1).

Obradovič [2], introduced and studied the class $\mathcal{N}(\alpha)$, $0 < \alpha < 1$ of functions $f \in \mathcal{A}$ satisfying the following inequality

$$\Re\left\{f'(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}\right\} > 0, \ z \in \mathbb{E}.$$

He called it, the class of non-Bazilevič functions.

In 2005, Wang et al. [6] introduced the generalized class $\mathcal{N}(\lambda, \alpha, A, B)$ of non-Bazilevič functions which is analytically defined as:

$$\mathcal{N}(\lambda, \alpha, A, B) = \left\{ f \in \mathcal{A} : (1+\lambda) \left(\frac{z}{f(z)}\right)^{\alpha} - \lambda \frac{zf'(z)}{f(z)} \left(\frac{z}{f(z)}\right)^{\alpha} \prec \frac{1+Az}{1+Bz}, \right\}$$

where $0 < \alpha < 1$, $\lambda \in \mathbb{C}$, $-1 \leq B \leq 1$, $A \neq B$, $A \in \mathbb{R}$.

Wang et al. [6] studied the class $\mathcal{N}(\lambda, \alpha, A, B)$ and made some estimates on

$$\left(\frac{z}{f(z)}\right)$$
.

Using the concept of differential subordination, Shanmugam et al. [5] studied the differential operator $(1+\lambda)\left(\frac{z}{f(z)}\right)^{\alpha} - \lambda \frac{zf'(z)}{f(z)}\left(\frac{z}{f(z)}\right)^{\alpha}$ and obtained the best dominant for $\left(\frac{z}{f(z)}\right)^{\alpha}$.

The main objective of this paper is to unify the above mentioned differential operators. For this, we establish a differential subordination involving the multiplier transformation $I_p(n, \lambda)$, defined above. As special cases of main theorem, we obtain best dominant for $z^p/f(z)$, z/f(z) and $z^{p-1}/f'(z)$, 1/f'(z) and some known results also appear as special cases to our main result.

To prove our main result, we shall make use of the following lemma of Miller and Macanu [4].

Lemma 1.1. Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q(z)$ and suppose that either

(i) h is convex, or

(ii) Q is starlike.

In addition, assume that (iii) $\Re \frac{zh'(z)}{Q(z)} > 0, \ z \in \mathbb{E}.$ If p is analytic in \mathbb{E} , with $p(0) = q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)],$$

then $p(z) \prec q(z)$ and q is the best dominant.

BILLING

2. Main Results

In what follows, all the powers taken are the principal ones.

Theorem 2.1. Let α and β be non-zero complex numbers such that $\Re(\beta/\alpha) > 0$ and let $f \in \mathcal{A}_p$, $\left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\beta} \neq 0$, $z \in \mathbb{E}$, satisfy the differential subordination (2) $\left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\beta} \left[1 + \alpha - \alpha \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}\right] \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{\beta(p+\lambda)} \frac{(A-B)z}{(1+Bz)^2},$

then

$$\left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Proof: On writing $u(z) = \left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\beta}$, a little calculation yields that

(3)
$$\left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\beta} \left[1 + \alpha - \alpha \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}\right] = u(z) + \frac{\alpha}{\beta(p+\lambda)} zu'(z),$$

Define the functions θ and ϕ as follows:

$$\theta(w) = w$$
 and $\phi(w) = \frac{\alpha}{\beta(p+\lambda)}$.

Clearly, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C}$ and $\phi(w) \neq 0$, $w \in \mathbb{D}$. Select $q(z) = \frac{1+Az}{1+Bz}$, $-1 \leq B < A \leq 1$, $z \in \mathbb{E}$ and define the functions Q and h as follows:

$$Q(z) = zq'(z)\phi(q(z)) = \frac{\alpha}{\beta(p+\lambda)}zq'(z) = \frac{\alpha}{\beta(p+\lambda)}\frac{(A-B)z}{(1+Bz)^2}$$

and

(4)
$$h(z) = \theta(q(z)) + Q(z) = q(z) + \frac{\alpha}{\beta(p+\lambda)} zq'(z) = \frac{1+Az}{1+Bz} + \frac{\alpha}{\beta(p+\lambda)} \frac{(A-B)z}{(1+Bz)^2}$$

A little calculation yields

$$\Re\left(\frac{zQ'(z)}{Q(z)}\right) = \Re\left(1 + \frac{zq''(z)}{q'(z)}\right) = \Re\left(\frac{1 - Bz}{1 + Bz}\right) > 0, \ z \in \mathbb{E},$$

i.e. Q is starlike in \mathbbm{E} and

$$\Re\left(\frac{zh'(z)}{Q(z)}\right) = \Re\left(1 + \frac{zq''(z)}{q'(z)} + (p+\lambda)\frac{\beta}{\alpha}\right) = \Re\left(\frac{1-Bz}{1+Bz}\right) + (p+\lambda)\Re\left(\frac{\beta}{\alpha}\right) > 0, \ z \in \mathbb{E}.$$

Thus conditions (ii) and (iii) of Lemma 1.1, are satisfied. In view of (2), (3) and (4), we have

$$\theta[u(z)] + zu'(z)\phi[u(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)].$$

Therefore, the proof follows from Lemma 1.1.

For p = 1 and $\lambda = 0$ in above theorem, we get the following result involving Sălăgean operator.

102

Theorem 2.2. If α , β are non-zero complex numbers such that $\Re(\beta/\alpha) > 0$. If $f \in \mathcal{A}, \ \left(\frac{z}{D^n f(z)}\right)^{\dot{\beta}} \neq 0, \ z \in \mathbb{E}, \ satisfies$ $\left(\frac{z}{D^n f(z)}\right)^{\beta} \left[1 + \alpha - \alpha \frac{D^{n+1} f(z)}{D^n f(z)}\right] \prec \frac{1 + Az}{1 + Bz} + \frac{\alpha}{\beta} \frac{(A - B)z}{(1 + Bz)^2}, \ -1 \le B < A \le 1, \ z \in \mathbb{E},$ then

$$\left(\frac{z}{D^n f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$$

3. Dominant for $z^p/f(z)$, z/f(z)

This section is concerned with the results giving the best dominant for $z^p/f(z)$ and z/f(z). Select $\lambda = n = 0$ in Theorem 2.1, we obtain the following result.

Corollary 3.1. Let α , β be non-zero complex numbers such that $\Re(\beta/\alpha) > 0$ and let $f \in \mathcal{A}_p$, $\left(\frac{z^p}{f(z)}\right)^{\beta} \neq 0$, $z \in \mathbb{E}$, satisfy $(1+\alpha)\left(\frac{z^p}{f(z)}\right)^{\beta} - \alpha \frac{zf'(z)}{pf(z)}\left(\frac{z^p}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{p\beta} \frac{(A-B)z}{(1+Bz)^2}, \ z \in \mathbb{E},$ then

$$\left(\frac{z^p}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

Taking $\beta = 1$ in above theorem, we obtain:

Corollary 3.2. Suppose that α is a non-zero complex number such that $\Re(1/\alpha) >$ 0 and suppose that $f \in \mathcal{A}_p, \ \frac{z^p}{f(z)} \neq 0, \ z \in \mathbb{E}$, satisfies

$$(1+\alpha)\frac{z^p}{f(z)} - \alpha \frac{z^{p+1}f'(z)}{p(f(z))^2} \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{p}\frac{(A-B)z}{(1+Bz)^2}, \ z \in \mathbb{E},$$

then

$$\frac{z^p}{f(z)} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

On writing $\alpha = -1$ in Corollary 3.1, we get:

Corollary 3.3. Let β be a complex number with $\Re(\beta) < 0$ and let $f \in \mathcal{A}_p$, $\left(\frac{z^p}{f(z)}\right)^{\beta} \neq \mathbb{R}$ $0, z \in \mathbb{E}, satisfy$

$$\frac{zf'(z)}{pf(z)} \left(\frac{z^p}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz} - \frac{1}{p\beta} \frac{(A-B)z}{(1+Bz)^2}, \ -1 \le B < A \le 1, \ z \in \mathbb{E},$$

then

$$\left(\frac{z^p}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$$

Selecting $\alpha = \beta = 1/2$ in Corollary 3.1, we get:

103

BILLING

Corollary 3.4. If $f \in \mathcal{A}_p$, $\sqrt{\frac{z^p}{f(z)}} \neq 0$, $z \in \mathbb{E}$, satisfies

$$\sqrt{\frac{z^p}{f(z)}} \left(3 - \frac{zf'(z)}{pf(z)}\right) \prec \frac{2(1+Az)}{1+Bz} + \frac{2}{p} \frac{(A-B)z}{(1+Bz)^2}, \ z \in \mathbb{E},$$

then

$$\sqrt{\frac{z^p}{f(z)}} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

Taking p = 1 in Corollary 3.2, we have the following result.

Corollary 3.5. If α is a non-zero complex number such that $\Re(1/\alpha) > 0$ and if $f \in \mathcal{A}, \ \frac{z}{f(z)} \neq 0, \ z \in \mathbb{E}$, satisfies

$$(1+\alpha)\frac{z}{f(z)} - \alpha \frac{z^2 f'(z)}{(f(z))^2} \prec \frac{1+Az}{1+Bz} + \alpha \frac{(A-B)z}{(1+Bz)^2}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

then

$$\frac{z}{f(z)} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$$

Setting p = 1 in Corollary 3.3, we have the following result.

Corollary 3.6. If β is a complex number with $\Re(\beta) < 0$ and if $f \in \mathcal{A}$, $\left(\frac{z}{f(z)}\right)^{\beta} \neq 0$, $z \in \mathbb{E}$, satisfies

$$\frac{z^{\beta+1}f'(z)}{(f(z))^{\beta+1}} \prec \frac{1+Az}{1+Bz} - \frac{1}{\beta} \frac{(A-B)z}{(1+Bz)^2}, \ -1 \le B < A \le 1, \ z \in \mathbb{E},$$

then

$$\left(\frac{z}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$$

Setting p = 1 in Corollary 3.1, we obtain, below, the result of Shanmugam et al. [5].

Corollary 3.7. If α , β are non-zero complex numbers such that $\Re(\beta/\alpha) > 0$. If $f \in \mathcal{A}$, $\left(\frac{z}{f(z)}\right)^{\beta} \neq 0$, $z \in \mathbb{E}$, satisfies $(1+\alpha)\left(\frac{z}{f(z)}\right)^{\beta} - \alpha f'(z)\left(\frac{z}{f(z)}\right)^{1+\beta} \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{\beta}\frac{(A-B)z}{(1+Bz)^2}, z \in \mathbb{E}$, then $\begin{pmatrix} z \end{pmatrix}^{\beta} + \frac{1+Az}{1+Az} = 1 \in \mathbb{R} \quad (A \in \mathbb{I}) = \mathbb{C} \mathbb{E}$

$$\left(\frac{z}{f(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

4. Dominant for $z^{p-1}/f'(z), 1/f'(z)$

We obtain here, the best dominant for $z^{p-1}/f'(z)$ and 1/f'(z) as special cases to our main result. Select $\lambda = 0$ and n = 1 in Theorem 2.1, we obtain:

104

Corollary 4.1. Let α , β be non-zero complex numbers such that $\Re(\beta/\alpha) > 0$ and let $f \in \mathcal{A}_p$, $\left(\frac{pz^{p-1}}{f'(z)}\right)^{\beta} \neq 0, \ z \in \mathbb{E}$, satisfy $(1+\alpha)\left(\frac{pz^{p-1}}{f'(z)}\right)^{\beta} - \frac{\alpha}{p}\left(1 + \frac{zf''(z)}{f'(z)}\right)\left(\frac{pz^{p-1}}{f'(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{p\beta}\frac{(A-B)z}{(1+Bz)^2}, \ z \in \mathbb{E},$ then $\left(\frac{pz^{p-1}}{f'(z)}\right)^{\beta} \prec \frac{1+Az}{1+Bz}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$

Taking $\beta = 1$ in above theorem, we obtain:

Corollary 4.2. Suppose that α is a non-zero complex number such that $\Re(1/\alpha) >$ 0 and suppose that $f \in \mathcal{A}_p$, $\frac{pz^{p-1}}{f'(z)} \neq 0$, $z \in \mathbb{E}$, satisfies

$$(1+\alpha)\frac{pz^{p-1}}{f'(z)} - \alpha\frac{z^{p-1}}{f'(z)}\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \frac{1+Az}{1+Bz} + \frac{\alpha}{p}\frac{(A-B)z}{(1+Bz)^2}, \ z \in \mathbb{E},$$

then

$$\frac{z^{p-1}}{f'(z)} \prec \frac{1+Az}{p(1+Bz)}, \ -1 \le B < A \le 1, \ z \in \mathbb{E}.$$

Taking p = 1 in Corollary 4.2, we have the following result.

Corollary 4.3. If α is a non-zero complex number such that $\Re(1/\alpha) > 0$ and if $f \in \mathcal{A}, \ \frac{1}{f'(z)} \neq 0, \ z \in \mathbb{E}$, satisfies $\frac{1}{f'(z)} \left(1 - \alpha \frac{z f''(z)}{f'(z)} \right) \prec \frac{1 + Az}{1 + Bz} + \alpha \frac{(A - B)z}{(1 + Bz)^2}, \ -1 \le B < A \le 1, \ z \in \mathbb{E},$

then

$$\frac{1}{f'(z)} \prec \frac{1+Az}{1+Bz}, \ z \in \mathbb{E}.$$

References

- [1] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013 362-372, Springer-Verlag, Heideberg, 1983.
- [2] M. Obradovič, A class of univalent functions, Hokkaido Mathematical Journal, 27(2)(1998) 329 - 335.
- [3] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005) 267-274.
- [4] S. S. Miller and P. T. Mocanu, Differential Suordinations : Theory and Applications, (No. 225), Marcel Dekker, New York and Basel, 2000.
- [5] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, International J. Math. and Math. Sci., Article ID 29684(2006) pp.1–13.
- Z. Wang, C. Gao and M. Liao, On certain generalized class of non-Bazilevič functions, Acta [6]Mathematica Academiae Paedagogicae Nyíregyháziensis, New Series, 21(2)(2005) 147-154.

DEPARTMENT OF APPLIED SCIENCES, BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE, FATEHGARH SAHIB-140 407, PUNJAB, INDIA