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ON MULTI-VALUED WEAKLY PICARD OPERATORS IN HAUSDORFF

METRIC-LIKE SPACES

ABDELBASSET FELHI1,2,∗

Abstract. In this paper, we study multi-valued weakly Picard operators on Hausdorff metric-like

spaces. Our results generalize some recent results and extend several theorems in the literature.

Some examples are presented making effective our results.

1. Introduction and preliminaries

Let (X, d) be a metric space and CB(X) denotes the collection of all nonempty, closed and bounded
subsets of X. Also, CL(X) denotes the collection of nonempty closed subsets of X. For A,B ∈ CB(X),
define

H(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(x,A) := inf{d(x, a) : a ∈ A} is the distance of a point x to the set A. It is known that H
is a metric on CB(X), called the Hausdorff metric induced by d. Throughout the paper, N, R, and
R+ denote the set of positive integers, the set of all real numbers and the set of all non-negative real
numbers, respectively.

Definition 1.1. ([1]) Let (X, d) be a metric space and T : X → CL(X) be a multi-valued operator.
We say that T is a multi-valued weakly Picard operator (MWP operator) if for all x ∈ X and y ∈ Tx,
there exists a sequence {xn} such that:

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ Txn for all n = 0, 1, 2, . . . ;
(iii) the sequence {xn} is convergent and its limit is a fixed point of T.

The theory of MWP operators is studied by several authors (see for instance [1, 2]). In 2008 Suzuki
[3] generalizes the Banach contraction principle by introducing a new type of mapping. Very recently,
Jleli et al. [4] established Kikkawa-Suzuki type fixed point theorems for a new type of generalized
contractive conditions on partial Hausdorff metric spaces. The purpose of this paper is to discuss
multi-valued weakly Picard operators on partial Hausdorff metric spaces and on Hausdorff metric-like
spaces. We will establish the above fixed point theorems for a new type of generalized contractive
conditions which generalizes that of Jleli et al.

We recall that the study of fixed points for multi-valued contractions using the Hausdorff metric
was initiated by Nadler [18] who proved the following theorem.

Theorem 1.2. ([18]) Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued
mapping satisfying H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X and for some k in [0, 1). Then there exists
x ∈ X such that x ∈ Tx.

We recall that the notion of partial metric spaces was introduced by Matthews [8] in 1994 as a part
to study the denotational semantics of dataflow networks which play an important role in constructing
models in the theory of computation. Moreover, the notion of metric-like spaces has been discovered
by Amini-Harandi [12] which is an interesting generalization of the notion of partial metric spaces. For
more fixed point results on metric-like spaces, see [7], [10], [11], [13], [15], [16], [17], [19], [20], [21], [22].
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Note that, every partial metric space is a metric-like space but the converse is not true in general. In
what follows, we recall some definitions and results we will need in the sequel.

Definition 1.3. ([8]) A partial metric on a nonempty set X is a function p : X ×X → [0,∞) such
that for all x, y, z ∈ X
(PM1) p(x, x) = p(x, y) = p(y, y), then x = y;
(PM2) p(x, x) ≤ p(x, y);
(PM3) p(x, y) = p(y, x);
(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z).

The pair (X, p) is then called a partial metric space (PMS).

According to [8], each partial metric p on X generates a T0 topology τp on X which has as a base the
family of open p−balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for
all x ∈ X and ε > 0. Following [8], several topological concepts can be defined as follows. A sequence
{xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) = limn→∞ p(xn, x)
and is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists and is finite. Moreover, a partial metric
space (X, p) is called to be complete if every Cauchy sequence {xn} in X converges, with respect to τp,
to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm). It is known [8] that if p is a partial metric
on X, then the function ps : X ×X → R+ defined by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

for all x, y ∈ X, is a metric on X.
Note that if a sequence converges in a partial metric space (X, p) with respect to τps , then it

converges with respect to τp.
Also, a sequence {xn} in a partial metric space (X, p) is Cauchy if and only if it is a Cauchy sequence

in the metric space (X, ps). Consequently, a partial metric space (X, p) is complete if and only if the
metric space (X, ps) is complete. Moreover, if {xn} is a sequence in a partial metric space (X, p) and
x ∈ X, one has that

lim
n→∞

ps(xn, x) = 0⇔ p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

We have the following lemmas.

Lemma 1.4. Let (X, p) be a partial metric space. Then,
(1) if p(x, y) = 0 then, x = y,
(2) if x 6= y then, p(x, y) > 0.

Following [9], let (X, p) be a partial metric space and CBp(X) be the family of all nonempty, closed
and bounded subsets of the partial metric space (X, p), induced by the partial metric p.

For A,B ∈ CBp(X) and x ∈ X, we define

p(x,A) = inf{p(x, a) : a ∈ A}, Hp(A,B) = max{sup
a∈A

p(a,B), sup
b∈B

p(b, A)}.

Lemma 1.5. ([5]) Let (X, p) be a partial metric space and A any nonempty set in (X, p), then a ∈ A
if and only if p(a,A) = p(a, a), where A denotes the closure of A with respect to the partial metric p.

Proposition 1.6. ([9]) Let (X, p) be a partial metric space. For all A,B,C ∈ CBp(X), we have

(h1) Hp(A,A) ≤ Hp(A,B);
(h2) Hp(B,A) = Hp(A,B);
(h3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c);
(h4) Hp(A,B) = 0⇒ A = B.

Definition 1.7. Let X be a nonempty set. A function σ : X ×X → R+ is said to be a metric-like
(dislocated metric) on X if for any x, y, z ∈ X, the following conditions hold:

(P1) σ(x, y) = 0 =⇒ x = y;
(P2) σ(x, y) = σ(y, x);
(P3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is then called a metric-like (dislocated metric) space.
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In the following example, we give a metric-like which is neither a metric nor a partial metric.

Example 1.8. Let X = {0, 1, 2} and σ : X ×X → R+ defined by

σ(0, 0) = σ(1, 1) = 0, σ(2, 2) = 3, σ(0, 1) = 1, σ(0, 2) = σ(1, 2) = 2,

and σ(x, y) = σ(y, x) for all x ∈ X. Then, (X,σ) is a metric-like space. Note that σ is nor a metric as,
σ(2, 2) > 0 and not a partial metric on X as, σ(2, 2) > σ(0, 2).

Each metric-like σ on X generates a T0 topology τσ on X which has as a base the family open
σ-balls {Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈ X : |σ(x, y)− σ(x, x)| < ε}, for all x ∈ X and
ε > 0.

Observe that a sequence {xn} in a metric-like space (X,σ) converges to a point x ∈ X, with respect
to τσ, if and only if σ(x, x) = lim

n→∞
σ(x, xn).

Definition 1.9. Let (X,σ) be a metric-like space.

(a) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

σ(xn, xm) exists and is finite.

(b) (X,σ) is said to be complete if every Cauchy sequence {xn} in X converges with respect to τσ
to a point x ∈ X such that lim

n→∞
σ(x, xn) = σ(x, x) = lim

n,m→∞
σ(xn, xm).

We have the following trivial inequality:

(1.1) σ(x, x) ≤ 2σ(x, y) for all x, y ∈ X.

Very recently, Aydi et al. [6] introduced the concept of Hausdorff metric-like. Let CBσ(X) be the
family of all nonempty, closed and bounded subsets of the metric-like space (X,σ), induced by the
metric-like σ. Note that the boundedness is given as follows: A is a bounded subset in (X,σ) if there
exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bσ(x0,M), that is,

|σ(x0, a)− σ(a, a)| < M.

The Closeness is taken in (X, τσ) (where τσ is the topology induced by σ).
For A,B ∈ CBσ(X) and x ∈ X, define

σ(x,A) = inf{σ(x, a), a ∈ A}, δσ(A,B) = sup{σ(a,B) : a ∈ A} and

δσ(B,A) = sup{σ(b, A) : b ∈ B}.

We have the the following useful lemmas.

Lemma 1.10. [6]
Let (X,σ) be a metric-like space and A any nonempty set in (X,σ), then

if σ(a,A) = 0, then a ∈ Ā,

where A denotes the closure of A with respect to the metric-like σ. Also, if {xn} is a sequence in (X,σ)
that is τσ-convergent to x ∈ X, then

lim
n→∞

|σ(xn, A)− σ(x,A)| = σ(x, x).

Lemma 1.11. Let A,B ∈ CBσ(X) and a ∈ A. Suppose that σ(a,B) > 0. Then, for each h > 1, there
exists b = b(a) ∈ B such that σ(a, b) < hσ(a,B).

Proof. We argue by contradiction, that is, there exists h > 1, such that for all b ∈ B, there is
σ(a, b) ≥ hσ(a,B). Then, σ(a,B) = inf{σ(a,B) : b ∈ B} ≥ hσ(a,B). Hence, h ≤ 1, which is a
contradiction. �

Let (X,σ) be a metric-like space. For A,B ∈ CBσ(X), define

Hσ(A,B) = max {δσ(A,B), δσ(B,A)} .

We have also some properties of Hσ : CBσ(X)× CBσ(X)→ [0,∞).
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Proposition 1.12. [6] Let (X,σ) be a metric-like space. For any A,B,C ∈ CBσ(X), we have the
following:

(i) : Hσ(A,A) = δσ(A,A) = sup{σ(a,A) : a ∈ A};
(ii) : Hσ(A,B) = Hσ(B,A);

(iii) : Hσ(A,B) = 0 implies that A = B;

(iv) : Hσ(A,B) ≤ Hσ(A,C) +Hσ(C,B).

The mapping Hσ : CBσ(X) × CBσ(X) → [0,+∞) is called a Hausdorff metric-like induced by
σ. Note that each partial hausdorff metric is a Hausdorff metric-like but the converse is not true in
general as it is clear from the following example.

Example 1.13. Going back to Example 1.8, taking A = {2}, B = {0} we have Hσ(A,A) = σ(2, 2) =
3 > 2 = σ(0, 2) = Hσ(A,B).

We denote by Ψ the class of all functions ψ : R+ → R+ satisfying
(ψ1) ψ is nondecreasing;

(ψ2)
∑
n

ψn(t) <∞ for each t ∈ R+, where ψn is the n−th iterate of ψ.

Also, we denote by Φ the class of all functions ϕ : R+ → R+ satisfying
(ϕ1) ϕ is nondecreasing;
(ϕ2) t ≤ ϕ(t) for each t ∈ R+.

Lemma 1.14. (i) If ψ ∈ Ψ, then ψ(t) < t for any t > 0 and ψ(0) = 0.
(ii) If ϕ ∈ Φ, then t ≤ ϕn(t) for all n ∈ N ∪ {0} and for any t ∈ R+.

We have the following useful lemma.

Lemma 1.15. Let (X,σ) be a metric-like space, B ∈ CBσ(X) and c > 0. If a ∈ X and σ(a,B) < c
then there exists b = b(a) ∈ B such that σ(a, b) < c.

Proof. We argue by contradiction, that is, σ(a, b) ≥ c for all b ∈ B, then σ(a,B) = inf{σ(a, b) : b ∈
B} ≥ c, which is a contradiction. Hence there exists b = b(a) ∈ B such that σ(a, b) < c. �

2. Main Results

In this section, we give some fixed point results on metric-like spaces first and next we give some
fixed point results on partial metric spaces.

Now, we need the following definition.

Definition 2.1. Let (X,σ) be a metric-like space. A multi-valued mapping T : X → CBσ(X) is said
to be (ϕ,ψ)−contractive multi-valued operator if there exist ϕ ∈ Φ and ψ ∈ Ψ such that

(2.1) σ(y, Tx) ≤ ϕ(σ(y, x))⇒ Hσ(Tx, Ty) ≤ ψ(Mσ(x, y))

for all x, y ∈ X, where

Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
1

4
[σ(x, Ty) + σ(Tx, y)]}.

Now, we state and prove our first main result.

Theorem 2.2. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be (ϕ,ψ)−contractive
multi-valued operator.

If 2t ≤ ϕ(t) for each t ∈ R+, then T is an MWP operator.

Proof. Let x0 ∈ X and x1 ∈ Tx0. Let c a given real number such that σ(x0, x1) < c.
Clearly, if x1 = x0 or x1 ∈ Tx1, we conclude that x1 is a fixed point of T and so the proof is finished.

Now, we assume that x1 6= x0 and x1 6∈ Tx1. So then, σ(x0, x1) > 0 and σ(x1, Tx1) > 0.
Since x1 ∈ Tx0 and 2t ≤ ϕ(t), we get

σ(x1, Tx0) ≤ σ(x1, x1) ≤ 2σ(x1, x0) ≤ ϕ(σ(x1, x0)).
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Hence by (2.1) and triangular inequality, we have

0 < σ(x1, Tx1) ≤ Hσ(Tx0, Tx1) ≤ ψ(Mσ(x0, x1))

≤ ψ(max{σ(x0, x1), σ(x0, Tx0), σ(x1, Tx1),
1

4
[σ(x0, Tx1) + σ(x1, Tx0)]})

≤ ψ(max{σ(x0, x1), σ(x0, x1), σ(x1, Tx1),
1

4
[σ(x0, Tx1) + σ(x1, x1)]})

≤ ψ(max{σ(x0, x1), σ(x0, x1), σ(x1, Tx1),
1

4
[σ(x1, Tx1) + 3σ(x0, x1)]})

= ψ(max{σ(x0, x1), σ(x1, Tx1)}).

If max{σ(x0, x1), σ(x1, Tx1)} = σ(x1, Tx1), then we obtain

0 < σ(x1, Tx1) ≤ ψ(σ(x1, Tx1)) < σ(x1, Tx1)

wish is a contradiction. Then

0 < σ(x1, Tx1) ≤ ψ(σ(x0, x1)) < ψ(c).

Thus, by Lemma 1.15, there exist x2 ∈ Tx1 such that

σ(x1, x2) < ψ(c).(2.2)

If x1 = x2 or x2 ∈ Tx2, we conclude that x2 is a fixed point of T and so the proof is finished. Now,
we assume that x2 6= x1 and x2 6∈ Tx2. Then we have

σ(x2, Tx1) ≤ σ(x2, x2) ≤ 2σ(x2, x1) ≤ ϕ(σ(x2, x1)).

Hence by (2.1), triangular inequality and (2.2), we have

0 < σ(x2, Tx2) ≤ Hσ(Tx1, Tx2) ≤ ψ(Mσ(x1, x2)) ≤ ψ(max{σ(x1, x2), σ(x2, Tx2)})
= ψ(σ(x1, x2)) < ψ2(c).

Then, by Lemma 1.15, there exist x3 ∈ Tx2 such that

σ(x2, x3) < ψ2(c).(2.3)

Continuing in this fashion, we construct a sequence {xn} in X such that for all n ∈ N
(i) xn 6∈ Txn, xn 6= xn+1, xn+1 ∈ Txn;
(ii)

(2.4) σ(xn, xn+1) ≤ ψn(c).

Now, for m > n, we have

σ(xn, xm) ≤
m−1∑
i=n

σ(xi, xi+1) ≤
m−1∑
i=n

ψi(c) ≤
∞∑
i=n

ψi(c)→ 0 as n→∞.

Thus,

lim
n,m→∞

σ(xn, xm) = 0.(2.5)

Hence, {xn} is σ−Cauchy. Moreover since (X,σ) is complete, it follows there exists ν ∈ X such that

lim
n→∞

σ(xn, ν) = σ(ν, ν) = lim
n,m→∞

σ(xn, xm) = 0.(2.6)

We will show that ν is a fixed point of T. First, we should prove that there exits a subsequence {xn(k)}
of {xn} such that

σ(ν, Txn(k)) ≤ ϕ(σ(ν, xn(k))), for all k = 0, 1, 2, . . .(2.7)

Arguing by contradiction, that is, there exists N ∈ N such that σ(ν, Txn) > ϕ(σ(ν, xn)) for all n ≥ N.
Since xn+1 ∈ Txn, it follows that σ(ν, xn+1) > ϕ(σ(ν, xn)) for all n ≥ N. Having ϕ nondecreasing, so
by induction we get

σ(ν, xn+m) > ϕm(σ(ν, xn)), for all n ≥ N and m = 1, 2, 3, . . .(2.8)
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Now, for all n ≥ N and m ∈ N, we have

σ(xn, xn+m) ≤
n+m−1∑
i=n

σ(xi, xi+1) ≤
m−1∑
i=n

ψi(c) ≤
∞∑
i=n

ψi(c).

Then for all n ≥ N and m ∈ N, we obtain

σ(ν, xn) ≤ σ(ν, xn+m) + σ(xn+m, xn) ≤ σ(ν, xn+m) +

∞∑
i=n

ψi(c).

Passing to the limit as m→∞, we get

σ(ν, xn) ≤
∞∑
i=n

ψi(c).

This implies that for all n ≥ N and m ∈ N,

σ(ν, xn+m) ≤
∞∑

i=n+m

ψi(c).(2.9)

Combining (2.8) and (2.9), we have

σ(ν, xn) ≤ ϕm(σ(ν, xn)) < σ(ν, xn+m) ≤
∞∑

i=n+m

ψi(c).

Then for all n ≥ N and m ∈ N, we obtain

σ(ν, xn) <

∞∑
i=n+m

ψi(c).(2.10)

Letting m→∞ in (2.10), we get σ(ν, xn) = 0 for all n ≥ N and so, σ(ν, xn+m) = 0 for all n ≥ N and
m ∈ N. Using (2.8), we have 0 ≤ ϕm(0) < 0, which is a contradiction. Therefore, (2.7) holds.

Now, we will show that σ(ν, Tν) = 0. Suppose in the contrary, that is σ(ν, Tν) > 0.
By (2.1) and (2.7), we have for all k ∈ N
σ(ν, Tν) ≤ σ(ν, xn(k)+1) + σ(xn(k)+1, T ν) ≤ σ(ν, xn(k)+1) +Hσ(Txn(k), Tν)

≤ σ(ν, xn(k)+1) + ψ(Mσ(xn(k), ν))

≤ σ(ν, xn(k)+1)

+ ψ(max{σ(xn(k), ν), σ(xn(k), Txn(k)), σ(ν, Tν),
1

4
[σ(xn(k), T ν) + σ(ν, Txn(k))]})

≤ σ(ν, xn(k)+1)

+ ψ(max{σ(xn(k), ν), σ(xn(k), xn(k)+1), σ(ν, Tν),
1

4
[σ(xn(k), T ν) + σ(ν, xn(k)+1)]}).

We know that

lim
k→∞

σ(xn(k), ν) = lim
k→∞

σ(xn(k), xn(k)+1) = lim
k→∞

σ(xn(k)+1, ν) = 0, lim
k→∞

σ(xn(k), Tν) = σ(ν, Tν).

Then there exists N ∈ N such that for all k ≥ N

max{σ(xn(k), ν), σ(xn(k), xn(k)+1), σ(ν, Tν),
1

4
[σ(xn(k), Tν) + σ(ν, xn(k)+1)]}) = σ(ν, Tν).

It follows that for all k ≥ N
0 < σ(ν, Tν) ≤ σ(ν, xn(k)+1) + ψ(σ(ν, Tν)).

Passing to the limit as k →∞, we get

0 < σ(ν, Tν) ≤ ψ(σ(ν, Tν)) < σ(ν, Tν)

which is a contradiction. Hence σ(ν, Tν) = 0 and so, by Lemma 1.10 we have ν ∈ Tν = Tν, that is ν
is a fixed point of T. �

We give an example to illustrate the utility of Theorem 2.2.
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Example 2.3. Let X = {0, 1, 2} and σ : X ×X → R+ defined by:

σ(0, 0) = 0, σ(1, 1) = 3, σ(2, 2) = 1

σ(0, 1) = σ(1, 0) = 7, σ(0, 2) = σ(2, 0) = 3, σ(1, 2) = σ(2, 1) = 4.

Then (X,σ) is a complete metric-like space. Note that σis not a partial metric on X because σ(0, 1) �
σ(2, 0) + σ(2, 1)− σ(2, 2).
Define the map T : X → CBσ(X) by

T0 = T2 = {0} and T1 = {0, 2}.
Note that Tx is bounded and closed for all x ∈ X in metric-like space (X,σ). Take ϕ(t) = st with
s ≥ 7 and ψ(t) = rt with r ∈ [ 34 , 1).

It is easy tho show that

max{σ(y, Tx), x, y ∈ X} = σ(1, 0) = 7 ≤ 7 min{σ(y, x), x, y ∈ X, (x, y) 6= (0, 0)}
≤ ϕ(min{σ(y, x), x, y ∈ X, (x, y) 6= (0, 0)}).

This implies that, for all x, y ∈ X with (x, y) 6= (0, 0)

σ(y, Tx) ≤ ϕ(σ(y, x)).

Now, we shall show that for all x, y ∈ X with (x, y) 6= (0, 0)

Hσ(Tx, Ty) ≤ ψ(Mσ(x, y)).(2.11)

For this, we consider the following cases:
case1 : x, y ∈ {0, 2}. We have

Hσ(Tx, Ty) = σ(0, 0) = 0 ≤ ψ(Mσ(x, y)).

case2 : x ∈ {0, 2}, y = 1. We have

Hσ(Tx, Ty) = Hσ({0}, {0, 2}) = max{σ(0, {0, 2}),max{σ(0, 0), σ(0, 2)}}

= max{0, 3} = 3 ≤ 3

4
σ(x, y) ≤ ψ(Mσ(x, y)).

case3 : x = y = 1. We have

Hσ(Tx, Ty) = Hσ({0, 2}, {0, 2}) = max{σ(0, {0, 2}), σ(2, {0, 2})}

= min{σ(0, 2), σ(2, 2)} = 1 ≤ 3

4
σ(1, 1) ≤ ψ(Mσ(x, y)).

Note that (2.11) is also true for (x, y) = (0, 0). Then, all the required hypotheses of Theorem 2.2 are
satisfied. Here, x = 0 is the unique fixed point of T

We state the following corollaries as consequences of Theorem 2.2.

Corollary 2.4. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a multi-valued
mapping. Assume that there exist ϕ ∈ Φ and ψ ∈ Ψ such that, for all x, y ∈ X

Hσ(Tx, Ty) ≤ ψ(Mσ(x, y))− ϕ(σ(y, x)) + σ(y, Tx),(2.12)

where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 14 [σ(x, Ty) + σ(Tx, y)]}.
If 2t ≤ ϕ(t) for each t ∈ R+, then T is an MWP operator.

Proof. Let x, y ∈ X such that σ(y, Tx) ≤ ϕ(σ(y, x)). Then, if (2.12) holds, we have

Hσ(Tx, Ty) ≤ ψ(Mσ(x, y))− ϕ(σ(y, x)) + σ(y, Tx) ≤ ψ(Mσ(x, y)).

Thus, the proof is concluded by Theorem 2.2. �

Corollary 2.5. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a multi-valued
mapping. Assume that there exist r ∈ [0, 1) and s ≥ 2 such that, for all x, y ∈ X

σ(y, Tx) ≤ sσ(y, x)⇒ Hσ(Tx, Ty) ≤ rMσ(x, y),

where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 14 [σ(x, Ty) + σ(Tx, y)]}.
Then T is an MWP operator.

Proof. It suffice to take ϕ(t) = st and ψ(t) = rt in Theorem 2.2. �
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Corollary 2.6. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a multi-valued
mapping. Assume that there exist r ∈ [0, 1) and s ≥ 2 such that, for all x, y ∈ X

σ(y, Tx) ≤ sσ(y, x)⇒ Hσ(Tx, Ty) ≤ rmax{σ(x, y), σ(x, Tx), σ(y, Ty)}.

Then T is an MWP operator.

Corollary 2.7. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a multi-valued
mapping. Assume that there exist r ∈ [0, 1) and s ≥ 2 such that, for all x, y ∈ X

σ(y, Tx) ≤ sσ(y, x)⇒ Hσ(Tx, Ty) ≤ r

3
{σ(x, y) + σ(x, Tx) + σ(y, Ty)}.

Then T is an MWP operator.

Corollary 2.8. [6] Let (X,σ) be a complete metric-like space. If T : X → CBσ(X) is a multi-valued
mapping such that for all x, y ∈ X, we have

(2.13) Hσ(Tx, Ty) ≤ kM(x, y),

where k ∈ [0, 1) and

M(x, y) = max

{
σ(x, y), σ(x, Tx), σ(y, Ty),

1

4
(σ(x, Ty) + σ(y, Tx))

}
.

Then T has a fixed point.

Proof. Let ϕ(t) = 2t and ψ(t) = kt. Then, if (2.13) holds, we have

Hσ(Tx, Ty) ≤ ψ(M(x, y)),

for all x, y ∈ X satisfying σ(y, Tx) ≤ 2σ(y, x). Thus, the proof is concluded by Theorem 2.2. �

If T is a single-valued mapping, we deduce the following results.

Corollary 2.9. Let (X,σ) be a complete metric-like space and T : X → X be a mapping. Assume
that there exist ϕ ∈ Φ and ψ ∈ Ψ such that, for all x, y ∈ X

σ(y, Tx) ≤ ϕ(σ(y, x))⇒ σ(Tx, Ty) ≤ ψ(Mσ(x, y)),

where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 14 [σ(x, Ty) + σ(Tx, y)]}.
If 2t ≤ ϕ(t) for each t ∈ R+ and if ψ(2t) < t for each t > 0, then T has a unique fixed point.

Proof. The existence follows immediately from Theorem 2.2. Thus, we need to prove uniqueness of
fixed point. We assume that there exist x, y ∈ X such that x = Tx and y = Ty with x 6= y.

Since σ(y, Tx) = σ(y, x) ≤ ϕ(σ(y, x)), then by (2.1) and since ψ(2t) < t , we get

0 < σ(x, y) = σ(Tx, Ty) ≤ ψ(max{σ(x, y), σ(x, Tx), σ(y, Ty),
1

4
[σ(x, Ty) + σ(Tx, y)]})

= ψ(max{σ(x, y), σ(x, x), σ(y, y),
1

2
σ(x, y)})

≤ ψ(2σ(x, y)) < σ(x, y).

which is a contradiction. Hence x = y, so the uniqueness of the fixed point of T.
�

Corollary 2.10. Let (X,σ) be a complete metric-like space and T : X → X be a mapping. Assume
that there exist r ∈ [0, 12 ) and s ≥ 2 such that, for all x, y ∈ X

σ(y, Tx) ≤ s(σ(y, x))⇒ σ(Tx, Ty) ≤ r(Mσ(x, y)),

where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 14 [σ(x, Ty) + σ(Tx, y)]}.
Then T has a unique fixed point.

Now, we need the following definition.
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Definition 2.11. Let (X,σ) be a metric-like space. A multi-valued mapping T : X → CBσ(X) is
said to be (r, s)−contractive multi-valued operator if there exist r, s ∈ [0, 1), such that

(2.14)
1

1 + r
σ(x, Tx) ≤ σ(y, x) ≤ 1

1− s
σ(x, Tx)⇒ Hσ(Tx, Ty) ≤ rMσ(x, y)

for all x, y ∈ X, where

Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
1

4
[σ(x, Ty) + σ(Tx, y)]}.

We give the following result.

Theorem 2.12. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be (r, s)−contractive
multi-valued operator with r < s. Then T is an MWP operator.

Proof. Let r1 be a real number such that 0 ≤ r ≤ r1 < s. Let x0 ∈ X. Clearly, if x0 ∈ Tx0, then x0 is
a fixed point of T and so, the proof is finished. Now, we assume that x0 6∈ Tx0. Then σ(x0, Tx0) > 0.
By Lemma 1.11, there exists x1 ∈ Tx0 such that

σ(x0, x1) ≤ 1− r1
1− s

σ(x0, Tx0).

If x1 ∈ Tx1, then x1 is a fixed point of T and also, the proof is finished. Now, we assume that x1 6∈ Tx1.
Then σ(x1, Tx1) > 0. Since

1

1 + r
σ(x0, Tx0) ≤ σ(x0, x1)) ≤ 1− r1

1− s
σ(x0, Tx0),

then, by (2.14), we have

σ(x1, Tx1) ≤ Hσ(Tx0, Tx1) ≤

rmax{σ(x0, x1), σ(x0, Tx0), σ(x1, Tx1),
1

4
[σ(x0, Tx1) + σ(x1, Tx0)]}

≤ rmax{σ(x0, x1), σ(x0, x1), σ(x1, Tx1),
1

4
[σ(x1, Tx1) + 3σ(x0, x1)]}

≤ rmax{σ(x0, x1), σ(x1, Tx1)}.

If max{σ(x0, x1), σ(x1, Tx1)} = σ(x1, Tx1), then we obtain σ(x1, Tx1) ≤ rσ(x1, Tx1) < σ(x1, Tx1),
which is a contradiction. Thus, we get

σ(x1, Tx1) ≤ rσ(x0, x1).

By Lemma 1.11, there exists x2 ∈ Tx1 such that

σ(x1, x2) ≤ r1
r
σ(x1, Tx1) and σ(x1, x2) ≤ 1− r1

1− s
σ(x1, Tx1).

This implies that

σ(x1, x2) ≤ r1σ(x0, x1) and σ(x1, x2) ≤ 1− r1
1− s

σ(x1, Tx1).

It follows that

1

1 + r
σ(x1, Tx1) ≤ σ(x1, Tx2) ≤ 1

1− s
σ(x1, Tx1).

Then, by (2.14), we get σ(x2, Tx2) ≤ rσ(x1, x2). Continuing this process, we construct a sequence
{xn} in X such that

(i) xn+1 ∈ Txn;
(ii) σ(xn, Txn) ≤ rσ(xn−1, xn);
(iii) σ(xn, xn+1) ≤ r1σ(xn−1, xn);
(iv) σ(xn, xn+1) ≤ 1−r1

1−s σ(xn, Txn)
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for all n = 1, 2, . . .
Since σ(xn, xn+1) ≤ r1σ(xn−1, xn), by induction we obtain

σ(xn, xn+1) ≤ rn1 σ(x0, x1) for all n = 1, 2, . . .

Now, for m > n, we have

σ(xn, xm) ≤
m−1∑
i=n

σ(xi, xi+1) ≤ σ(x0, x1)

m−1∑
i=n

ri1 ≤ σ(x0, x1)

∞∑
i=n

ri1 → 0 as n→∞.

Thus,

lim
n,m→∞

σ(xn, xm) = 0.(2.15)

Hence, {xn} is σ−Cauchy. Moreover since (X,σ) is complete, it follows there exists z ∈ X such that

lim
n→∞

σ(xn, z) = σ(z, z) = lim
n,m→∞

σ(xn, xm) = 0.(2.16)

For all m,n ∈ N, we have

σ(xn, xn+m) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + . . .+ σ(xn+m−1, xn+m)

≤ [1 + r1 + r21 + . . .+ rm−11 ]σ(xn, xn+1) =
1− rm1
1− r1

σ(xn, xn+1).

It follows that for all m,n ∈ N

σ(xn, z) ≤ σ(xn, xn+m) + σ(xn+m, z) ≤ σ(xn+m, z) +
1− rm1
1− r1

σ(xn, xn+1).

Passing to limit as m→∞, we get for all n ∈ N

σ(xn, z) ≤
1

1− r1
σ(xn, xn+1) ≤ 1

1− r1
· 1− r1

1− s
σ(xn, Txn) =

1

1− s
σ(xn, Txn).

Thus, we have for all n ∈ N

σ(xn, z) ≤
1

1− s
σ(xn, Txn).(2.17)

Now, we assume that there exists N ∈ N such that

1

1 + r
σ(xn, Txn) > σ(xn, z)

for all n ≥ N. Then we have

σ(xn, xn+1) ≤ σ(xn, z) + σ(z, xn+1) <
1

1 + r
[σ(xn, Txn) + σ(xn+1, Txn+1)]

<
1

1 + r
[σ(xn, xn+1) + rσ(xn, xn+1)] = σ(xn, xn+1).

which is a contradiction. Thus, there exists a subsequence {xn(k)} of {xn} such that

1

1 + r
σ(xn(k), Txn(k)) ≤ σ(xn(k), z)(2.18)

for all k ∈ N. Now, we should show that z is a fixed point of T.
Using (2.17), (2.18) and (2.14), we have for all k ∈ N

σ(xn(k)+1, T z) ≤ Hσ(Txn(k), T z) ≤

rmax{σ(xn(k), z), σ(xn(k), Txn(k)), σ(z, Tz),
1

4
[σ(xn(k), T z) + σ(z, Txn(k))]} ≤

rmax{σ(xn(k), z), σ(xn(k), xn(k)+1), σ(z, Tz),
1

4
[σ(xn(k), T z) + σ(z, xn(k)+1)]}.

Passing to limit as k →∞, we get

σ(z, Tz) ≤ rσ(z, Tz).

Since r < 1, it follows that σ(z, Tz) = 0. Thus, by Lemma 1.10 we obtain z ∈ Tz, that is, z is a fixed
point of T. �
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Corollary 2.13. Let (X,σ) be a complete metric-like space and T : X → X be a mapping. Assume
that there exist r ∈ [0, 1) such that, for all x, y ∈ X

1

1 + r
σ(x, Tx) ≤ σ(x, y) ≤ 1

1− r
σ(x, Tx)⇒ σ(Tx, Ty) ≤ rMσ(x, y),

where Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 14 [σ(x, Ty) + σ(Tx, y)]}.
Then T has a fixed point.

Proof. Let x0 ∈ X. Define the sequence {xn} by xn+1 = Txn for all n = 0, 1, 2, . . . We have for all
n = 0, 1, 2, . . .

1

1 + r
σ(xn, Txn) ≤ σ(xn, xn+1) ≤ 1

1− r
σ(xn, Txn)

It follows that for all n = 0, 1, 2, . . .

σ(xn+1, xn+2) = σ(Txn, Txn+1) ≤ rσ(xn, xn+1).

Thus the sequence {xn} is Cauchy in (X,σ). By completeness of (X,σ) there exists z ∈ X such that

lim
n→∞

σ(xn, z) = σ(z, z) = lim
n,m→∞

σ(xn, xm) = 0.(2.19)

We have for all n,m ∈ N

σ(xn, xn+m) ≤ 1− rm

1− r
σ(xn, xn+1).

It follows that

σ(xn, z) ≤ σ(xn, xn+m) + σ(xn+m, z) ≤
1− rm

1− r
σ(xn, xn+1) + σ(xn+m, z).

Passing to limit as m→∞, we get

σ(xn, z) ≤
1

1− r
σ(xn, xn+1)

Proceeding as in the proof of Theorem 2.12, we can find a subsequence {xn(k)} of {xn} such that

1

1 + r
σ(xn(k), Txn(k)) ≤ σ(xn(k), z)(2.20)

for all k ∈ N. Then as in the proof of Theorem 2.12 we get z is a fixed point of T. �

We give the following illustrative example inspired from [4].

Example 2.14. Let X = {0, 1, 2} and σ : X ×X → R+ defined by:

σ(0, 0) = σ(2, 2) =
1

4
, σ(1, 1) = 0, σ(0, 1) = σ(1, 0) =

1

3
,

σ(0, 2) = σ(2, 0) =
2

5
, σ(1, 2) = σ(2, 1) =

11

15
.

Then (X,σ) is a complete metric-like space. Note that σis not a partial metric on X as σ(1, 2) >
σ(1, 0) + σ(0, 2)− σ(0, 0).
Define the map T : X → CBσ(X) by

T0 = T1 = {1} and T2 = {0, 1}.
Note that Tx is bounded and closed for all x ∈ X in metric-like space (X,σ).

We have

max{σ(x, Tx), x ∈ X} = max{σ(0, 1), σ(1, 1), σ(2, 0)} =
2

5
,

min{σ(x, Tx), x ∈ X − {1}} =
1

3
.

Therefore, we have

1

4
≤ σ(x, y) ≤ 11

15



ON MULTI-VALUED WEAKLY PICARD OPERATORS 179

for all x, y ∈ X with (x, y) 6= (1, 1). It follows that

1

1 + r
σ(x, Tx) ≤ σ(x, y) ≤ 1

1− s
σ(x, Tx)

for all x, y ∈ X with x 6= 1 and for some 3
5 ≤ r < s < 1. Observe that the above inequalities are also

true for x = y = 1 but not hold for x = 1 and y ∈ {0, 2}.
Now, we shall show that

Hσ(Tx, Ty) ≤ rMσ(x, y)(2.21)

for all x, y ∈ X for some 5
6 ≤ r < 1. For this, we consider the following cases:

case1 : x, y ∈ {0, 1}, with (x, y) 6= (1, 0). We have

Hσ(Tx, Ty) = σ(1, 1) = 0 ≤ rMσ(x, y).

case2 : x = 0, y = 2. We have

Hσ(Tx, Ty) = Hσ({1}, {0, 1}) = max{σ(1, {0, 1}),max{σ(1, 1), σ(1, 0)}}

=
1

3
≤ 5

6
σ(x, y) ≤ rMσ(x, y)

case3 : x = y = 2. We have

Hσ(Tx, Ty) = Hσ({0, 1}, {0, 1}) = max{σ(0, {0, 1}), σ(1, {0, 1})}

= min{σ(0, 0), σ(0, 1)} =
1

4

Moreover, we have Mσ(2, 2) = max{σ(2, 2), σ(2, T2)} = max{ 14 ,
2
5} = 2

5 . Then for x = y = 2 we get

Hσ(T2, T2) =
1

4
≤ 5

6
.
2

5
≤ rMσ(2, 2).

Then, all the required hypotheses of Theorem 2.12 are satisfied. Here, x = 1 is the unique fixed point
of T.

Now, we need the following definition.

Definition 2.15. Let (X, p) be a partial metric space. A multi-valued mapping T : X → CBp(X) is
said to be (ϕ,ψ)−contractive multi-valued operator if there exist ϕ ∈ Φ and ψ ∈ Ψ such that

(2.22) p(y, Tx) ≤ ϕ(p(y, x))⇒ Hp(Tx, Ty) ≤ ψ(Mp(x, y))

for all x, y ∈ X, where

Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(Tx, y)]}.

We give the following result.

Theorem 2.16. Let (X, p) be a complete partial metric space and T : X → CBp(X) be (ϕ,ψ)−contractive
multi-valued operator. Then T is an MWP operator.

Proof. Let x0 ∈ X and x1 ∈ Tx0. Let c a given real number such that p(x0, x1) < c.
Clearly, if x1 = x0 or x1 ∈ Tx1, we conclude that x1 is a fixed point of T and so the proof is finished.

Now, we assume that x1 6= x0 and x1 6∈ Tx1. So then, p(x0, x1) > 0 and p(x1, Tx1) > 0.
Since x1 ∈ Tx0, we get

p(x1, Tx0) ≤ p(x1, x1) ≤ p(x1, x0) ≤ ϕ(p(x1, x0)).

Hence by (2.22) and triangular inequality, we have

0 < p(x1, Tx1) ≤ Hp(Tx0, Tx1) ≤ ψ(Mp(x0, x1))

≤ ψ(max{p(x0, x1), p(x0, Tx0), p(x1, Tx1),
1

2
[p(x0, Tx1) + p(x1, Tx0)]})

≤ ψ(max{p(x0, x1), p(x1, Tx1),
1

2
[p(x0, Tx1) + p(x1, x1)]})

≤ ψ(max{σ(x0, x1), σ(x0, x1), σ(x1, Tx1),
1

2
[p(x1, Tx1) + p(x0, x1)]})

= ψ(max{p(x0, x1), p(x1, Tx1)}) = ψ(p(x0, x1)) < ψ(c).
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Proceeding as in the proof of Theorem 2.2, we construct a sequence {xn} in X such that for all n ∈ N
(i) xn 6∈ Txn, xn 6= xn+1, xn+1 ∈ Txn;

(ii)

(2.23) p(xn, xn+1) ≤ ψn(c).

Now, for m > n, we have

p(xn, xm) ≤
m−1∑
i=n

p(xi, xi+1)−
m−1∑
i=n+1

p(xi, xi) ≤
m−1∑
i=n

ψi(c) ≤
∞∑
i=n

ψi(c)→ 0 as n→∞.

Thus,

lim
n,m→∞

p(xn, xm) = 0.(2.24)

Hence, {xn} is Cauchy in (X, p). Moreover since (X, p) is complete, it follows there exists z ∈ X such
that

lim
n→∞

p(xn, z) = p(z, z) = lim
n,m→∞

p(xn, xm) = 0.(2.25)

Proceeding again as in the proof of Theorem 2.2, we prove that z is a fixed point of T. �

Analogously, we can derive the following results.

Corollary 2.17. Let (X, p) be a complete partial metric space and T : X → CBp(X) be a multi-valued
mapping. Assume that there exist ϕ ∈ Φ and ψ ∈ Ψ such that, for all x, y ∈ X

Hp(Tx, Ty) ≤ ψ(Mp(x, y)) + p(y, Tx)− ϕ(p(y, x)),

where Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 12 [p(x, Ty) + p(Tx, y)]}.
Then T has a unique fixed point.

Corollary 2.18. ([4], Theorem 2.2) Let (X, p) be a complete partial metric space and T : X →
CBp(X) be a multi-valued mapping. Assume that there exist r ∈ [0, 1) and s ≥ 1 such that, for all
x, y ∈ X

p(y, Tx) ≤ sp(y, x)⇒ Hp(Tx, Ty) ≤ rMp(x, y),

where Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 12 [p(x, Ty) + p(Tx, y)]}.
Then T is an MWP operator.

Proof. It suffice to take ϕ(t) = st and ψ(t) = rt in Theorem 2.16. �

Corollary 2.19. Let (X, p) be a complete partial metric space and T : X → CBp(X) be a multi-valued
mapping. Assume that there exist r ∈ [0, 1) and s ≥ 1 such that, for all x, y ∈ X

p(y, Tx) ≤ sp(y, x)⇒ Hp(Tx, Ty) ≤ rmax{p(x, y), p(x, Tx), p(y, Ty)}.

Then T is an MWP operator.

Corollary 2.20. Let (X, p) be a complete partial metric space and T : X → CBp(X) be a multi-valued
mapping. Assume that there exist r ∈ [0, 1) and s ≥ 1 such that, for all x, y ∈ X

p(y, Tx) ≤ sp(y, x)⇒ Hp(Tx, Ty) ≤ r

3
{p(x, y) + p(x, Tx) + p(y, Ty)}.

Then T is an MWP operator.

If T is a single-valued mapping, we deduce the following results.

Corollary 2.21. Let (X, p) be a complete partial metric space and T : X → X be a mapping. Assume
that there exist ϕ ∈ Φ and ψ ∈ Ψ such that, for all x, y ∈ X

p(y, Tx) ≤ ϕ(p(y, x))⇒ p(Tx, Ty) ≤ ψ(Mp(x, y)),

where Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 12 [p(x, Ty) + p(Tx, y)]}.
Then T has a unique fixed point.
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Proof. The existence follows immediately also from Theorem 2.16. Thus, we need to prove uniqueness
of fixed point. We assume that there exist x, y ∈ X such that x = Tx and y = Ty with x 6= y.

Since p(y, Tx) = p(y, x) ≤ ϕ(p(y, x)), then by (2.22), we get

0 < p(x, y) = p(Tx, Ty) ≤ ψ(max{p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(Tx, y)]})

= ψ(max{p(x, y), p(x, x), p(y, y), p(x, y)}) = ψ(p(x, y))

< p(x, y)

which is a contradiction. Hence x = y, so the uniqueness of the fixed point of T.
�

Corollary 2.22. Let (X, p) be a complete partial metric space and T : X → X be a mapping. Assume
that there exist r ∈ [0, 1) and s ≥ 1 such that, for all x, y ∈ X

p(y, Tx) ≤ sp(y, x)⇒ p(Tx, Ty) ≤ rMp(x, y),

where Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 12 [p(x, Ty) + p(Tx, y)]}.
Then T has a unique fixed point.
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