ON MULTI-VALUED WEAKLY PICARD OPERATORS IN HAUSDORFF METRIC-LIKE SPACES

ABDELBASSET FELHI^{1,2,*}

ABSTRACT. In this paper, we study multi-valued weakly Picard operators on Hausdorff metric-like spaces. Our results generalize some recent results and extend several theorems in the literature. Some examples are presented making effective our results.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and CB(X) denotes the collection of all nonempty, closed and bounded subsets of X. Also, CL(X) denotes the collection of nonempty closed subsets of X. For $A, B \in CB(X)$, define

$$H(A,B) := \max\left\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\right\},\$$

where $d(x, A) := \inf\{d(x, a) : a \in A\}$ is the distance of a point x to the set A. It is known that H is a metric on CB(X), called the Hausdorff metric induced by d. Throughout the paper, \mathbb{N} , \mathbb{R} , and \mathbb{R}^+ denote the set of positive integers, the set of all real numbers and the set of all non-negative real numbers, respectively.

Definition 1.1. ([1]) Let (X, d) be a metric space and $T: X \to CL(X)$ be a multi-valued operator. We say that T is a multi-valued weakly Picard operator (MWP operator) if for all $x \in X$ and $y \in Tx$, there exists a sequence $\{x_n\}$ such that:

(i)
$$x_0 = x, x_1 = y;$$

(ii)
$$x_{n+1} \in Tx_n$$
 for all $n = 0, 1, 2, ...;$

(iii) the sequence $\{x_n\}$ is convergent and its limit is a fixed point of T.

The theory of MWP operators is studied by several authors (see for instance [1, 2]). In 2008 Suzuki [3] generalizes the Banach contraction principle by introducing a new type of mapping. Very recently, Jleli et al. [4] established Kikkawa-Suzuki type fixed point theorems for a new type of generalized contractive conditions on partial Hausdorff metric spaces. The purpose of this paper is to discuss multi-valued weakly Picard operators on partial Hausdorff metric spaces and on Hausdorff metric-like spaces. We will establish the above fixed point theorems for a new type of generalized contractive conditions which generalizes that of Jleli et al.

We recall that the study of fixed points for multi-valued contractions using the Hausdorff metric was initiated by Nadler [18] who proved the following theorem.

Theorem 1.2. ([18]) Let (X, d) be a complete metric space and $T : X \to CB(X)$ be a multi-valued mapping satisfying $H(Tx, Ty) \leq kd(x, y)$ for all $x, y \in X$ and for some k in [0, 1). Then there exists $x \in X$ such that $x \in Tx$.

We recall that the notion of partial metric spaces was introduced by Matthews [8] in 1994 as a part to study the denotational semantics of dataflow networks which play an important role in constructing models in the theory of computation. Moreover, the notion of metric-like spaces has been discovered by Amini-Harandi [12] which is an interesting generalization of the notion of partial metric spaces. For more fixed point results on metric-like spaces, see [7], [10], [11], [13], [15], [16], [17], [19], [20], [21], [22].

²⁰¹⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Hausdorff metric-like: multi-valued operator; partial metric space; metric-like space.

^{©2016} Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Note that, every partial metric space is a metric-like space but the converse is not true in general. In what follows, we recall some definitions and results we will need in the sequel.

Definition 1.3. ([8]) A partial metric on a nonempty set X is a function $p: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$

(PM1) p(x, x) = p(x, y) = p(y, y), then x = y; (PM2) $p(x, x) \le p(x, y)$; (PM3) p(x, y) = p(y, x);

(PM4) $p(x, z) + p(y, y) \le p(x, y) + p(y, z).$

The pair (X, p) is then called a partial metric space (PMS).

According to [8], each partial metric p on X generates a T_0 topology τ_p on X which has as a base the family of open p-balls $\{B_p(x,\varepsilon) : x \in X, \varepsilon > 0\}$, where $B_p(x,\varepsilon) = \{y \in X : p(x,y) < p(x,x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$. Following [8], several topological concepts can be defined as follows. A sequence $\{x_n\}$ in a partial metric space (X, p) converges to a point $x \in X$ if and only if $p(x, x) = \lim_{n \to \infty} p(x_n, x)$ and is called a Cauchy sequence if $\lim_{n,m\to\infty} p(x_n, x_m)$ exists and is finite. Moreover, a partial metric space (X, p) is called to be complete if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p , to a point $x \in X$ such that $p(x, x) = \lim_{n,m\to\infty} p(x_n, x_m)$. It is known [8] that if p is a partial metric on X, then the function $p^s : X \times X \to \mathbb{R}^+$ defined by

$$p^{s}(x,y) = 2p(x,y) - p(x,x) - p(y,y)$$

for all $x, y \in X$, is a metric on X.

Note that if a sequence converges in a partial metric space (X, p) with respect to τ_{p^s} , then it converges with respect to τ_p .

Also, a sequence $\{x_n\}$ in a partial metric space (X, p) is Cauchy if and only if it is a Cauchy sequence in the metric space (X, p^s) . Consequently, a partial metric space (X, p) is complete if and only if the metric space (X, p^s) is complete. Moreover, if $\{x_n\}$ is a sequence in a partial metric space (X, p) and $x \in X$, one has that

$$\lim_{n \to \infty} p^s(x_n, x) = 0 \Leftrightarrow p(x, x) = \lim_{n \to \infty} p(x_n, x) = \lim_{n, m \to \infty} p(x_n, x_m).$$

We have the following lemmas.

Lemma 1.4. Let (X, p) be a partial metric space. Then, (1) if p(x, y) = 0 then, x = y, (2) if $x \neq y$ then, p(x, y) > 0.

Following [9], let (X, p) be a partial metric space and $CB^{p}(X)$ be the family of all nonempty, closed and bounded subsets of the partial metric space (X, p), induced by the partial metric p.

For $A, B \in CB^p(X)$ and $x \in X$, we define

$$p(x, A) = \inf\{p(x, a) : a \in A\}, \ H_p(A, B) = \max\{\sup_{a \in A} p(a, B), \sup_{b \in B} p(b, A)\}$$

Lemma 1.5. ([5]) Let (X, p) be a partial metric space and A any nonempty set in (X, p), then $a \in \overline{A}$ if and only if p(a, A) = p(a, a), where \overline{A} denotes the closure of A with respect to the partial metric p.

Proposition 1.6. ([9]) Let (X, p) be a partial metric space. For all $A, B, C \in CB^p(X)$, we have

(h1) $H_p(A, A) \leq H_p(A, B);$

(h2) $H_p(B, A) = H_p(A, B);$

(h3) $H_p(A,B) \le H_p(A,C) + H_p(C,B) - \inf_{c \in C} p(c,c);$

(h4) $H_p(A, B) = 0 \Rightarrow A = B.$

Definition 1.7. Let X be a nonempty set. A function $\sigma : X \times X \to \mathbb{R}^+$ is said to be a metric-like (dislocated metric) on X if for any $x, y, z \in X$, the following conditions hold:

 $(\mathbf{P}_1) \ \sigma(x, y) = 0 \Longrightarrow x = y;$

(P₂)
$$\sigma(x,y) = \sigma(y,x);$$

(P₃)
$$\sigma(x,z) \leq \sigma(x,y) + \sigma(y,z)$$
.

The pair (X, σ) is then called a metric-like (dislocated metric) space.

In the following example, we give a metric-like which is neither a metric nor a partial metric.

Example 1.8. Let $X = \{0, 1, 2\}$ and $\sigma : X \times X \to \mathbb{R}^+$ defined by

$$\sigma(0,0) = \sigma(1,1) = 0, \ \sigma(2,2) = 3, \ \sigma(0,1) = 1, \ \sigma(0,2) = \sigma(1,2) = 2,$$

and $\sigma(x, y) = \sigma(y, x)$ for all $x \in X$. Then, (X, σ) is a metric-like space. Note that σ is nor a metric as, $\sigma(2, 2) > 0$ and not a partial metric on X as, $\sigma(2, 2) > \sigma(0, 2)$.

Each metric-like σ on X generates a T_0 topology τ_{σ} on X which has as a base the family open σ -balls $\{B_{\sigma}(x,\varepsilon) : x \in X, \varepsilon > 0\}$, where $B_{\sigma}(x,\varepsilon) = \{y \in X : |\sigma(x,y) - \sigma(x,x)| < \varepsilon\}$, for all $x \in X$ and $\varepsilon > 0$.

Observe that a sequence $\{x_n\}$ in a metric-like space (X, σ) converges to a point $x \in X$, with respect to τ_{σ} , if and only if $\sigma(x, x) = \lim_{n \to \infty} \sigma(x, x_n)$.

Definition 1.9. Let (X, σ) be a metric-like space.

- (a) A sequence $\{x_n\}$ in X is said to be a Cauchy sequence if $\lim_{n,m\to\infty} \sigma(x_n, x_m)$ exists and is finite.
- (b) (X, σ) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges with respect to τ_{σ} to a point $x \in X$ such that $\lim_{n \to \infty} \sigma(x, x_n) = \sigma(x, x) = \lim_{n, m \to \infty} \sigma(x_n, x_m)$.

We have the following trivial inequality:

(1.1)
$$\sigma(x,x) \le 2\sigma(x,y) \quad \text{for all } x, y \in X.$$

Very recently, Aydi et al. [6] introduced the concept of Hausdorff metric-like. Let $CB^{\sigma}(X)$ be the family of all nonempty, closed and bounded subsets of the metric-like space (X, σ) , induced by the metric-like σ . Note that the boundedness is given as follows: A is a bounded subset in (X, σ) if there exist $x_0 \in X$ and $M \ge 0$ such that for all $a \in A$, we have $a \in B_{\sigma}(x_0, M)$, that is,

$$|\sigma(x_0, a) - \sigma(a, a)| < M.$$

The Closeness is taken in (X, τ_{σ}) (where τ_{σ} is the topology induced by σ).

For $A, B \in CB^{\sigma}(X)$ and $x \in X$, define

$$\sigma(x,A) = \inf\{\sigma(x,a), a \in A\}, \ \delta_{\sigma}(A,B) = \sup\{\sigma(a,B) : a \in A\} \text{ and } \delta_{\sigma}(B,A) = \sup\{\sigma(b,A) : b \in B\}.$$

We have the following useful lemmas.

Lemma 1.10. [6]

Let (X, σ) be a metric-like space and A any nonempty set in (X, σ) , then

if
$$\sigma(a, A) = 0$$
, then $a \in \overline{A}$,

where \overline{A} denotes the closure of A with respect to the metric-like σ . Also, if $\{x_n\}$ is a sequence in (X, σ) that is τ_{σ} -convergent to $x \in X$, then

$$\lim_{n \to \infty} |\sigma(x_n, A) - \sigma(x, A)| = \sigma(x, x).$$

Lemma 1.11. Let $A, B \in CB^{\sigma}(X)$ and $a \in A$. Suppose that $\sigma(a, B) > 0$. Then, for each h > 1, there exists $b = b(a) \in B$ such that $\sigma(a, b) < h\sigma(a, B)$.

Proof. We argue by contradiction, that is, there exists h > 1, such that for all $b \in B$, there is $\sigma(a,b) \ge h\sigma(a,B)$. Then, $\sigma(a,B) = \inf\{\sigma(a,B) : b \in B\} \ge h\sigma(a,B)$. Hence, $h \le 1$, which is a contradiction.

Let (X, σ) be a metric-like space. For $A, B \in CB^{\sigma}(X)$, define

$$H_{\sigma}(A,B) = \max\left\{\delta_{\sigma}(A,B), \delta_{\sigma}(B,A)\right\}.$$

We have also some properties of $H_{\sigma}: CB^{\sigma}(X) \times CB^{\sigma}(X) \to [0, \infty).$

Proposition 1.12. [6] Let (X, σ) be a metric-like space. For any $A, B, C \in CB^{\sigma}(X)$, we have the following:

 $\begin{array}{ll} (i) & : & H_{\sigma}(A,A) = \delta_{\sigma}(A,A) = \sup\{\sigma(a,A) : a \in A\}; \\ (ii) & : & H_{\sigma}(A,B) = H_{\sigma}(B,A); \\ (iii) & : & H_{\sigma}(A,B) = 0 \mbox{ implies that } A = B; \\ (iv) & : & H_{\sigma}(A,B) \leq H_{\sigma}(A,C) + H_{\sigma}(C,B). \end{array}$

The mapping $H_{\sigma} : CB^{\sigma}(X) \times CB^{\sigma}(X) \to [0, +\infty)$ is called a Hausdorff metric-like induced by σ . Note that each partial hausdorff metric is a Hausdorff metric-like but the converse is not true in general as it is clear from the following example.

Example 1.13. Going back to Example 1.8, taking $A = \{2\}, B = \{0\}$ we have $H_{\sigma}(A, A) = \sigma(2, 2) = 3 > 2 = \sigma(0, 2) = H_{\sigma}(A, B)$.

We denote by Ψ the class of all functions $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $(\psi_1) \ \psi$ is nondecreasing;

 $(\psi_2) \sum_n \psi^n(t) < \infty$ for each $t \in \mathbb{R}^+$, where ψ^n is the *n*-th iterate of ψ .

Also, we denote by Φ the class of all functions $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $(\varphi_1) \varphi$ is nondecreasing;

 $(\varphi_2) t \leq \varphi(t)$ for each $t \in \mathbb{R}^+$.

Lemma 1.14. (i) If $\psi \in \Psi$, then $\psi(t) < t$ for any t > 0 and $\psi(0) = 0$. (ii) If $\varphi \in \Phi$, then $t \leq \varphi^n(t)$ for all $n \in \mathbb{N} \cup \{0\}$ and for any $t \in \mathbb{R}^+$.

We have the following useful lemma.

Lemma 1.15. Let (X, σ) be a metric-like space, $B \in CB^{\sigma}(X)$ and c > 0. If $a \in X$ and $\sigma(a, B) < c$ then there exists $b = b(a) \in B$ such that $\sigma(a, b) < c$.

Proof. We argue by contradiction, that is, $\sigma(a, b) \ge c$ for all $b \in B$, then $\sigma(a, B) = \inf\{\sigma(a, b) : b \in B\} \ge c$, which is a contradiction. Hence there exists $b = b(a) \in B$ such that $\sigma(a, b) < c$. \Box

2. Main Results

In this section, we give some fixed point results on metric-like spaces first and next we give some fixed point results on partial metric spaces.

Now, we need the following definition.

Definition 2.1. Let (X, σ) be a metric-like space. A multi-valued mapping $T : X \to CB^{\sigma}(X)$ is said to be (φ, ψ) -contractive multi-valued operator if there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

(2.1)
$$\sigma(y,Tx) \le \varphi(\sigma(y,x)) \Rightarrow H_{\sigma}(Tx,Ty) \le \psi(M_{\sigma}(x,y))$$

for all $x, y \in X$, where

$$M_{\sigma}(x,y) = \max\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}.$$

Now, we state and prove our first main result.

Theorem 2.2. Let (X, σ) be a complete metric-like space and $T : X \to CB^{\sigma}(X)$ be (φ, ψ) -contractive multi-valued operator.

If $2t \leq \varphi(t)$ for each $t \in \mathbb{R}^+$, then T is an MWP operator.

Proof. Let $x_0 \in X$ and $x_1 \in Tx_0$. Let c a given real number such that $\sigma(x_0, x_1) < c$.

Clearly, if $x_1 = x_0$ or $x_1 \in Tx_1$, we conclude that x_1 is a fixed point of T and so the proof is finished. Now, we assume that $x_1 \neq x_0$ and $x_1 \notin Tx_1$. So then, $\sigma(x_0, x_1) > 0$ and $\sigma(x_1, Tx_1) > 0$.

Since $x_1 \in Tx_0$ and $2t \leq \varphi(t)$, we get

$$\sigma(x_1, Tx_0) \le \sigma(x_1, x_1) \le 2\sigma(x_1, x_0) \le \varphi(\sigma(x_1, x_0)).$$

Hence by (2.1) and triangular inequality, we have

$$\begin{aligned} 0 < \sigma(x_1, Tx_1) &\leq H_{\sigma}(Tx_0, Tx_1) \leq \psi(M_{\sigma}(x_0, x_1)) \\ &\leq \psi(\max\{\sigma(x_0, x_1), \sigma(x_0, Tx_0), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, Tx_0)]\}) \\ &\leq \psi(\max\{\sigma(x_0, x_1), \sigma(x_0, x_1), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, x_1)]\}) \\ &\leq \psi(\max\{\sigma(x_0, x_1), \sigma(x_0, x_1), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_1, Tx_1) + 3\sigma(x_0, x_1)]\}) \\ &= \psi(\max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\}). \end{aligned}$$

If $\max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\} = \sigma(x_1, Tx_1)$, then we obtain

$$0 < \sigma(x_1, Tx_1) \le \psi(\sigma(x_1, Tx_1)) < \sigma(x_1, Tx_1)$$

wish is a contradiction. Then

$$0 < \sigma(x_1, Tx_1) \le \psi(\sigma(x_0, x_1)) < \psi(c).$$

Thus, by Lemma 1.15, there exist $x_2 \in Tx_1$ such that

(2.2)
$$\sigma(x_1, x_2) < \psi(c).$$

If $x_1 = x_2$ or $x_2 \in Tx_2$, we conclude that x_2 is a fixed point of T and so the proof is finished. Now, we assume that $x_2 \neq x_1$ and $x_2 \notin Tx_2$. Then we have

$$\sigma(x_2, Tx_1) \le \sigma(x_2, x_2) \le 2\sigma(x_2, x_1) \le \varphi(\sigma(x_2, x_1)).$$

Hence by (2.1), triangular inequality and (2.2), we have

$$0 < \sigma(x_2, Tx_2) \le H_{\sigma}(Tx_1, Tx_2) \le \psi(M_{\sigma}(x_1, x_2)) \le \psi(\max\{\sigma(x_1, x_2), \sigma(x_2, Tx_2)\}) \\ = \psi(\sigma(x_1, x_2)) < \psi^2(c).$$

Then, by Lemma 1.15, there exist $x_3 \in Tx_2$ such that

(2.3)
$$\sigma(x_2, x_3) < \psi^2(c).$$

Continuing in this fashion, we construct a sequence $\{x_n\}$ in X such that for all $n \in \mathbb{N}$

(i)
$$x_n \notin Tx_n, x_n \neq x_{n+1}, x_{n+1} \in Tx_n$$
;
(ii)

(2.4)
$$\sigma(x_n, x_{n+1}) \le \psi^n(c).$$

Now, for m > n, we have

$$\sigma(x_n, x_m) \leq \sum_{i=n}^{m-1} \sigma(x_i, x_{i+1}) \leq \sum_{i=n}^{m-1} \psi^i(c) \leq \sum_{i=n}^{\infty} \psi^i(c) \to 0 \text{ as } n \to \infty.$$

Thus,

(2.5)
$$\lim_{n,m\to\infty}\sigma(x_n,x_m) = 0$$

Hence, $\{x_n\}$ is σ -Cauchy. Moreover since (X, σ) is complete, it follows there exists $\nu \in X$ such that

(2.6)
$$\lim_{n \to \infty} \sigma(x_n, \nu) = \sigma(\nu, \nu) = \lim_{n, m \to \infty} \sigma(x_n, x_m) = 0.$$

We will show that ν is a fixed point of T. First, we should prove that there exits a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

(2.7)
$$\sigma(\nu, Tx_{n(k)}) \le \varphi(\sigma(\nu, x_{n(k)})), \text{ for all } k = 0, 1, 2, \dots$$

Arguing by contradiction, that is, there exists $N \in \mathbb{N}$ such that $\sigma(\nu, Tx_n) > \varphi(\sigma(\nu, x_n))$ for all $n \ge N$. Since $x_{n+1} \in Tx_n$, it follows that $\sigma(\nu, x_{n+1}) > \varphi(\sigma(\nu, x_n))$ for all $n \ge N$. Having φ nondecreasing, so by induction we get

(2.8)
$$\sigma(\nu, x_{n+m}) > \varphi^m(\sigma(\nu, x_n)), \text{ for all } n \ge N \text{ and } m = 1, 2, 3, \dots$$

Now, for all $n \geq N$ and $m \in \mathbb{N}$, we have

$$\sigma(x_n, x_{n+m}) \le \sum_{i=n}^{n+m-1} \sigma(x_i, x_{i+1}) \le \sum_{i=n}^{m-1} \psi^i(c) \le \sum_{i=n}^{\infty} \psi^i(c).$$

Then for all $n \geq N$ and $m \in \mathbb{N}$, we obtain

$$\sigma(\nu, x_n) \le \sigma(\nu, x_{n+m}) + \sigma(x_{n+m}, x_n) \le \sigma(\nu, x_{n+m}) + \sum_{i=n}^{\infty} \psi^i(c).$$

Passing to the limit as $m \to \infty$, we get

$$\sigma(\nu, x_n) \le \sum_{i=n}^{\infty} \psi^i(c).$$

This implies that for all $n \geq N$ and $m \in \mathbb{N}$,

(2.9)
$$\sigma(\nu, x_{n+m}) \le \sum_{i=n+m}^{\infty} \psi^i(c).$$

Combining (2.8) and (2.9), we have

$$\sigma(\nu, x_n) \le \varphi^m(\sigma(\nu, x_n)) < \sigma(\nu, x_{n+m}) \le \sum_{i=n+m}^{\infty} \psi^i(c).$$

Then for all $n \geq N$ and $m \in \mathbb{N}$, we obtain

(2.10)
$$\sigma(\nu, x_n) < \sum_{i=n+m}^{\infty} \psi^i(c).$$

Letting $m \to \infty$ in (2.10), we get $\sigma(\nu, x_n) = 0$ for all $n \ge N$ and so, $\sigma(\nu, x_{n+m}) = 0$ for all $n \ge N$ and $m \in \mathbb{N}$. Using (2.8), we have $0 \le \varphi^m(0) < 0$, which is a contradiction. Therefore, (2.7) holds.

Now, we will show that $\sigma(\nu, T\nu) = 0$. Suppose in the contrary, that is $\sigma(\nu, T\nu) > 0$. By (2.1) and (2.7), we have for all $k \in \mathbb{N}$

$$\begin{split} \sigma(\nu, T\nu) &\leq & \sigma(\nu, x_{n(k)+1}) + \sigma(x_{n(k)+1}, T\nu) \leq \sigma(\nu, x_{n(k)+1}) + H_{\sigma}(Tx_{n(k)}, T\nu) \\ &\leq & \sigma(\nu, x_{n(k)+1}) + \psi(M_{\sigma}(x_{n(k)}, \nu)) \\ &\leq & \sigma(\nu, x_{n(k)+1}) \\ &+ & \psi(\max\{\sigma(x_{n(k)}, \nu), \sigma(x_{n(k)}, Tx_{n(k)}), \sigma(\nu, T\nu), \frac{1}{4}[\sigma(x_{n(k)}, T\nu) + \sigma(\nu, Tx_{n(k)})]\}) \\ &\leq & \sigma(\nu, x_{n(k)+1}) \\ &+ & \psi(\max\{\sigma(x_{n(k)}, \nu), \sigma(x_{n(k)}, x_{n(k)+1}), \sigma(\nu, T\nu), \frac{1}{4}[\sigma(x_{n(k)}, T\nu) + \sigma(\nu, x_{n(k)+1})]\}) \end{split}$$

We know that

$$\lim_{k \to \infty} \sigma(x_{n(k)}, \nu) = \lim_{k \to \infty} \sigma(x_{n(k)}, x_{n(k)+1}) = \lim_{k \to \infty} \sigma(x_{n(k)+1}, \nu) = 0, \quad \lim_{k \to \infty} \sigma(x_{n(k)}, T\nu) = \sigma(\nu, T\nu).$$

Then there exists $N \in \mathbb{N}$ such that for all $k \ge N$

$$\max\{\sigma(x_{n(k)},\nu),\sigma(x_{n(k)},x_{n(k)+1}),\sigma(\nu,T\nu),\frac{1}{4}[\sigma(x_{n(k)},T\nu)+\sigma(\nu,x_{n(k)+1})]\})=\sigma(\nu,T\nu).$$

It follows that for all $k \ge N$

$$0 < \sigma(\nu, T\nu) \leq \sigma(\nu, x_{n(k)+1}) + \psi(\sigma(\nu, T\nu)).$$

Passing to the limit as $k \to \infty$, we get

$$0 < \sigma(\nu, T\nu) \le \psi(\sigma(\nu, T\nu)) < \sigma(\nu, T\nu)$$

which is a contradiction. Hence $\sigma(\nu, T\nu) = 0$ and so, by Lemma 1.10 we have $\nu \in \overline{T\nu} = T\nu$, that is ν is a fixed point of T.

We give an example to illustrate the utility of Theorem 2.2.

Example 2.3. Let $X = \{0, 1, 2\}$ and $\sigma : X \times X \to \mathbb{R}^+$ defined by:

 $\sigma(0,0) = 0, \, \sigma(1,1) = 3, \, \sigma(2,2) = 1$ $\sigma(0,1) = \sigma(1,0) = 7,$ $\sigma(0,2) = \sigma(2,0) = 3,$ $\sigma(1,2) = \sigma(2,1) = 4.$

Then (X, σ) is a complete metric-like space. Note that σ is not a partial metric on X because $\sigma(0, 1) \nleq$ $\sigma(2,0) + \sigma(2,1) - \sigma(2,2).$ Define the map $T: X \to CB^{\sigma}(X)$ by

$$T0 = T2 = \{0\}$$
 and $T1 = \{0, 2\}.$

Note that Tx is bounded and closed for all $x \in X$ in metric-like space (X, σ) . Take $\varphi(t) = st$ with $s \geq 7$ and $\psi(t) = rt$ with $r \in [\frac{3}{4}, 1)$.

It is easy tho show that

$$\max\{\sigma(y, Tx), x, y \in X\} = \sigma(1, 0) = 7 \le 7 \min\{\sigma(y, x), x, y \in X, (x, y) \neq (0, 0)\}$$
$$\le \varphi(\min\{\sigma(y, x), x, y \in X, (x, y) \neq (0, 0)\}).$$

This implies that, for all $x, y \in X$ with $(x, y) \neq (0, 0)$

$$\sigma(y, Tx) \le \varphi(\sigma(y, x)).$$

Now, we shall show that for all $x, y \in X$ with $(x, y) \neq (0, 0)$

(2.11)
$$H_{\sigma}(Tx, Ty) \le \psi(M_{\sigma}(x, y)).$$

For this, we consider the following cases:

 $\underline{case1}$: $x, y \in \{0, 2\}$. We have

$$H_{\sigma}(Tx, Ty) = \sigma(0, 0) = 0 \le \psi(M_{\sigma}(x, y)).$$

case2:

$$\begin{split} x \in \{0,2\}, \ y &= 1. \text{ We have} \\ H_{\sigma}(Tx,Ty) &= H_{\sigma}(\{0\},\{0,2\}) = max\{\sigma(0,\{0,2\}),max\{\sigma(0,0),\sigma(0,2)\}\} \\ &= max\{0,3\} = 3 \leq \frac{3}{4}\sigma(x,y) \leq \psi(M_{\sigma}(x,y)). \end{split}$$

x = y = 1. We have case3:

$$\begin{aligned} H_{\sigma}(Tx,Ty) &= H_{\sigma}(\{0,2\},\{0,2\}) = max\{\sigma(0,\{0,2\}),\sigma(2,\{0,2\})\} \\ &= min\{\sigma(0,2),\sigma(2,2)\} = 1 \le \frac{3}{4}\sigma(1,1) \le \psi(M_{\sigma}(x,y)). \end{aligned}$$

Note that (2.11) is also true for (x, y) = (0, 0). Then, all the required hypotheses of Theorem 2.2 are satisfied. Here, x = 0 is the unique fixed point of T

We state the following corollaries as consequences of Theorem 2.2.

Corollary 2.4. Let (X, σ) be a complete metric-like space and $T: X \to CB^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

(2.12)
$$H_{\sigma}(Tx, Ty) \le \psi(M_{\sigma}(x, y)) - \varphi(\sigma(y, x)) + \sigma(y, Tx)$$

where $M_{\sigma}(x,y) = \max\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}.$ If $2t \leq \varphi(t)$ for each $t \in \mathbb{R}^+$, then T is an MWP operator.

Proof. Let $x, y \in X$ such that $\sigma(y, Tx) \leq \varphi(\sigma(y, x))$. Then, if (2.12) holds, we have

$$H_{\sigma}(Tx,Ty) \le \psi(M_{\sigma}(x,y)) - \varphi(\sigma(y,x)) + \sigma(y,Tx) \le \psi(M_{\sigma}(x,y)).$$

Thus, the proof is concluded by Theorem 2.2.

Corollary 2.5. Let (X, σ) be a complete metric-like space and $T: X \to CB^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in [0,1)$ and $s \geq 2$ such that, for all $x, y \in X$

$$\sigma(y, Tx) \le s\sigma(y, x) \Rightarrow H_{\sigma}(Tx, Ty) \le rM_{\sigma}(x, y),$$

where $M_{\sigma}(x,y) = \max\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}.$ Then T is an MWP operator.

Proof. It suffice to take $\varphi(t) = st$ and $\psi(t) = rt$ in Theorem 2.2.

Corollary 2.6. Let (X, σ) be a complete metric-like space and $T : X \to CB^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 2$ such that, for all $x, y \in X$

$$\sigma(y, Tx) \le s\sigma(y, x) \Rightarrow H_{\sigma}(Tx, Ty) \le r \max\{\sigma(x, y), \sigma(x, Tx), \sigma(y, Ty)\}.$$

Then T is an MWP operator.

Corollary 2.7. Let (X, σ) be a complete metric-like space and $T : X \to CB^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 2$ such that, for all $x, y \in X$

$$\sigma(y,Tx) \le s\sigma(y,x) \Rightarrow H_{\sigma}(Tx,Ty) \le \frac{r}{3} \{ \sigma(x,y) + \sigma(x,Tx) + \sigma(y,Ty) \}.$$

Then T is an MWP operator.

Corollary 2.8. [6] Let (X, σ) be a complete metric-like space. If $T : X \to CB^{\sigma}(X)$ is a multi-valued mapping such that for all $x, y \in X$, we have

(2.13)
$$H_{\sigma}(Tx, Ty) \le k M(x, y),$$

where $k \in [0, 1)$ and

$$M(x,y) = \max\left\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}\left(\sigma(x,Ty) + \sigma(y,Tx)\right)\right\}$$

Then T has a fixed point.

Proof. Let $\varphi(t) = 2t$ and $\psi(t) = kt$. Then, if (2.13) holds, we have

$$H_{\sigma}(Tx, Ty) \le \psi(M(x, y)),$$

for all $x, y \in X$ satisfying $\sigma(y, Tx) \leq 2\sigma(y, x)$. Thus, the proof is concluded by Theorem 2.2.

If T is a single-valued mapping, we deduce the following results.

Corollary 2.9. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$\sigma(y, Tx) \le \varphi(\sigma(y, x)) \Rightarrow \sigma(Tx, Ty) \le \psi(M_{\sigma}(x, y)),$$

where $M_{\sigma}(x,y) = \max\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}.$

If $2t \leq \varphi(t)$ for each $t \in \mathbb{R}^+$ and if $\psi(2t) < t$ for each t > 0, then T has a unique fixed point.

Proof. The existence follows immediately from Theorem 2.2. Thus, we need to prove uniqueness of fixed point. We assume that there exist $x, y \in X$ such that x = Tx and y = Ty with $x \neq y$. Since $\sigma(y, Tx) = \sigma(y, x) \leq \varphi(\sigma(y, x))$, then by (2.1) and since $\psi(2t) < t$, we get

$$\begin{aligned} 0 < \sigma(x,y) &= \sigma(Tx,Ty) &\leq \psi(\max\{\sigma(x,y),\sigma(x,Tx),\sigma(y,Ty),\frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}) \\ &= \psi(\max\{\sigma(x,y),\sigma(x,x),\sigma(y,y),\frac{1}{2}\sigma(x,y)\}) \\ &\leq \psi(2\sigma(x,y)) < \sigma(x,y). \end{aligned}$$

which is a contradiction. Hence x = y, so the uniqueness of the fixed point of T.

Corollary 2.10. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a mapping. Assume that there exist $r \in [0, \frac{1}{2})$ and $s \ge 2$ such that, for all $x, y \in X$

$$\sigma(y, Tx) \le s(\sigma(y, x)) \Rightarrow \sigma(Tx, Ty) \le r(M_{\sigma}(x, y)),$$

where $M_{\sigma}(x, y) = \max\{\sigma(x, y), \sigma(x, Tx), \sigma(y, Ty), \frac{1}{4}[\sigma(x, Ty) + \sigma(Tx, y)]\}$. Then T has a unique fixed point.

Now, we need the following definition.

 \square

Definition 2.11. Let (X, σ) be a metric-like space. A multi-valued mapping $T : X \to CB^{\sigma}(X)$ is said to be (r, s)-contractive multi-valued operator if there exist $r, s \in [0, 1)$, such that

(2.14)
$$\frac{1}{1+r}\sigma(x,Tx) \le \sigma(y,x) \le \frac{1}{1-s}\sigma(x,Tx) \Rightarrow H_{\sigma}(Tx,Ty) \le rM_{\sigma}(x,y)$$

for all $x, y \in X$, where

$$M_{\sigma}(x,y) = \max\{\sigma(x,y), \sigma(x,Tx), \sigma(y,Ty), \frac{1}{4}[\sigma(x,Ty) + \sigma(Tx,y)]\}.$$

We give the following result.

Theorem 2.12. Let (X, σ) be a complete metric-like space and $T : X \to CB^{\sigma}(X)$ be (r, s)-contractive multi-valued operator with r < s. Then T is an MWP operator.

Proof. Let r_1 be a real number such that $0 \le r \le r_1 < s$. Let $x_0 \in X$. Clearly, if $x_0 \in Tx_0$, then x_0 is a fixed point of T and so, the proof is finished. Now, we assume that $x_0 \notin Tx_0$. Then $\sigma(x_0, Tx_0) > 0$. By Lemma 1.11, there exists $x_1 \in Tx_0$ such that

$$\sigma(x_0, x_1) \le \frac{1 - r_1}{1 - s} \sigma(x_0, Tx_0).$$

If $x_1 \in Tx_1$, then x_1 is a fixed point of T and also, the proof is finished. Now, we assume that $x_1 \notin Tx_1$. Then $\sigma(x_1, Tx_1) > 0$. Since

$$\frac{1}{1+r}\sigma(x_0, Tx_0) \le \sigma(x_0, x_1)) \le \frac{1-r_1}{1-s}\sigma(x_0, Tx_0),$$

then, by (2.14), we have

$$\sigma(x_1, Tx_1) \leq H_{\sigma}(Tx_0, Tx_1) \leq r \max\{\sigma(x_0, x_1), \sigma(x_0, Tx_0), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_0, Tx_1) + \sigma(x_1, Tx_0)]\}$$

$$\leq r \max\{\sigma(x_0, x_1), \sigma(x_0, x_1), \sigma(x_1, Tx_1), \frac{1}{4}[\sigma(x_1, Tx_1) + 3\sigma(x_0, x_1)]\}$$

$$\leq r \max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\}.$$

If $\max\{\sigma(x_0, x_1), \sigma(x_1, Tx_1)\} = \sigma(x_1, Tx_1)$, then we obtain $\sigma(x_1, Tx_1) \leq r\sigma(x_1, Tx_1) < \sigma(x_1, Tx_1)$, which is a contradiction. Thus, we get

$$\sigma(x_1, Tx_1) \le r\sigma(x_0, x_1).$$

By Lemma 1.11, there exists $x_2 \in Tx_1$ such that

$$\sigma(x_1, x_2) \le \frac{r_1}{r} \sigma(x_1, Tx_1)$$
 and $\sigma(x_1, x_2) \le \frac{1 - r_1}{1 - s} \sigma(x_1, Tx_1).$

This implies that

$$\sigma(x_1, x_2) \le r_1 \sigma(x_0, x_1)$$
 and $\sigma(x_1, x_2) \le \frac{1 - r_1}{1 - s} \sigma(x_1, Tx_1)$.

It follows that

$$\frac{1}{1+r}\sigma(x_1, Tx_1) \le \sigma(x_1, Tx_2) \le \frac{1}{1-s}\sigma(x_1, Tx_1).$$

Then, by (2.14), we get $\sigma(x_2, Tx_2) \leq r\sigma(x_1, x_2)$. Continuing this process, we construct a sequence $\{x_n\}$ in X such that

 $\begin{array}{ll} ({\rm i}) & x_{n+1} \in Tx_n; \\ ({\rm ii}) & \sigma(x_n, Tx_n) \leq r\sigma(x_{n-1}, x_n); \\ ({\rm iii}) & \sigma(x_n, x_{n+1}) \leq r_1 \sigma(x_{n-1}, x_n); \\ ({\rm iv}) & \sigma(x_n, x_{n+1}) \leq \frac{1-r_1}{1-s} \sigma(x_n, Tx_n) \end{array}$

for all n = 1, 2, ...

Since $\sigma(x_n, x_{n+1}) \leq r_1 \sigma(x_{n-1}, x_n)$, by induction we obtain

$$\sigma(x_n, x_{n+1}) \le r_1^n \sigma(x_0, x_1) \quad \text{for all } n = 1, 2, \dots$$

Now, for m > n, we have

$$\sigma(x_n, x_m) \leq \sum_{i=n}^{m-1} \sigma(x_i, x_{i+1}) \leq \sigma(x_0, x_1) \sum_{i=n}^{m-1} r_1^i \leq \sigma(x_0, x_1) \sum_{i=n}^{\infty} r_1^i \to 0 \text{ as } n \to \infty.$$

Thus,

(2.15)
$$\lim_{n,m\to\infty}\sigma(x_n,x_m)=0.$$

Hence, $\{x_n\}$ is σ -Cauchy. Moreover since (X, σ) is complete, it follows there exists $z \in X$ such that (2.16) $\lim_{n \to \infty} \sigma(x_n, z) = \sigma(z, z) = \lim_{n, m \to \infty} \sigma(x_n, x_m) = 0.$

For all $m, n \in \mathbb{N}$, we have

$$\sigma(x_n, x_{n+m}) \leq \sigma(x_n, x_{n+1}) + \sigma(x_{n+1}, x_{n+2}) + \dots + \sigma(x_{n+m-1}, x_{n+m})$$

$$\leq [1 + r_1 + r_1^2 + \dots + r_1^{m-1}]\sigma(x_n, x_{n+1}) = \frac{1 - r_1^m}{1 - r_1}\sigma(x_n, x_{n+1}).$$

It follows that for all $m, n \in \mathbb{N}$

$$\sigma(x_n, z) \le \sigma(x_n, x_{n+m}) + \sigma(x_{n+m}, z) \le \sigma(x_{n+m}, z) + \frac{1 - r_1^m}{1 - r_1} \sigma(x_n, x_{n+1})$$

Passing to limit as $m \to \infty$, we get for all $n \in \mathbb{N}$

$$\sigma(x_n, z) \le \frac{1}{1 - r_1} \sigma(x_n, x_{n+1}) \le \frac{1}{1 - r_1} \cdot \frac{1 - r_1}{1 - s} \sigma(x_n, Tx_n) = \frac{1}{1 - s} \sigma(x_n, Tx_n).$$

Thus, we have for all $n \in \mathbb{N}$

(2.17)
$$\sigma(x_n, z) \le \frac{1}{1-s} \sigma(x_n, Tx_n).$$

Now, we assume that there exists $N \in \mathbb{N}$ such that

$$\frac{1}{1+r}\sigma(x_n, Tx_n) > \sigma(x_n, z)$$

for all $n \geq N$. Then we have

$$\sigma(x_n, x_{n+1}) \leq \sigma(x_n, z) + \sigma(z, x_{n+1}) < \frac{1}{1+r} [\sigma(x_n, Tx_n) + \sigma(x_{n+1}, Tx_{n+1})]$$

$$< \frac{1}{1+r} [\sigma(x_n, x_{n+1}) + r\sigma(x_n, x_{n+1})] = \sigma(x_n, x_{n+1}).$$

which is a contradiction. Thus, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

(2.18)
$$\frac{1}{1+r}\sigma(x_{n(k)}, Tx_{n(k)}) \le \sigma(x_{n(k)}, z)$$

for all $k \in \mathbb{N}$. Now, we should show that z is a fixed point of T. Using (2.17), (2.18) and (2.14), we have for all $k \in \mathbb{N}$

$$\sigma(x_{n(k)+1}, Tz) \leq H_{\sigma}(Tx_{n(k)}, Tz) \leq r \max\{\sigma(x_{n(k)}, z), \sigma(x_{n(k)}, Tx_{n(k)}), \sigma(z, Tz), \frac{1}{4}[\sigma(x_{n(k)}, Tz) + \sigma(z, Tx_{n(k)})]\} \leq r \max\{\sigma(x_{n(k)}, z), \sigma(x_{n(k)}, x_{n(k)+1}), \sigma(z, Tz), \frac{1}{4}[\sigma(x_{n(k)}, Tz) + \sigma(z, x_{n(k)+1})]\}.$$

Passing to limit as $k \to \infty$, we get

$$\sigma(z,Tz) \le r\sigma(z,Tz).$$

Since r < 1, it follows that $\sigma(z, Tz) = 0$. Thus, by Lemma 1.10 we obtain $z \in Tz$, that is, z is a fixed point of T.

Corollary 2.13. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a mapping. Assume that there exist $r \in [0, 1)$ such that, for all $x, y \in X$

$$\frac{1}{1+r}\sigma(x,Tx) \le \sigma(x,y) \le \frac{1}{1-r}\sigma(x,Tx) \Rightarrow \sigma(Tx,Ty) \le rM_{\sigma}(x,y),$$

where $M_{\sigma}(x, y) = \max\{\sigma(x, y), \sigma(x, Tx), \sigma(y, Ty), \frac{1}{4}[\sigma(x, Ty) + \sigma(Tx, y)]\}$. Then T has a fixed point.

Proof. Let $x_0 \in X$. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$ for all n = 0, 1, 2, ... We have for all n = 0, 1, 2, ...

$$\frac{1}{1+r}\sigma(x_n, Tx_n) \le \sigma(x_n, x_{n+1}) \le \frac{1}{1-r}\sigma(x_n, Tx_n)$$

It follows that for all $n = 0, 1, 2, \ldots$

$$\sigma(x_{n+1}, x_{n+2}) = \sigma(Tx_n, Tx_{n+1}) \le r\sigma(x_n, x_{n+1}).$$

Thus the sequence $\{x_n\}$ is Cauchy in (X, σ) . By completeness of (X, σ) there exists $z \in X$ such that

(2.19)
$$\lim_{n \to \infty} \sigma(x_n, z) = \sigma(z, z) = \lim_{n, m \to \infty} \sigma(x_n, x_m) = 0$$

We have for all $n, m \in \mathbb{N}$

$$\sigma(x_n, x_{n+m}) \le \frac{1 - r^m}{1 - r} \sigma(x_n, x_{n+1}).$$

It follows that

$$\sigma(x_n, z) \le \sigma(x_n, x_{n+m}) + \sigma(x_{n+m}, z) \le \frac{1 - r^m}{1 - r} \sigma(x_n, x_{n+1}) + \sigma(x_{n+m}, z).$$

Passing to limit as $m \to \infty$, we get

$$\sigma(x_n, z) \le \frac{1}{1-r}\sigma(x_n, x_{n+1})$$

Proceeding as in the proof of Theorem 2.12, we can find a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

(2.20)
$$\frac{1}{1+r}\sigma(x_{n(k)}, Tx_{n(k)}) \le \sigma(x_{n(k)}, z)$$

for all $k \in \mathbb{N}$. Then as in the proof of Theorem 2.12 we get z is a fixed point of T.

We give the following illustrative example inspired from [4].

Example 2.14. Let $X = \{0, 1, 2\}$ and $\sigma : X \times X \to \mathbb{R}^+$ defined by:

$$\begin{aligned} \sigma(0,0) &= \sigma(2,2) = \frac{1}{4}, \ \sigma(1,1) = 0, \quad \sigma(0,1) = \sigma(1,0) = \frac{1}{3}, \\ \sigma(0,2) &= \sigma(2,0) = \frac{2}{5}, \quad \sigma(1,2) = \sigma(2,1) = \frac{11}{15}. \end{aligned}$$

Then (X, σ) is a complete metric-like space. Note that σ is not a partial metric on X as $\sigma(1, 2) > \sigma(1, 0) + \sigma(0, 2) - \sigma(0, 0)$.

Define the map $T: X \to CB^{\sigma}(X)$ by

$$T0 = T1 = \{1\}$$
 and $T2 = \{0, 1\}.$

Note that Tx is bounded and closed for all $x \in X$ in metric-like space (X, σ) .

We have

$$\max\{\sigma(x, Tx), x \in X\} = \max\{\sigma(0, 1), \sigma(1, 1), \sigma(2, 0)\} = \frac{2}{5},$$
$$\min\{\sigma(x, Tx), x \in X - \{1\}\} = \frac{1}{3}.$$

Therefore, we have

$$\frac{1}{4} \leq \sigma(x,y) \leq \frac{11}{15}$$

for all $x, y \in X$ with $(x, y) \neq (1, 1)$. It follows that

$$\frac{1}{1+r}\sigma(x,Tx) \le \sigma(x,y) \le \frac{1}{1-s}\sigma(x,Tx)$$

for all $x, y \in X$ with $x \neq 1$ and for some $\frac{3}{5} \leq r < s < 1$. Observe that the above inequalities are also true for x = y = 1 but not hold for x = 1 and $y \in \{0, 2\}$.

Now, we shall show that

(2.21)
$$H_{\sigma}(Tx, Ty) \le rM_{\sigma}(x, y)$$

for all $x, y \in X$ for some $\frac{5}{6} \le r < 1$. For this, we consider the following cases: <u>case1</u>: $x, y \in \{0, 1\}$, with $(x, y) \ne (1, 0)$. We have

$$H_{\sigma}(Tx, Ty) = \sigma(1, 1) = 0 \le rM_{\sigma}(x, y).$$

 $\underline{\text{case2}}$:

$$\begin{aligned} x &= 0, \ y = 2. \ \text{We have} \\ H_{\sigma}(Tx, Ty) &= H_{\sigma}(\{1\}, \{0, 1\}) = max\{\sigma(1, \{0, 1\}), max\{\sigma(1, 1), \sigma(1, 0)\}\} \\ &= \frac{1}{3} \leq \frac{5}{6}\sigma(x, y) \leq rM_{\sigma}(x, y) \end{aligned}$$

 $\underline{\text{case3}}$: x = y = 2. We have

$$\begin{aligned} H_{\sigma}(Tx,Ty) &= H_{\sigma}(\{0,1\},\{0,1\}) = max\{\sigma(0,\{0,1\}),\sigma(1,\{0,1\})\} \\ &= min\{\sigma(0,0),\sigma(0,1)\} = \frac{1}{4} \end{aligned}$$

Moreover, we have $M_{\sigma}(2,2) = \max\{\sigma(2,2), \sigma(2,T2)\} = \max\{\frac{1}{4}, \frac{2}{5}\} = \frac{2}{5}$. Then for x = y = 2 we get

$$H_{\sigma}(T2, T2) = \frac{1}{4} \le \frac{5}{6} \cdot \frac{2}{5} \le rM_{\sigma}(2, 2).$$

Then, all the required hypotheses of Theorem 2.12 are satisfied. Here, x = 1 is the unique fixed point of T.

Now, we need the following definition.

Definition 2.15. Let (X, p) be a partial metric space. A multi-valued mapping $T : X \to CB^p(X)$ is said to be (φ, ψ) -contractive multi-valued operator if there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

(2.22)
$$p(y,Tx) \le \varphi(p(y,x)) \Rightarrow H_p(Tx,Ty) \le \psi(M_p(x,y))$$

for all $x, y \in X$, where

$$M_p(x,y) = \max\{p(x,y), p(x,Tx), p(y,Ty), \frac{1}{2}[p(x,Ty) + p(Tx,y)]\}$$

We give the following result.

Theorem 2.16. Let (X, p) be a complete partial metric space and $T : X \to CB^p(X)$ be (φ, ψ) -contractive multi-valued operator. Then T is an MWP operator.

Proof. Let $x_0 \in X$ and $x_1 \in Tx_0$. Let c a given real number such that $p(x_0, x_1) < c$.

Clearly, if $x_1 = x_0$ or $x_1 \in Tx_1$, we conclude that x_1 is a fixed point of T and so the proof is finished.

Now, we assume that $x_1 \neq x_0$ and $x_1 \notin Tx_1$. So then, $p(x_0, x_1) > 0$ and $p(x_1, Tx_1) > 0$.

Since $x_1 \in Tx_0$, we get

$$p(x_1, Tx_0) \le p(x_1, x_1) \le p(x_1, x_0) \le \varphi(p(x_1, x_0)).$$

Hence by (2.22) and triangular inequality, we have

$$\begin{aligned} 0 < p(x_1, Tx_1) &\leq H_p(Tx_0, Tx_1) \leq \psi(M_p(x_0, x_1)) \\ &\leq \psi(\max\{p(x_0, x_1), p(x_0, Tx_0), p(x_1, Tx_1), \frac{1}{2}[p(x_0, Tx_1) + p(x_1, Tx_0)]\}) \\ &\leq \psi(\max\{p(x_0, x_1), p(x_1, Tx_1), \frac{1}{2}[p(x_0, Tx_1) + p(x_1, x_1)]\}) \\ &\leq \psi(\max\{\sigma(x_0, x_1), \sigma(x_0, x_1), \sigma(x_1, Tx_1), \frac{1}{2}[p(x_1, Tx_1) + p(x_0, x_1)]\}) \\ &= \psi(\max\{p(x_0, x_1), p(x_1, Tx_1)\}) = \psi(p(x_0, x_1)) < \psi(c). \end{aligned}$$

Proceeding as in the proof of Theorem 2.2, we construct a sequence $\{x_n\}$ in X such that for all $n \in \mathbb{N}$

(i)
$$x_n \notin Tx_n, x_n \neq x_{n+1}, x_{n+1} \in Tx_n;$$

(ii)

$$(2.23) p(x_n, x_{n+1}) \le \psi^n(c).$$

Now, for m > n, we have

$$p(x_n, x_m) \leq \sum_{i=n}^{m-1} p(x_i, x_{i+1}) - \sum_{i=n+1}^{m-1} p(x_i, x_i) \leq \sum_{i=n}^{m-1} \psi^i(c) \leq \sum_{i=n}^{\infty} \psi^i(c) \to 0 \text{ as } n \to \infty.$$

Thus,

(2.24)
$$\lim_{n,m\to\infty} p(x_n, x_m) = 0.$$

Hence, $\{x_n\}$ is Cauchy in (X, p). Moreover since (X, p) is complete, it follows there exists $z \in X$ such that

(2.25)
$$\lim_{n \to \infty} p(x_n, z) = p(z, z) = \lim_{n, m \to \infty} p(x_n, x_m) = 0.$$

Proceeding again as in the proof of Theorem 2.2, we prove that z is a fixed point of T.

Analogously, we can derive the following results.

Corollary 2.17. Let (X, p) be a complete partial metric space and $T : X \to CB^p(X)$ be a multi-valued mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$H_p(Tx, Ty) \le \psi(M_p(x, y)) + p(y, Tx) - \varphi(p(y, x)),$$

where $M_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}$. Then T has a unique fixed point.

Corollary 2.18. ([4], Theorem 2.2) Let (X, p) be a complete partial metric space and $T : X \to CB^p(X)$ be a multi-valued mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 1$ such that, for all $x, y \in X$

$$p(y,Tx) \le sp(y,x) \Rightarrow H_p(Tx,Ty) \le rM_p(x,y),$$

where $M_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}$. Then T is an MWP operator.

Proof. It suffice to take $\varphi(t) = st$ and $\psi(t) = rt$ in Theorem 2.16.

Corollary 2.19. Let (X, p) be a complete partial metric space and $T : X \to CB^p(X)$ be a multi-valued mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 1$ such that, for all $x, y \in X$

$$p(y,Tx) \le sp(y,x) \Rightarrow H_p(Tx,Ty) \le r \max\{p(x,y), p(x,Tx), p(y,Ty)\}.$$

Then T is an MWP operator.

Corollary 2.20. Let (X, p) be a complete partial metric space and $T : X \to CB^p(X)$ be a multi-valued mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 1$ such that, for all $x, y \in X$

$$p(y,Tx) \le sp(y,x) \Rightarrow H_p(Tx,Ty) \le \frac{r}{3} \{ p(x,y) + p(x,Tx) + p(y,Ty) \}.$$

Then T is an MWP operator.

If T is a single-valued mapping, we deduce the following results.

Corollary 2.21. Let (X, p) be a complete partial metric space and $T : X \to X$ be a mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$p(y,Tx) \le \varphi(p(y,x)) \Rightarrow p(Tx,Ty) \le \psi(M_p(x,y)),$$

where $M_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}.$

Then T has a unique fixed point.

Proof. The existence follows immediately also from Theorem 2.16. Thus, we need to prove uniqueness of fixed point. We assume that there exist $x, y \in X$ such that x = Tx and y = Ty with $x \neq y$.

Since $p(y, Tx) = p(y, x) \le \varphi(p(y, x))$, then by (2.22), we get

$$\begin{aligned} 0 < p(x,y) &= p(Tx,Ty) &\leq \psi(\max\{p(x,y), p(x,Tx), p(y,Ty), \frac{1}{2}[p(x,Ty) + p(Tx,y)]\}) \\ &= \psi(\max\{p(x,y), p(x,x), p(y,y), p(x,y)\}) = \psi(p(x,y)) \\ &< p(x,y) \end{aligned}$$

which is a contradiction. Hence x = y, so the uniqueness of the fixed point of T.

Corollary 2.22. Let (X, p) be a complete partial metric space and $T : X \to X$ be a mapping. Assume that there exist $r \in [0, 1)$ and $s \ge 1$ such that, for all $x, y \in X$

$$p(y,Tx) \le sp(y,x) \Rightarrow p(Tx,Ty) \le rM_p(x,y),$$

where $M_p(x, y) = \max\{p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\}$. Then T has a unique fixed point.

References

- IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of multi-valued weakly Picard operators, Stud. Univ. Babe?s-Bolyai, Math. 46 (2001), 111-121.
- [2] IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), 1947-1959.
- [3] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc. 136 (2008), 1861-1869.
- [4] M. Jleli, H. K. Nashine, B. Samet and C. Vetro, On multi-valued weakly Picard operators in partial Hausdorff metric spaces, Fixed Point Theory Appl. 20015 (2015), Art. ID 52.
- [5] I. Altun and H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1C8.
- [6] E. Karapinar, H. Aydi, A. Felhi and S. Sahmim, Hausdorff Metric-Like, generalized Nadler's Fixed Point Theorem on Metric-Like Spaces and application, Miskolc Math. Notes (in press).
- [7] C.T. Aage and J.N. Salunke, The results on fixed points in dislocated and dislocated quasi-metric space, Appl. Math. Sci, 2(59) (2008), 2941-2948.
- [8] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences, 728 (1994), 183-197.
- H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadlers fixed point theorem on partial metric spaces, Topol. Appl. 159 (2012), 3234-3242.
- [10] R.D. Daheriya, R. Jain and M. Ughade, Some fixed point theorem for expansive type mapping in dislocated metric space, ISRN Math. Anal. 2012 (2012), Art. ID 376832.
- [11] A. Isufati, Fixed point theorems in dislocated quasi-metric space, Appl. Math. Sci. 4(5) (2010), 217-233.
- [12] Amini A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), Art. ID 204.
- [13] R. George, Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal. 7(9) (2013), 403-411.
- [14] G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16 (1973), 201C206.
- [15] E. Karapınar and P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl. 2013 (2013), Art. ID 222.
- [16] P.S. Kumari, W. Kumar and I.R. Sarma, Common fixed point theorems on weakly compatible maps on dislocated metric spaces, Math. Sci. 6 (2012), 71.
- [17] PS. Kumari, Some fixed point theorems in generalized dislocated metric spaces, Math. Theory Model. 1(4) (2011), 16-22.
- [18] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
- [19] I.R. Sarma and P.S. Kumari, On dislocated metric spaces, Int. J. Math. Arch. 3(1) (2012), 72-77.
- [20] R. Shrivastava, ZK. Ansari and M. Sharma, Some results on fixed points in dislocated and dislocated quasi-metric spaces, J. Adv. Stud. Topol. 3(1) (2012), 25-31.
- [21] M. Shrivastava, K. Qureshi and A.D. Singh, A fixed point theorem for continuous mapping in dislocated quasi-metric spaces, Int. J. Theor. Appl. Sci. 4(1) (2012), 39-40.
- [22] K. Zoto, Some new results in dislocated and dislocated quasi-metric spaces. Appl. Math. Sci. 6(71) (2012), 3519-3526.

¹Department of Mathematics, College of Sciences, King Faisal University, Hafouf, Saudi Arabia

²Department of Mathematics, Preparatory Engineering Institute, Bizerte, Carthage University, Tunisia

 \square

*Corresponding Author: afelhi@kfu.edu.sa