A SUBORDINATION THEOREM INVOLVING A MULTIPLIER TRANSFORMATION

SUKHWINDER SINGH BILLING

Abstract

We, here, study a certain differential subordination involving a multiplier transformation which unifies some known differential operators. As a special case to our main result, we find some new results providing the best dominant for $z^{p} / f(z), z / f(z)$ and $z^{p-1} / f^{\prime}(z), 1 / f^{\prime}(z)$.

1. Introduction

Let \mathcal{A} be the class of all functions f analytic in the open unit disk $\mathbb{E}=\{z \in \mathbb{C}$: $|z|<1\}$ and normalized by the conditions that $f(0)=f^{\prime}(0)-1=0$. Thus, $f \in \mathcal{A}$ has the Taylor series expansion

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

Let \mathcal{A}_{p} denote the class of functions of the form $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in \mathbb{N}=$ $\{1,2,3, \cdots\}$, which are analytic and multivalent in the open unit disk \mathbb{E}. Note $\mathcal{A}_{1}=\mathcal{A}$. For $f \in \mathcal{A}_{p}$, define the multiplier transformation $I_{p}(n, \lambda)$ as

$$
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},\left(\lambda \geq 0, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

The operator $I_{p}(n, \lambda)$ has been recently studied by Aghalary et al. [3]. $I_{1}(n, 0)$ is the well-known Sălăgean [1] derivative operator D^{n}, defined for $f \in \mathcal{A}$ as under:

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} .
$$

For two analytic functions f and g in the unit disk \mathbb{E}, we say that f is subordinate to g in \mathbb{E} and write as $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{E}$ such that $f(z)=g(w(z)), z \in \mathbb{E}$. In case the function g is univalent, the above subordination is equivalent to: $f(0)=g(0)$ and $f(\mathbb{E}) \subset g(\mathbb{E})$.

[^0](c)2013 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Let $\Phi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} such that $\left(p(z), z p^{\prime}(z) ; z\right) \in \mathbb{C}^{2} \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}. Then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z), \Phi(p(0), 0 ; 0)=h(0) \tag{1}
\end{equation*}
$$

A univalent function q is called a dominant of the differential subordination (1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for each dominant q of (1), is said to be the best dominant of (1).

Obradovič [2], introduced and studied the class $\mathcal{N}(\alpha), 0<\alpha<1$ of functions $f \in \mathcal{A}$ satisfying the following inequality

$$
\Re\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}\right\}>0, z \in \mathbb{E}
$$

He called it, the class of non-Bazilevič functions.
In 2005, Wang et al. [6] introduced the generalized class $\mathcal{N}(\lambda, \alpha, A, B)$ of nonBazilevič functions which is analytically defined as:

$$
\mathcal{N}(\lambda, \alpha, A, B)=\left\{f \in \mathcal{A}:(1+\lambda)\left(\frac{z}{f(z)}\right)^{\alpha}-\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{z}{f(z)}\right)^{\alpha} \prec \frac{1+A z}{1+B z},\right\}
$$

where $0<\alpha<1, \lambda \in \mathbb{C},-1 \leq B \leq 1, A \neq B, A \in \mathbb{R}$.
Wang et al. [6] studied the class $\mathcal{N}(\lambda, \alpha, A, B)$ and made some estimates on $\left(\frac{z}{f(z)}\right)^{\alpha}$.

Using the concept of differential subordination, Shanmugam et al. [5] studied the differential operator $(1+\lambda)\left(\frac{z}{f(z)}\right)^{\alpha}-\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{z}{f(z)}\right)^{\alpha}$ and obtained the best dominant for $\left(\frac{z}{f(z)}\right)^{\alpha}$.

The main objective of this paper is to unify the above mentioned differential operators. For this, we establish a differential subordination involving the multiplier transformation $I_{p}(n, \lambda)$, defined above. As special cases of main theorem, we obtain best dominant for $z^{p} / f(z), z / f(z)$ and $z^{p-1} / f^{\prime}(z), 1 / f^{\prime}(z)$ and some known results also appear as special cases to our main result.

To prove our main result, we shall make use of the following lemma of Miller and Macanu [4].

Lemma 1.1. Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z)=z q^{\prime}(z) \phi[q(z)]$, $h(z)=\theta[q(z)]+Q(z)$ and suppose that either
(i) h is convex, or
(ii) Q is starlike.

In addition, assume that
(iii) $\Re \frac{z h^{\prime}(z)}{Q(z)}>0, z \in \mathbb{E}$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\theta[p(z)]+z p^{\prime}(z) \phi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)],
$$

then $p(z) \prec q(z)$ and q is the best dominant.

2. Main Results

In what follows, all the powers taken are the principal ones.
Theorem 2.1. Let α and β be non-zero complex numbers such that $\Re(\beta / \alpha)>0$ and let $f \in \mathcal{A}_{p},\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\beta} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination (2)

$$
\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\beta}\left[1+\alpha-\alpha \frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}\right] \prec \frac{1+A z}{1+B z}+\frac{\alpha}{\beta(p+\lambda)} \frac{(A-B) z}{(1+B z)^{2}},
$$

then

$$
\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant.
Proof: On writing $u(z)=\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\beta}$, a little calculation yields that

$$
\begin{equation*}
\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\beta}\left[1+\alpha-\alpha \frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}\right]=u(z)+\frac{\alpha}{\beta(p+\lambda)} z u^{\prime}(z) \tag{3}
\end{equation*}
$$

Define the functions θ and ϕ as follows:

$$
\theta(w)=w \text { and } \phi(w)=\frac{\alpha}{\beta(p+\lambda)}
$$

Clearly, the functions θ and ϕ are analytic in domain $\mathbb{D}=\mathbb{C}$ and $\phi(w) \neq 0, w \in \mathbb{D}$. Select $q(z)=\frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}$ and define the functions Q and h as follows:

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{\alpha}{\beta(p+\lambda)} z q^{\prime}(z)=\frac{\alpha}{\beta(p+\lambda)} \frac{(A-B) z}{(1+B z)^{2}},
$$

and
(4) $h(z)=\theta(q(z))+Q(z)=q(z)+\frac{\alpha}{\beta(p+\lambda)} z q^{\prime}(z)=\frac{1+A z}{1+B z}+\frac{\alpha}{\beta(p+\lambda)} \frac{(A-B) z}{(1+B z)^{2}}$.

A little calculation yields

$$
\Re\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)=\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)=\Re\left(\frac{1-B z}{1+B z}\right)>0, z \in \mathbb{E}
$$

i.e. Q is starlike in \mathbb{E} and
$\Re\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+(p+\lambda) \frac{\beta}{\alpha}\right)=\Re\left(\frac{1-B z}{1+B z}\right)+(p+\lambda) \Re\left(\frac{\beta}{\alpha}\right)>0, z \in \mathbb{E}$.
Thus conditions (ii) and (iii) of Lemma 1.1, are satisfied. In view of (2), (3) and (4), we have

$$
\theta[u(z)]+z u^{\prime}(z) \phi[u(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)] .
$$

Therefore, the proof follows from Lemma 1.1.
For $p=1$ and $\lambda=0$ in above theorem, we get the following result involving Sălăgean operator.

Theorem 2.2. If α, β are non-zero complex numbers such that $\Re(\beta / \alpha)>0$. If $f \in \mathcal{A},\left(\frac{z}{D^{n} f(z)}\right)^{\beta} \neq 0, z \in \mathbb{E}$, satisfies $\left(\frac{z}{D^{n} f(z)}\right)^{\beta}\left[1+\alpha-\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)}\right] \prec \frac{1+A z}{1+B z}+\frac{\alpha}{\beta} \frac{(A-B) z}{(1+B z)^{2}},-1 \leq B<A \leq 1, z \in \mathbb{E}$, then

$$
\left(\frac{z}{D^{n} f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}, z \in \mathbb{E}
$$

3. Dominant For $z^{p} / f(z), z / f(z)$

This section is concerned with the results giving the best dominant for $z^{p} / f(z)$ and $z / f(z)$. Select $\lambda=n=0$ in Theorem 2.1, we obtain the following result.

Corollary 3.1. Let α, β be non-zero complex numbers such that $\Re(\beta / \alpha)>0$ and let $f \in \mathcal{A}_{p},\left(\frac{z^{p}}{f(z)}\right)^{\beta} \neq 0, z \in \mathbb{E}$, satisfy

$$
(1+\alpha)\left(\frac{z^{p}}{f(z)}\right)^{\beta}-\alpha \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{z^{p}}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}+\frac{\alpha}{p \beta} \frac{(A-B) z}{(1+B z)^{2}}, \quad z \in \mathbb{E}
$$

then

$$
\left(\frac{z^{p}}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

Taking $\beta=1$ in above theorem, we obtain:
Corollary 3.2. Suppose that α is a non-zero complex number such that $\Re(1 / \alpha)>$ 0 and suppose that $f \in \mathcal{A}_{p}, \frac{z^{p}}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1+\alpha) \frac{z^{p}}{f(z)}-\alpha \frac{z^{p+1} f^{\prime}(z)}{p(f(z))^{2}} \prec \frac{1+A z}{1+B z}+\frac{\alpha}{p} \frac{(A-B) z}{(1+B z)^{2}}, \quad z \in \mathbb{E}
$$

then

$$
\frac{z^{p}}{f(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E} .
$$

On writing $\alpha=-1$ in Corollary 3.1, we get:
Corollary 3.3. Let β be a complex number with $\Re(\beta)<0$ and let $f \in \mathcal{A}_{p},\left(\frac{z^{p}}{f(z)}\right)^{\beta} \neq$ $0, z \in \mathbb{E}$, satisfy

$$
\frac{z f^{\prime}(z)}{p f(z)}\left(\frac{z^{p}}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}-\frac{1}{p \beta} \frac{(A-B) z}{(1+B z)^{2}},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

then

$$
\left(\frac{z^{p}}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}, z \in \mathbb{E} .
$$

Selecting $\alpha=\beta=1 / 2$ in Corollary 3.1, we get:

Corollary 3.4. If $f \in \mathcal{A}_{p}, \sqrt{\frac{z^{p}}{f(z)}} \neq 0, z \in \mathbb{E}$, satisfies

$$
\sqrt{\frac{z^{p}}{f(z)}}\left(3-\frac{z f^{\prime}(z)}{p f(z)}\right) \prec \frac{2(1+A z)}{1+B z}+\frac{2}{p} \frac{(A-B) z}{(1+B z)^{2}}, z \in \mathbb{E}
$$

then

$$
\sqrt{\frac{z^{p}}{f(z)}} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E} .
$$

Taking $p=1$ in Corollary 3.2, we have the following result.
Corollary 3.5. If α is a non-zero complex number such that $\Re(1 / \alpha)>0$ and if $f \in \mathcal{A}, \frac{z}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1+\alpha) \frac{z}{f(z)}-\alpha \frac{z^{2} f^{\prime}(z)}{(f(z))^{2}} \prec \frac{1+A z}{1+B z}+\alpha \frac{(A-B) z}{(1+B z)^{2}},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

then

$$
\frac{z}{f(z)} \prec \frac{1+A z}{1+B z}, \quad z \in \mathbb{E} .
$$

Setting $p=1$ in Corollary 3.3, we have the following result.
Corollary 3.6. If β is a complex number with $\Re(\beta)<0$ and if $f \in \mathcal{A},\left(\frac{z}{f(z)}\right)^{\beta} \neq$ $0, z \in \mathbb{E}$, satisfies

$$
\frac{z^{\beta+1} f^{\prime}(z)}{(f(z))^{\beta+1}} \prec \frac{1+A z}{1+B z}-\frac{1}{\beta} \frac{(A-B) z}{(1+B z)^{2}},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

then

$$
\left(\frac{z}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}, z \in \mathbb{E} .
$$

Setting $p=1$ in Corollary 3.1, we obtain, below, the result of Shanmugam et al. [5].

Corollary 3.7. If α, β are non-zero complex numbers such that $\Re(\beta / \alpha)>0$. If $f \in \mathcal{A},\left(\frac{z}{f(z)}\right)^{\beta} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1+\alpha)\left(\frac{z}{f(z)}\right)^{\beta}-\alpha f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\beta} \prec \frac{1+A z}{1+B z}+\frac{\alpha}{\beta} \frac{(A-B) z}{(1+B z)^{2}}, z \in \mathbb{E}
$$

then

$$
\left(\frac{z}{f(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

4. Dominant for $z^{p-1} / f^{\prime}(z), 1 / f^{\prime}(z)$

We obtain here, the best dominant for $z^{p-1} / f^{\prime}(z)$ and $1 / f^{\prime}(z)$ as special cases to our main result. Select $\lambda=0$ and $n=1$ in Theorem 2.1, we obtain:

Corollary 4.1. Let α, β be non-zero complex numbers such that $\Re(\beta / \alpha)>0$ and let $f \in \mathcal{A}_{p},\left(\frac{p z^{p-1}}{f^{\prime}(z)}\right)^{\beta} \neq 0, z \in \mathbb{E}$, satisfy $(1+\alpha)\left(\frac{p z^{p-1}}{f^{\prime}(z)}\right)^{\beta}-\frac{\alpha}{p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\left(\frac{p z^{p-1}}{f^{\prime}(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z}+\frac{\alpha}{p \beta} \frac{(A-B) z}{(1+B z)^{2}}, z \in \mathbb{E}$, then

$$
\left(\frac{p z^{p-1}}{f^{\prime}(z)}\right)^{\beta} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}
$$

Taking $\beta=1$ in above theorem, we obtain:
Corollary 4.2. Suppose that α is a non-zero complex number such that $\Re(1 / \alpha)>$ 0 and suppose that $f \in \mathcal{A}_{p}, \frac{p z^{p-1}}{f^{\prime}(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1+\alpha) \frac{p z^{p-1}}{f^{\prime}(z)}-\alpha \frac{z^{p-1}}{f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{1+A z}{1+B z}+\frac{\alpha}{p} \frac{(A-B) z}{(1+B z)^{2}}, z \in \mathbb{E}
$$

then

$$
\frac{z^{p-1}}{f^{\prime}(z)} \prec \frac{1+A z}{p(1+B z)},-1 \leq B<A \leq 1, z \in \mathbb{E} .
$$

Taking $p=1$ in Corollary 4.2, we have the following result.
Corollary 4.3. If α is a non-zero complex number such that $\Re(1 / \alpha)>0$ and if $f \in \mathcal{A}, \frac{1}{f^{\prime}(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
\frac{1}{f^{\prime}(z)}\left(1-\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{1+A z}{1+B z}+\alpha \frac{(A-B) z}{(1+B z)^{2}},-1 \leq B<A \leq 1, z \in \mathbb{E},
$$

then

$$
\frac{1}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad z \in \mathbb{E} .
$$

References

[1] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013 362-372, Springer-Verlag, Heideberg,1983.
[2] M. Obradovic̆, A class of univalent functions, Hokkaido Mathematical Journal, 27(2)(1998) 329-335.
[3] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005) 267-274.
[4] S. S. Miller and P. T. Mocanu, Differential Suordinations : Theory and Applications, (No. 225), Marcel Dekker, New York and Basel, 2000.
[5] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, International J. Math. and Math. Sci., Article ID 29684(2006) pp.1-13.
[6] Z. Wang, C. Gao and M. Liao, On certain generalized class of non-Bazilevič functions, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, New Series, 21 (2)(2005) 147-154.

Department of Applied Sciences, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140 407, Punjab, India

[^0]: 2010 Mathematics Subject Classification. 30C80, 30C45
 Key words and phrases. Differential subordination, Multiplier transformation, Analytic function; Univalent function, p-valent function.

