ON MULTI-VALUED WEAKLY PICARD OPERATORS IN HAUSDORFF METRIC-LIKE SPACES

ABDELBASSET FELHI ${ }^{1,2, *}$

Abstract

In this paper, we study multi-valued weakly Picard operators on Hausdorff metric-like spaces. Our results generalize some recent results and extend several theorems in the literature. Some examples are presented making effective our results.

1. Introduction and preliminaries

Let (X, d) be a metric space and $C B(X)$ denotes the collection of all nonempty, closed and bounded subsets of X. Also, $C L(X)$ denotes the collection of nonempty closed subsets of X. For $A, B \in C B(X)$, define

$$
H(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(x, A):=\inf \{d(x, a): a \in A\}$ is the distance of a point x to the set A. It is known that H is a metric on $C B(X)$, called the Hausdorff metric induced by d. Throughout the paper, \mathbb{N}, \mathbb{R}, and \mathbb{R}^{+}denote the set of positive integers, the set of all real numbers and the set of all non-negative real numbers, respectively.

Definition 1.1. ([1]) Let (X, d) be a metric space and $T: X \rightarrow C L(X)$ be a multi-valued operator. We say that T is a multi-valued weakly Picard operator (MWP operator) if for all $x \in X$ and $y \in T x$, there exists a sequence $\left\{x_{n}\right\}$ such that:
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in T x_{n}$ for all $n=0,1,2, \ldots$;
(iii) the sequence $\left\{x_{n}\right\}$ is convergent and its limit is a fixed point of T.

The theory of MWP operators is studied by several authors (see for instance [1, 2]). In 2008 Suzuki [3] generalizes the Banach contraction principle by introducing a new type of mapping. Very recently, Jleli et al. [4] established Kikkawa-Suzuki type fixed point theorems for a new type of generalized contractive conditions on partial Hausdorff metric spaces. The purpose of this paper is to discuss multi-valued weakly Picard operators on partial Hausdorff metric spaces and on Hausdorff metric-like spaces. We will establish the above fixed point theorems for a new type of generalized contractive conditions which generalizes that of Jleli et al.

We recall that the study of fixed points for multi-valued contractions using the Hausdorff metric was initiated by Nadler [18] who proved the following theorem.

Theorem 1.2. ([18]) Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a multi-valued mapping satisfying $H(T x, T y) \leq k d(x, y)$ for all $x, y \in X$ and for some k in $[0,1)$. Then there exists $x \in X$ such that $x \in T x$.

We recall that the notion of partial metric spaces was introduced by Matthews [8] in 1994 as a part to study the denotational semantics of dataflow networks which play an important role in constructing models in the theory of computation. Moreover, the notion of metric-like spaces has been discovered by Amini-Harandi [12] which is an interesting generalization of the notion of partial metric spaces. For more fixed point results on metric-like spaces, see [7], [10], [11], [13], [15], [16], [17], [19], [20], [21], [22].

Note that, every partial metric space is a metric-like space but the converse is not true in general. In what follows, we recall some definitions and results we will need in the sequel.
Definition 1.3. ([8]) A partial metric on a nonempty set X is a function $p: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(PM1) $p(x, x)=p(x, y)=p(y, y)$, then $x=y$;
(PM2) $p(x, x) \leq p(x, y)$;
(PM3) $p(x, y)=p(y, x)$;
(PM4) $p(x, z)+p(y, y) \leq p(x, y)+p(y, z)$.
The pair (X, p) is then called a partial metric space (PMS).
According to [8], each partial metric p on X generates a T_{0} topology τ_{p} on X which has as a base the family of open p-balls $\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$. Following [8], several topological concepts can be defined as follows. A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) converges to a point $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)$ and is called a Cauchy sequence if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite. Moreover, a partial metric space (X, p) is called to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$. It is known [8] that if p is a partial metric on X, then the function $p^{s}: X \times X \rightarrow \mathbb{R}^{+}$defined by

$$
p^{s}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$

for all $x, y \in X$, is a metric on X.
Note that if a sequence converges in a partial metric space (X, p) with respect to $\tau_{p^{s}}$, then it converges with respect to τ_{p}.

Also, a sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) is Cauchy if and only if it is a Cauchy sequence in the metric space $\left(X, p^{s}\right)$. Consequently, a partial metric space (X, p) is complete if and only if the metric space $\left(X, p^{s}\right)$ is complete. Moreover, if $\left\{x_{n}\right\}$ is a sequence in a partial metric space (X, p) and $x \in X$, one has that

$$
\lim _{n \rightarrow \infty} p^{s}\left(x_{n}, x\right)=0 \Leftrightarrow p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

We have the following lemmas.
Lemma 1.4. Let (X, p) be a partial metric space. Then,
(1) if $p(x, y)=0$ then, $x=y$,
(2) if $x \neq y$ then, $p(x, y)>0$.

Following [9], let (X, p) be a partial metric space and $C B^{p}(X)$ be the family of all nonempty, closed and bounded subsets of the partial metric space (X, p), induced by the partial metric p.

For $A, B \in C B^{p}(X)$ and $x \in X$, we define

$$
p(x, A)=\inf \{p(x, a): a \in A\}, H_{p}(A, B)=\max \left\{\sup _{a \in A} p(a, B), \sup _{b \in B} p(b, A)\right\}
$$

Lemma 1.5. ([5]) Let (X, p) be a partial metric space and A any nonempty set in (X, p), then $a \in \bar{A}$ if and only if $p(a, A)=p(a, a)$, where \bar{A} denotes the closure of A with respect to the partial metric p.
Proposition 1.6. ([9]) Let (X, p) be a partial metric space. For all $A, B, C \in C B^{p}(X)$, we have
(h1) $H_{p}(A, A) \leq H_{p}(A, B)$;
(h2) $H_{p}(B, A)=H_{p}(A, B)$;
(h3) $H_{p}(A, B) \leq H_{p}(A, C)+H_{p}(C, B)-\inf _{c \in C} p(c, c)$;
(h4) $H_{p}(A, B)=0 \Rightarrow A=B$.
Definition 1.7. Let X be a nonempty set. A function $\sigma: X \times X \rightarrow \mathbb{R}^{+}$is said to be a metric-like (dislocated metric) on X if for any $x, y, z \in X$, the following conditions hold:
$\left(\mathrm{P}_{1}\right) \sigma(x, y)=0 \Longrightarrow x=y ;$
$\left(\mathrm{P}_{2}\right) \sigma(x, y)=\sigma(y, x)$;
$\left(\mathrm{P}_{3}\right) \sigma(x, z) \leq \sigma(x, y)+\sigma(y, z)$.
The pair (X, σ) is then called a metric-like (dislocated metric) space.

In the following example, we give a metric-like which is neither a metric nor a partial metric.
Example 1.8. Let $X=\{0,1,2\}$ and $\sigma: X \times X \rightarrow \mathbb{R}^{+}$defined by

$$
\sigma(0,0)=\sigma(1,1)=0, \sigma(2,2)=3, \sigma(0,1)=1, \sigma(0,2)=\sigma(1,2)=2
$$

and $\sigma(x, y)=\sigma(y, x)$ for all $x \in X$. Then, (X, σ) is a metric-like space. Note that σ is nor a metric as, $\sigma(2,2)>0$ and not a partial metric on X as, $\sigma(2,2)>\sigma(0,2)$.

Each metric-like σ on X generates a T_{0} topology τ_{σ} on X which has as a base the family open σ-balls $\left\{B_{\sigma}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{\sigma}(x, \varepsilon)=\{y \in X:|\sigma(x, y)-\sigma(x, x)|<\varepsilon\}$, for all $x \in X$ and $\varepsilon>0$.

Observe that a sequence $\left\{x_{n}\right\}$ in a metric-like space (X, σ) converges to a point $x \in X$, with respect to τ_{σ}, if and only if $\sigma(x, x)=\lim _{n \rightarrow \infty} \sigma\left(x, x_{n}\right)$.

Definition 1.9. Let (X, σ) be a metric-like space.
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence if $\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)$ exists and is finite.
(b) (X, σ) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges with respect to τ_{σ} to a point $x \in X$ such that $\lim _{n \rightarrow \infty} \sigma\left(x, x_{n}\right)=\sigma(x, x)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)$.

We have the following trivial inequality:

$$
\begin{equation*}
\sigma(x, x) \leq 2 \sigma(x, y) \quad \text { for all } x, y \in X \tag{1.1}
\end{equation*}
$$

Very recently, Aydi et al. [6] introduced the concept of Hausdorff metric-like. Let $C B^{\sigma}(X)$ be the family of all nonempty, closed and bounded subsets of the metric-like space (X, σ), induced by the metric-like σ. Note that the boundedness is given as follows: A is a bounded subset in (X, σ) if there exist $x_{0} \in X$ and $M \geq 0$ such that for all $a \in A$, we have $a \in B_{\sigma}\left(x_{0}, M\right)$, that is,

$$
\left|\sigma\left(x_{0}, a\right)-\sigma(a, a)\right|<M
$$

The Closeness is taken in $\left(X, \tau_{\sigma}\right)$ (where τ_{σ} is the topology induced by σ).
For $A, B \in C B^{\sigma}(X)$ and $x \in X$, define

$$
\begin{aligned}
\sigma(x, A) & =\inf \{\sigma(x, a), a \in A\}, \delta_{\sigma}(A, B)=\sup \{\sigma(a, B): a \in A\} \quad \text { and } \\
\delta_{\sigma}(B, A) & =\sup \{\sigma(b, A): b \in B\}
\end{aligned}
$$

We have the the following useful lemmas.
Lemma 1.10. [6]
Let (X, σ) be a metric-like space and A any nonempty set in (X, σ), then

$$
\text { if } \sigma(a, A)=0, \quad \text { then } a \in \bar{A},
$$

where \bar{A} denotes the closure of A with respect to the metric-like σ. Also, if $\left\{x_{n}\right\}$ is a sequence in (X, σ) that is τ_{σ}-convergent to $x \in X$, then

$$
\lim _{n \rightarrow \infty}\left|\sigma\left(x_{n}, A\right)-\sigma(x, A)\right|=\sigma(x, x)
$$

Lemma 1.11. Let $A, B \in C B^{\sigma}(X)$ and $a \in A$. Suppose that $\sigma(a, B)>0$. Then, for each $h>1$, there exists $b=b(a) \in B$ such that $\sigma(a, b)<h \sigma(a, B)$.

Proof. We argue by contradiction, that is, there exists $h>1$, such that for all $b \in B$, there is $\sigma(a, b) \geq h \sigma(a, B)$. Then, $\sigma(a, B)=\inf \{\sigma(a, B): b \in B\} \geq h \sigma(a, B)$. Hence, $h \leq 1$, which is a contradiction.

Let (X, σ) be a metric-like space. For $A, B \in C B^{\sigma}(X)$, define

$$
H_{\sigma}(A, B)=\max \left\{\delta_{\sigma}(A, B), \delta_{\sigma}(B, A)\right\}
$$

We have also some properties of $H_{\sigma}: C B^{\sigma}(X) \times C B^{\sigma}(X) \rightarrow[0, \infty)$.

Proposition 1.12. [6] Let (X, σ) be a metric-like space. For any $A, B, C \in C B^{\sigma}(X)$, we have the following:

$$
\begin{aligned}
&(i): \quad H_{\sigma}(A, A)=\delta_{\sigma}(A, A)=\sup \{\sigma(a, A): a \in A\} \\
&(i i): \\
&(i i i): \quad H_{\sigma}(A, B)=H_{\sigma}(B, A) \\
&(i v): \quad H_{\sigma}(A, B)=0 \text { implies that } A=B \\
&(A, C)+H_{\sigma}(C, B)
\end{aligned}
$$

The mapping $H_{\sigma}: C B^{\sigma}(X) \times C B^{\sigma}(X) \rightarrow[0,+\infty)$ is called a Hausdorff metric-like induced by σ. Note that each partial hausdorff metric is a Hausdorff metric-like but the converse is not true in general as it is clear from the following example.

Example 1.13. Going back to Example 1.8, taking $A=\{2\}, B=\{0\}$ we have $H_{\sigma}(A, A)=\sigma(2,2)=$ $3>2=\sigma(0,2)=H_{\sigma}(A, B)$.

We denote by Ψ the class of all functions $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying $\left(\psi_{1}\right) \psi$ is nondecreasing;
$\left(\psi_{2}\right) \sum_{n} \psi^{n}(t)<\infty$ for each $t \in \mathbb{R}^{+}$, where ψ^{n} is the n-th iterate of ψ.
Also, we denote by Φ the class of all functions $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying
$\left(\varphi_{1}\right) \varphi$ is nondecreasing;
$\left(\varphi_{2}\right) t \leq \varphi(t)$ for each $t \in \mathbb{R}^{+}$.
Lemma 1.14. (i) If $\psi \in \Psi$, then $\psi(t)<t$ for any $t>0$ and $\psi(0)=0$.
(ii) If $\varphi \in \Phi$, then $t \leq \varphi^{n}(t)$ for all $n \in \mathbb{N} \cup\{0\}$ and for any $t \in \mathbb{R}^{+}$.

We have the following useful lemma.
Lemma 1.15. Let (X, σ) be a metric-like space, $B \in C B^{\sigma}(X)$ and $c>0$. If $a \in X$ and $\sigma(a, B)<c$ then there exists $b=b(a) \in B$ such that $\sigma(a, b)<c$.

Proof. We argue by contradiction, that is, $\sigma(a, b) \geq c$ for all $b \in B$, then $\sigma(a, B)=\inf \{\sigma(a, b): b \in$ $B\} \geq c$, which is a contradiction. Hence there exists $b=b(a) \in B$ such that $\sigma(a, b)<c$.

2. Main Results

In this section, we give some fixed point results on metric-like spaces first and next we give some fixed point results on partial metric spaces.

Now, we need the following definition.
Definition 2.1. Let (X, σ) be a metric-like space. A multi-valued mapping $T: X \rightarrow C B^{\sigma}(X)$ is said to be (φ, ψ)-contractive multi-valued operator if there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{equation*}
\sigma(y, T x) \leq \varphi(\sigma(y, x)) \Rightarrow H_{\sigma}(T x, T y) \leq \psi\left(M_{\sigma}(x, y)\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where

$$
M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}
$$

Now, we state and prove our first main result.
Theorem 2.2. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be (φ, ψ)-contractive multi-valued operator.

If $2 t \leq \varphi(t)$ for each $t \in \mathbb{R}^{+}$, then T is an MWP operator.
Proof. Let $x_{0} \in X$ and $x_{1} \in T x_{0}$. Let c a given real number such that $\sigma\left(x_{0}, x_{1}\right)<c$.
Clearly, if $x_{1}=x_{0}$ or $x_{1} \in T x_{1}$, we conclude that x_{1} is a fixed point of T and so the proof is finished.
Now, we assume that $x_{1} \neq x_{0}$ and $x_{1} \notin T x_{1}$. So then, $\sigma\left(x_{0}, x_{1}\right)>0$ and $\sigma\left(x_{1}, T x_{1}\right)>0$.
Since $x_{1} \in T x_{0}$ and $2 t \leq \varphi(t)$, we get

$$
\sigma\left(x_{1}, T x_{0}\right) \leq \sigma\left(x_{1}, x_{1}\right) \leq 2 \sigma\left(x_{1}, x_{0}\right) \leq \varphi\left(\sigma\left(x_{1}, x_{0}\right)\right)
$$

Hence by (2.1) and triangular inequality, we have

$$
\begin{aligned}
0<\sigma\left(x_{1}, T x_{1}\right) & \leq H_{\sigma}\left(T x_{0}, T x_{1}\right) \leq \psi\left(M_{\sigma}\left(x_{0}, x_{1}\right)\right) \\
& \leq \psi\left(\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, T x_{0}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{4}\left[\sigma\left(x_{0}, T x_{1}\right)+\sigma\left(x_{1}, T x_{0}\right)\right]\right\}\right) \\
& \leq \psi\left(\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{4}\left[\sigma\left(x_{0}, T x_{1}\right)+\sigma\left(x_{1}, x_{1}\right)\right]\right\}\right) \\
& \leq \psi\left(\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{4}\left[\sigma\left(x_{1}, T x_{1}\right)+3 \sigma\left(x_{0}, x_{1}\right)\right]\right\}\right) \\
& =\psi\left(\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right)\right\}\right) .
\end{aligned}
$$

If $\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right)\right\}=\sigma\left(x_{1}, T x_{1}\right)$, then we obtain

$$
0<\sigma\left(x_{1}, T x_{1}\right) \leq \psi\left(\sigma\left(x_{1}, T x_{1}\right)\right)<\sigma\left(x_{1}, T x_{1}\right)
$$

wish is a contradiction. Then

$$
0<\sigma\left(x_{1}, T x_{1}\right) \leq \psi\left(\sigma\left(x_{0}, x_{1}\right)\right)<\psi(c)
$$

Thus, by Lemma 1.15 , there exist $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
\sigma\left(x_{1}, x_{2}\right)<\psi(c) \tag{2.2}
\end{equation*}
$$

If $x_{1}=x_{2}$ or $x_{2} \in T x_{2}$, we conclude that x_{2} is a fixed point of T and so the proof is finished. Now, we assume that $x_{2} \neq x_{1}$ and $x_{2} \notin T x_{2}$. Then we have

$$
\sigma\left(x_{2}, T x_{1}\right) \leq \sigma\left(x_{2}, x_{2}\right) \leq 2 \sigma\left(x_{2}, x_{1}\right) \leq \varphi\left(\sigma\left(x_{2}, x_{1}\right)\right) .
$$

Hence by (2.1), triangular inequality and (2.2), we have

$$
\begin{aligned}
0<\sigma\left(x_{2}, T x_{2}\right) & \leq H_{\sigma}\left(T x_{1}, T x_{2}\right) \leq \psi\left(M_{\sigma}\left(x_{1}, x_{2}\right)\right) \leq \psi\left(\max \left\{\sigma\left(x_{1}, x_{2}\right), \sigma\left(x_{2}, T x_{2}\right)\right\}\right) \\
& =\psi\left(\sigma\left(x_{1}, x_{2}\right)\right)<\psi^{2}(c)
\end{aligned}
$$

Then, by Lemma 1.15, there exist $x_{3} \in T x_{2}$ such that

$$
\begin{equation*}
\sigma\left(x_{2}, x_{3}\right)<\psi^{2}(c) \tag{2.3}
\end{equation*}
$$

Continuing in this fashion, we construct a sequence $\left\{x_{n}\right\}$ in X such that for all $n \in \mathbb{N}$
(i) $x_{n} \notin T x_{n}, x_{n} \neq x_{n+1}, x_{n+1} \in T x_{n}$;
(ii)

$$
\begin{equation*}
\sigma\left(x_{n}, x_{n+1}\right) \leq \psi^{n}(c) \tag{2.4}
\end{equation*}
$$

Now, for $m>n$, we have

$$
\sigma\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} \sigma\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} \psi^{i}(c) \leq \sum_{i=n}^{\infty} \psi^{i}(c) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.5}
\end{equation*}
$$

Hence, $\left\{x_{n}\right\}$ is σ-Cauchy. Moreover since (X, σ) is complete, it follows there exists $\nu \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, \nu\right)=\sigma(\nu, \nu)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.6}
\end{equation*}
$$

We will show that ν is a fixed point of T. First, we should prove that there exits a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\sigma\left(\nu, T x_{n(k)}\right) \leq \varphi\left(\sigma\left(\nu, x_{n(k)}\right)\right), \quad \text { for all } k=0,1,2, \ldots \tag{2.7}
\end{equation*}
$$

Arguing by contradiction, that is, there exists $N \in \mathbb{N}$ such that $\sigma\left(\nu, T x_{n}\right)>\varphi\left(\sigma\left(\nu, x_{n}\right)\right)$ for all $n \geq N$. Since $x_{n+1} \in T x_{n}$, it follows that $\sigma\left(\nu, x_{n+1}\right)>\varphi\left(\sigma\left(\nu, x_{n}\right)\right)$ for all $n \geq N$. Having φ nondecreasing, so by induction we get

$$
\begin{equation*}
\sigma\left(\nu, x_{n+m}\right)>\varphi^{m}\left(\sigma\left(\nu, x_{n}\right)\right), \quad \text { for all } n \geq N \text { and } m=1,2,3, \ldots \tag{2.8}
\end{equation*}
$$

Now, for all $n \geq N$ and $m \in \mathbb{N}$, we have

$$
\sigma\left(x_{n}, x_{n+m}\right) \leq \sum_{i=n}^{n+m-1} \sigma\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} \psi^{i}(c) \leq \sum_{i=n}^{\infty} \psi^{i}(c)
$$

Then for all $n \geq N$ and $m \in \mathbb{N}$, we obtain

$$
\sigma\left(\nu, x_{n}\right) \leq \sigma\left(\nu, x_{n+m}\right)+\sigma\left(x_{n+m}, x_{n}\right) \leq \sigma\left(\nu, x_{n+m}\right)+\sum_{i=n}^{\infty} \psi^{i}(c)
$$

Passing to the limit as $m \rightarrow \infty$, we get

$$
\sigma\left(\nu, x_{n}\right) \leq \sum_{i=n}^{\infty} \psi^{i}(c)
$$

This implies that for all $n \geq N$ and $m \in \mathbb{N}$,

$$
\begin{equation*}
\sigma\left(\nu, x_{n+m}\right) \leq \sum_{i=n+m}^{\infty} \psi^{i}(c) \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9), we have

$$
\sigma\left(\nu, x_{n}\right) \leq \varphi^{m}\left(\sigma\left(\nu, x_{n}\right)\right)<\sigma\left(\nu, x_{n+m}\right) \leq \sum_{i=n+m}^{\infty} \psi^{i}(c)
$$

Then for all $n \geq N$ and $m \in \mathbb{N}$, we obtain

$$
\begin{equation*}
\sigma\left(\nu, x_{n}\right)<\sum_{i=n+m}^{\infty} \psi^{i}(c) \tag{2.10}
\end{equation*}
$$

Letting $m \rightarrow \infty$ in (2.10), we get $\sigma\left(\nu, x_{n}\right)=0$ for all $n \geq N$ and so, $\sigma\left(\nu, x_{n+m}\right)=0$ for all $n \geq N$ and $m \in \mathbb{N}$. Using (2.8), we have $0 \leq \varphi^{m}(0)<0$, which is a contradiction. Therefore, (2.7) holds.

Now, we will show that $\sigma(\nu, T \nu)=0$. Suppose in the contrary, that is $\sigma(\nu, T \nu)>0$.
By (2.1) and (2.7), we have for all $k \in \mathbb{N}$

$$
\begin{aligned}
\sigma(\nu, T \nu) & \leq \sigma\left(\nu, x_{n(k)+1}\right)+\sigma\left(x_{n(k)+1}, T \nu\right) \leq \sigma\left(\nu, x_{n(k)+1}\right)+H_{\sigma}\left(T x_{n(k)}, T \nu\right) \\
& \leq \sigma\left(\nu, x_{n(k)+1}\right)+\psi\left(M_{\sigma}\left(x_{n(k)}, \nu\right)\right) \\
& \leq \sigma\left(\nu, x_{n(k)+1}\right) \\
& +\psi\left(\max \left\{\sigma\left(x_{n(k)}, \nu\right), \sigma\left(x_{n(k)}, T x_{n(k)}\right), \sigma(\nu, T \nu), \frac{1}{4}\left[\sigma\left(x_{n(k)}, T \nu\right)+\sigma\left(\nu, T x_{n(k)}\right)\right]\right\}\right) \\
& \leq \sigma\left(\nu, x_{n(k)+1}\right) \\
& +\psi\left(\max \left\{\sigma\left(x_{n(k)}, \nu\right), \sigma\left(x_{n(k)}, x_{n(k)+1}\right), \sigma(\nu, T \nu), \frac{1}{4}\left[\sigma\left(x_{n(k)}, T \nu\right)+\sigma\left(\nu, x_{n(k)+1}\right)\right]\right\}\right)
\end{aligned}
$$

We know that

$$
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, \nu\right)=\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{n(k)+1}\right)=\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)+1}, \nu\right)=0, \lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, T \nu\right)=\sigma(\nu, T \nu)
$$

Then there exists $N \in \mathbb{N}$ such that for all $k \geq N$

$$
\left.\max \left\{\sigma\left(x_{n(k)}, \nu\right), \sigma\left(x_{n(k)}, x_{n(k)+1}\right), \sigma(\nu, T \nu), \frac{1}{4}\left[\sigma\left(x_{n(k)}, T \nu\right)+\sigma\left(\nu, x_{n(k)+1}\right)\right]\right\}\right)=\sigma(\nu, T \nu)
$$

It follows that for all $k \geq N$

$$
0<\sigma(\nu, T \nu) \leq \sigma\left(\nu, x_{n(k)+1}\right)+\psi(\sigma(\nu, T \nu))
$$

Passing to the limit as $k \rightarrow \infty$, we get

$$
0<\sigma(\nu, T \nu) \leq \psi(\sigma(\nu, T \nu))<\sigma(\nu, T \nu)
$$

which is a contradiction. Hence $\sigma(\nu, T \nu)=0$ and so, by Lemma 1.10 we have $\nu \in \overline{T \nu}=T \nu$, that is ν is a fixed point of T.

We give an example to illustrate the utility of Theorem 2.2.

Example 2.3. Let $X=\{0,1,2\}$ and $\sigma: X \times X \rightarrow \mathbb{R}^{+}$defined by:

$$
\begin{aligned}
& \sigma(0,0)=0, \sigma(1,1)=3, \sigma(2,2)=1 \\
& \sigma(0,1)=\sigma(1,0)=7, \quad \sigma(0,2)=\sigma(2,0)=3, \quad \sigma(1,2)=\sigma(2,1)=4
\end{aligned}
$$

Then (X, σ) is a complete metric-like space. Note that σ is not a partial metric on X because $\sigma(0,1) \not \leq$ $\sigma(2,0)+\sigma(2,1)-\sigma(2,2)$.
Define the map $T: X \rightarrow C B^{\sigma}(X)$ by

$$
T 0=T 2=\{0\} \quad \text { and } T 1=\{0,2\}
$$

Note that $T x$ is bounded and closed for all $x \in X$ in metric-like space (X, σ). Take $\varphi(t)=s t$ with $s \geq 7$ and $\psi(t)=r t$ with $r \in\left[\frac{3}{4}, 1\right)$.

It is easy tho show that

$$
\begin{aligned}
\max \{\sigma(y, T x), x, y \in X\}=\sigma(1,0)=7 & \leq 7 \min \{\sigma(y, x), x, y \in X,(x, y) \neq(0,0)\} \\
& \leq \varphi(\min \{\sigma(y, x), x, y \in X,(x, y) \neq(0,0)\})
\end{aligned}
$$

This implies that, for all $x, y \in X$ with $(x, y) \neq(0,0)$

$$
\sigma(y, T x) \leq \varphi(\sigma(y, x))
$$

Now, we shall show that for all $x, y \in X$ with $(x, y) \neq(0,0)$

$$
\begin{equation*}
H_{\sigma}(T x, T y) \leq \psi\left(M_{\sigma}(x, y)\right) \tag{2.11}
\end{equation*}
$$

For this, we consider the following cases:
case1: $\quad x, y \in\{0,2\}$. We have

$$
H_{\sigma}(T x, T y)=\sigma(0,0)=0 \leq \psi\left(M_{\sigma}(x, y)\right)
$$

case2: $\quad x \in\{0,2\}, y=1$. We have

$$
\begin{aligned}
H_{\sigma}(T x, T y)=H_{\sigma}(\{0\},\{0,2\}) & =\max \{\sigma(0,\{0,2\}), \max \{\sigma(0,0), \sigma(0,2)\}\} \\
& =\max \{0,3\}=3 \leq \frac{3}{4} \sigma(x, y) \leq \psi\left(M_{\sigma}(x, y)\right)
\end{aligned}
$$

case3 : $\quad x=y=1$. We have

$$
\begin{aligned}
H_{\sigma}(T x, T y)=H_{\sigma}(\{0,2\},\{0,2\}) & =\max \{\sigma(0,\{0,2\}), \sigma(2,\{0,2\})\} \\
& =\min \{\sigma(0,2), \sigma(2,2)\}=1 \leq \frac{3}{4} \sigma(1,1) \leq \psi\left(M_{\sigma}(x, y)\right)
\end{aligned}
$$

Note that (2.11) is also true for $(x, y)=(0,0)$. Then, all the required hypotheses of Theorem 2.2 are satisfied. Here, $x=0$ is the unique fixed point of T

We state the following corollaries as consequences of Theorem 2.2.
Corollary 2.4. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$
\begin{equation*}
H_{\sigma}(T x, T y) \leq \psi\left(M_{\sigma}(x, y)\right)-\varphi(\sigma(y, x))+\sigma(y, T x) \tag{2.12}
\end{equation*}
$$

where $M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}$.
If $2 t \leq \varphi(t)$ for each $t \in \mathbb{R}^{+}$, then T is an MWP operator.
Proof. Let $x, y \in X$ such that $\sigma(y, T x) \leq \varphi(\sigma(y, x))$. Then, if (2.12) holds, we have

$$
H_{\sigma}(T x, T y) \leq \psi\left(M_{\sigma}(x, y)\right)-\varphi(\sigma(y, x))+\sigma(y, T x) \leq \psi\left(M_{\sigma}(x, y)\right)
$$

Thus, the proof is concluded by Theorem 2.2.
Corollary 2.5. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 2$ such that, for all $x, y \in X$

$$
\sigma(y, T x) \leq s \sigma(y, x) \Rightarrow H_{\sigma}(T x, T y) \leq r M_{\sigma}(x, y)
$$

where $M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}$.
Then T is an MWP operator.
Proof. It suffice to take $\varphi(t)=s t$ and $\psi(t)=r t$ in Theorem 2.2.

Corollary 2.6. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 2$ such that, for all $x, y \in X$

$$
\sigma(y, T x) \leq s \sigma(y, x) \Rightarrow H_{\sigma}(T x, T y) \leq r \max \{\sigma(x, y), \sigma(x, T x), \sigma(y, T y)\}
$$

Then T is an $M W P$ operator.
Corollary 2.7. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 2$ such that, for all $x, y \in X$

$$
\sigma(y, T x) \leq s \sigma(y, x) \Rightarrow H_{\sigma}(T x, T y) \leq \frac{r}{3}\{\sigma(x, y)+\sigma(x, T x)+\sigma(y, T y)\}
$$

Then T is an $M W P$ operator.
Corollary 2.8. [6] Let (X, σ) be a complete metric-like space. If $T: X \rightarrow C B^{\sigma}(X)$ is a multi-valued mapping such that for all $x, y \in X$, we have

$$
\begin{equation*}
H_{\sigma}(T x, T y) \leq k M(x, y) \tag{2.13}
\end{equation*}
$$

where $k \in[0,1)$ and

$$
M(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}(\sigma(x, T y)+\sigma(y, T x))\right\}
$$

Then T has a fixed point.
Proof. Let $\varphi(t)=2 t$ and $\psi(t)=k t$. Then, if (2.13) holds, we have

$$
H_{\sigma}(T x, T y) \leq \psi(M(x, y))
$$

for all $x, y \in X$ satisfying $\sigma(y, T x) \leq 2 \sigma(y, x)$. Thus, the proof is concluded by Theorem 2.2.
If T is a single-valued mapping, we deduce the following results.
Corollary 2.9. Let (X, σ) be a complete metric-like space and $T: X \rightarrow X$ be a mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$
\sigma(y, T x) \leq \varphi(\sigma(y, x)) \Rightarrow \sigma(T x, T y) \leq \psi\left(M_{\sigma}(x, y)\right)
$$

where $M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}$.
If $2 t \leq \varphi(t)$ for each $t \in \mathbb{R}^{+}$and if $\psi(2 t)<t$ for each $t>0$, then T has a unique fixed point.
Proof. The existence follows immediately from Theorem 2.2. Thus, we need to prove uniqueness of fixed point. We assume that there exist $x, y \in X$ such that $x=T x$ and $y=T y$ with $x \neq y$.

Since $\sigma(y, T x)=\sigma(y, x) \leq \varphi(\sigma(y, x))$, then by (2.1) and since $\psi(2 t)<t$, we get

$$
\begin{aligned}
0<\sigma(x, y)=\sigma(T x, T y) & \leq \psi\left(\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}\right) \\
& =\psi\left(\max \left\{\sigma(x, y), \sigma(x, x), \sigma(y, y), \frac{1}{2} \sigma(x, y)\right\}\right) \\
& \leq \psi(2 \sigma(x, y))<\sigma(x, y)
\end{aligned}
$$

which is a contradiction. Hence $x=y$, so the uniqueness of the fixed point of T.

Corollary 2.10. Let (X, σ) be a complete metric-like space and $T: X \rightarrow X$ be a mapping. Assume that there exist $r \in\left[0, \frac{1}{2}\right)$ and $s \geq 2$ such that, for all $x, y \in X$

$$
\sigma(y, T x) \leq s(\sigma(y, x)) \Rightarrow \sigma(T x, T y) \leq r\left(M_{\sigma}(x, y)\right)
$$

where $M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}$.
Then T has a unique fixed point.
Now, we need the following definition.

Definition 2.11. Let (X, σ) be a metric-like space. A multi-valued mapping $T: X \rightarrow C B^{\sigma}(X)$ is said to be (r, s)-contractive multi-valued operator if there exist $r, s \in[0,1)$, such that

$$
\begin{equation*}
\frac{1}{1+r} \sigma(x, T x) \leq \sigma(y, x) \leq \frac{1}{1-s} \sigma(x, T x) \Rightarrow H_{\sigma}(T x, T y) \leq r M_{\sigma}(x, y) \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$, where

$$
M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}
$$

We give the following result.
Theorem 2.12. Let (X, σ) be a complete metric-like space and $T: X \rightarrow C B^{\sigma}(X)$ be $(r, s)-$ contractive multi-valued operator with $r<s$. Then T is an MWP operator.

Proof. Let r_{1} be a real number such that $0 \leq r \leq r_{1}<s$. Let $x_{0} \in X$. Clearly, if $x_{0} \in T x_{0}$, then x_{0} is a fixed point of T and so, the proof is finished. Now, we assume that $x_{0} \notin T x_{0}$. Then $\sigma\left(x_{0}, T x_{0}\right)>0$. By Lemma 1.11, there exists $x_{1} \in T x_{0}$ such that

$$
\sigma\left(x_{0}, x_{1}\right) \leq \frac{1-r_{1}}{1-s} \sigma\left(x_{0}, T x_{0}\right)
$$

If $x_{1} \in T x_{1}$, then x_{1} is a fixed point of T and also, the proof is finished. Now, we assume that $x_{1} \notin T x_{1}$. Then $\sigma\left(x_{1}, T x_{1}\right)>0$. Since

$$
\left.\frac{1}{1+r} \sigma\left(x_{0}, T x_{0}\right) \leq \sigma\left(x_{0}, x_{1}\right)\right) \leq \frac{1-r_{1}}{1-s} \sigma\left(x_{0}, T x_{0}\right)
$$

then, by (2.14), we have

$$
\begin{aligned}
& \sigma\left(x_{1}, T x_{1}\right) \leq H_{\sigma}\left(T x_{0}, T x_{1}\right) \leq \\
& r \max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, T x_{0}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{4}\left[\sigma\left(x_{0}, T x_{1}\right)+\sigma\left(x_{1}, T x_{0}\right)\right]\right\} \\
& \leq r \max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{4}\left[\sigma\left(x_{1}, T x_{1}\right)+3 \sigma\left(x_{0}, x_{1}\right)\right]\right\} \\
& \leq r \max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right)\right\}
\end{aligned}
$$

If $\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right)\right\}=\sigma\left(x_{1}, T x_{1}\right)$, then we obtain $\sigma\left(x_{1}, T x_{1}\right) \leq r \sigma\left(x_{1}, T x_{1}\right)<\sigma\left(x_{1}, T x_{1}\right)$, which is a contradiction. Thus, we get

$$
\sigma\left(x_{1}, T x_{1}\right) \leq r \sigma\left(x_{0}, x_{1}\right)
$$

By Lemma 1.11, there exists $x_{2} \in T x_{1}$ such that

$$
\sigma\left(x_{1}, x_{2}\right) \leq \frac{r_{1}}{r} \sigma\left(x_{1}, T x_{1}\right) \quad \text { and } \sigma\left(x_{1}, x_{2}\right) \leq \frac{1-r_{1}}{1-s} \sigma\left(x_{1}, T x_{1}\right)
$$

This implies that

$$
\sigma\left(x_{1}, x_{2}\right) \leq r_{1} \sigma\left(x_{0}, x_{1}\right) \quad \text { and } \sigma\left(x_{1}, x_{2}\right) \leq \frac{1-r_{1}}{1-s} \sigma\left(x_{1}, T x_{1}\right)
$$

It follows that

$$
\frac{1}{1+r} \sigma\left(x_{1}, T x_{1}\right) \leq \sigma\left(x_{1}, T x_{2}\right) \leq \frac{1}{1-s} \sigma\left(x_{1}, T x_{1}\right)
$$

Then, by (2.14), we get $\sigma\left(x_{2}, T x_{2}\right) \leq r \sigma\left(x_{1}, x_{2}\right)$. Continuing this process, we construct a sequence $\left\{x_{n}\right\}$ in X such that
(i) $x_{n+1} \in T x_{n}$;
(ii) $\sigma\left(x_{n}, T x_{n}\right) \leq r \sigma\left(x_{n-1}, x_{n}\right)$;
(iii) $\sigma\left(x_{n}, x_{n+1}\right) \leq r_{1} \sigma\left(x_{n-1}, x_{n}\right)$;
(iv) $\sigma\left(x_{n}, x_{n+1}\right) \leq \frac{1-r_{1}}{1-s} \sigma\left(x_{n}, T x_{n}\right)$
for all $n=1,2, \ldots$
Since $\sigma\left(x_{n}, x_{n+1}\right) \leq r_{1} \sigma\left(x_{n-1}, x_{n}\right)$, by induction we obtain

$$
\sigma\left(x_{n}, x_{n+1}\right) \leq r_{1}^{n} \sigma\left(x_{0}, x_{1}\right) \quad \text { for all } n=1,2, \ldots
$$

Now, for $m>n$, we have

$$
\sigma\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} \sigma\left(x_{i}, x_{i+1}\right) \leq \sigma\left(x_{0}, x_{1}\right) \sum_{i=n}^{m-1} r_{1}^{i} \leq \sigma\left(x_{0}, x_{1}\right) \sum_{i=n}^{\infty} r_{1}^{i} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.15}
\end{equation*}
$$

Hence, $\left\{x_{n}\right\}$ is σ-Cauchy. Moreover since (X, σ) is complete, it follows there exists $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, z\right)=\sigma(z, z)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.16}
\end{equation*}
$$

For all $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
\sigma\left(x_{n}, x_{n+m}\right) & \leq \sigma\left(x_{n}, x_{n+1}\right)+\sigma\left(x_{n+1}, x_{n+2}\right)+\ldots+\sigma\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq\left[1+r_{1}+r_{1}^{2}+\ldots+r_{1}^{m-1}\right] \sigma\left(x_{n}, x_{n+1}\right)=\frac{1-r_{1}^{m}}{1-r_{1}} \sigma\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

It follows that for all $m, n \in \mathbb{N}$

$$
\sigma\left(x_{n}, z\right) \leq \sigma\left(x_{n}, x_{n+m}\right)+\sigma\left(x_{n+m}, z\right) \leq \sigma\left(x_{n+m}, z\right)+\frac{1-r_{1}^{m}}{1-r_{1}} \sigma\left(x_{n}, x_{n+1}\right)
$$

Passing to limit as $m \rightarrow \infty$, we get for all $n \in \mathbb{N}$

$$
\sigma\left(x_{n}, z\right) \leq \frac{1}{1-r_{1}} \sigma\left(x_{n}, x_{n+1}\right) \leq \frac{1}{1-r_{1}} \cdot \frac{1-r_{1}}{1-s} \sigma\left(x_{n}, T x_{n}\right)=\frac{1}{1-s} \sigma\left(x_{n}, T x_{n}\right)
$$

Thus, we have for all $n \in \mathbb{N}$

$$
\begin{equation*}
\sigma\left(x_{n}, z\right) \leq \frac{1}{1-s} \sigma\left(x_{n}, T x_{n}\right) \tag{2.17}
\end{equation*}
$$

Now, we assume that there exists $N \in \mathbb{N}$ such that

$$
\frac{1}{1+r} \sigma\left(x_{n}, T x_{n}\right)>\sigma\left(x_{n}, z\right)
$$

for all $n \geq N$. Then we have

$$
\begin{aligned}
\sigma\left(x_{n}, x_{n+1}\right) & \leq \sigma\left(x_{n}, z\right)+\sigma\left(z, x_{n+1}\right)<\frac{1}{1+r}\left[\sigma\left(x_{n}, T x_{n}\right)+\sigma\left(x_{n+1}, T x_{n+1}\right)\right] \\
& <\frac{1}{1+r}\left[\sigma\left(x_{n}, x_{n+1}\right)+r \sigma\left(x_{n}, x_{n+1}\right)\right]=\sigma\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

which is a contradiction. Thus, there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\frac{1}{1+r} \sigma\left(x_{n(k)}, T x_{n(k)}\right) \leq \sigma\left(x_{n(k)}, z\right) \tag{2.18}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Now, we should show that z is a fixed point of T.
Using (2.17), (2.18) and (2.14), we have for all $k \in \mathbb{N}$

$$
\begin{aligned}
& \sigma\left(x_{n(k)+1}, T z\right) \leq H_{\sigma}\left(T x_{n(k)}, T z\right) \leq \\
& r \max \left\{\sigma\left(x_{n(k)}, z\right), \sigma\left(x_{n(k)}, T x_{n(k)}\right), \sigma(z, T z), \frac{1}{4}\left[\sigma\left(x_{n(k)}, T z\right)+\sigma\left(z, T x_{n(k)}\right)\right]\right\} \leq \\
& r \max \left\{\sigma\left(x_{n(k)}, z\right), \sigma\left(x_{n(k)}, x_{n(k)+1}\right), \sigma(z, T z), \frac{1}{4}\left[\sigma\left(x_{n(k)}, T z\right)+\sigma\left(z, x_{n(k)+1}\right)\right]\right\}
\end{aligned}
$$

Passing to limit as $k \rightarrow \infty$, we get

$$
\sigma(z, T z) \leq r \sigma(z, T z)
$$

Since $r<1$, it follows that $\sigma(z, T z)=0$. Thus, by Lemma 1.10 we obtain $z \in T z$, that is, z is a fixed point of T.

Corollary 2.13. Let (X, σ) be a complete metric-like space and $T: X \rightarrow X$ be a mapping. Assume that there exist $r \in[0,1)$ such that, for all $x, y \in X$

$$
\frac{1}{1+r} \sigma(x, T x) \leq \sigma(x, y) \leq \frac{1}{1-r} \sigma(x, T x) \Rightarrow \sigma(T x, T y) \leq r M_{\sigma}(x, y)
$$

where $M_{\sigma}(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{1}{4}[\sigma(x, T y)+\sigma(T x, y)]\right\}$.
Then T has a fixed point.
Proof. Let $x_{0} \in X$. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n=0,1,2, \ldots$ We have for all $n=0,1,2, \ldots$

$$
\frac{1}{1+r} \sigma\left(x_{n}, T x_{n}\right) \leq \sigma\left(x_{n}, x_{n+1}\right) \leq \frac{1}{1-r} \sigma\left(x_{n}, T x_{n}\right)
$$

It follows that for all $n=0,1,2, \ldots$

$$
\sigma\left(x_{n+1}, x_{n+2}\right)=\sigma\left(T x_{n}, T x_{n+1}\right) \leq r \sigma\left(x_{n}, x_{n+1}\right)
$$

Thus the sequence $\left\{x_{n}\right\}$ is Cauchy in (X, σ). By completeness of (X, σ) there exists $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, z\right)=\sigma(z, z)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.19}
\end{equation*}
$$

We have for all $n, m \in \mathbb{N}$

$$
\sigma\left(x_{n}, x_{n+m}\right) \leq \frac{1-r^{m}}{1-r} \sigma\left(x_{n}, x_{n+1}\right)
$$

It follows that

$$
\sigma\left(x_{n}, z\right) \leq \sigma\left(x_{n}, x_{n+m}\right)+\sigma\left(x_{n+m}, z\right) \leq \frac{1-r^{m}}{1-r} \sigma\left(x_{n}, x_{n+1}\right)+\sigma\left(x_{n+m}, z\right)
$$

Passing to limit as $m \rightarrow \infty$, we get

$$
\sigma\left(x_{n}, z\right) \leq \frac{1}{1-r} \sigma\left(x_{n}, x_{n+1}\right)
$$

Proceeding as in the proof of Theorem 2.12, we can find a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\frac{1}{1+r} \sigma\left(x_{n(k)}, T x_{n(k)}\right) \leq \sigma\left(x_{n(k)}, z\right) \tag{2.20}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Then as in the proof of Theorem 2.12 we get z is a fixed point of T.
We give the following illustrative example inspired from [4].
Example 2.14. Let $X=\{0,1,2\}$ and $\sigma: X \times X \rightarrow \mathbb{R}^{+}$defined by:

$$
\begin{aligned}
& \sigma(0,0)=\sigma(2,2)=\frac{1}{4}, \quad \sigma(1,1)=0, \quad \sigma(0,1)=\sigma(1,0)=\frac{1}{3} \\
& \sigma(0,2)=\sigma(2,0)=\frac{2}{5}, \quad \sigma(1,2)=\sigma(2,1)=\frac{11}{15}
\end{aligned}
$$

Then (X, σ) is a complete metric-like space. Note that σ is not a partial metric on X as $\sigma(1,2)>$ $\sigma(1,0)+\sigma(0,2)-\sigma(0,0)$.
Define the map $T: X \rightarrow C B^{\sigma}(X)$ by

$$
T 0=T 1=\{1\} \quad \text { and } T 2=\{0,1\}
$$

Note that $T x$ is bounded and closed for all $x \in X$ in metric-like space (X, σ).
We have

$$
\begin{aligned}
\max \{\sigma(x, T x), x \in X\} & =\max \{\sigma(0,1), \sigma(1,1), \sigma(2,0)\}=\frac{2}{5} \\
\min \{\sigma(x, T x), x \in X-\{1\}\} & =\frac{1}{3}
\end{aligned}
$$

Therefore, we have

$$
\frac{1}{4} \leq \sigma(x, y) \leq \frac{11}{15}
$$

for all $x, y \in X$ with $(x, y) \neq(1,1)$. It follows that

$$
\frac{1}{1+r} \sigma(x, T x) \leq \sigma(x, y) \leq \frac{1}{1-s} \sigma(x, T x)
$$

for all $x, y \in X$ with $x \neq 1$ and for some $\frac{3}{5} \leq r<s<1$. Observe that the above inequalities are also true for $x=y=1$ but not hold for $x=1$ and $y \in\{0,2\}$.

Now, we shall show that

$$
\begin{equation*}
H_{\sigma}(T x, T y) \leq r M_{\sigma}(x, y) \tag{2.21}
\end{equation*}
$$

for all $x, y \in X$ for some $\frac{5}{6} \leq r<1$. For this, we consider the following cases:
case1 : $\quad x, y \in\{0,1\}$, with $(x, y) \neq(1,0)$. We have

$$
H_{\sigma}(T x, T y)=\sigma(1,1)=0 \leq r M_{\sigma}(x, y)
$$

case2 : $\quad x=0, y=2$. We have

$$
\begin{aligned}
H_{\sigma}(T x, T y)=H_{\sigma}(\{1\},\{0,1\}) & =\max \{\sigma(1,\{0,1\}), \max \{\sigma(1,1), \sigma(1,0)\}\} \\
& =\frac{1}{3} \leq \frac{5}{6} \sigma(x, y) \leq r M_{\sigma}(x, y)
\end{aligned}
$$

case3 : $\quad x=y=2$. We have

$$
\begin{aligned}
H_{\sigma}(T x, T y)=H_{\sigma}(\{0,1\},\{0,1\}) & =\max \{\sigma(0,\{0,1\}), \sigma(1,\{0,1\})\} \\
& =\min \{\sigma(0,0), \sigma(0,1)\}=\frac{1}{4}
\end{aligned}
$$

Moreover, we have $M_{\sigma}(2,2)=\max \{\sigma(2,2), \sigma(2, T 2)\}=\max \left\{\frac{1}{4}, \frac{2}{5}\right\}=\frac{2}{5}$. Then for $x=y=2$ we get

$$
H_{\sigma}(T 2, T 2)=\frac{1}{4} \leq \frac{5}{6} \cdot \frac{2}{5} \leq r M_{\sigma}(2,2)
$$

Then, all the required hypotheses of Theorem 2.12 are satisfied. Here, $x=1$ is the unique fixed point of T.

Now, we need the following definition.
Definition 2.15. Let (X, p) be a partial metric space. A multi-valued mapping $T: X \rightarrow C B^{p}(X)$ is said to be (φ, ψ)-contractive multi-valued operator if there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{equation*}
p(y, T x) \leq \varphi(p(y, x)) \Rightarrow H_{p}(T x, T y) \leq \psi\left(M_{p}(x, y)\right) \tag{2.22}
\end{equation*}
$$

for all $x, y \in X$, where

$$
M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}
$$

We give the following result.
Theorem 2.16. Let (X, p) be a complete partial metric space and $T: X \rightarrow C B^{p}(X)$ be (φ, ψ)-contractive multi-valued operator. Then T is an MWP operator.
Proof. Let $x_{0} \in X$ and $x_{1} \in T x_{0}$. Let c a given real number such that $p\left(x_{0}, x_{1}\right)<c$.
Clearly, if $x_{1}=x_{0}$ or $x_{1} \in T x_{1}$, we conclude that x_{1} is a fixed point of T and so the proof is finished.
Now, we assume that $x_{1} \neq x_{0}$ and $x_{1} \notin T x_{1}$. So then, $p\left(x_{0}, x_{1}\right)>0$ and $p\left(x_{1}, T x_{1}\right)>0$.
Since $x_{1} \in T x_{0}$, we get

$$
p\left(x_{1}, T x_{0}\right) \leq p\left(x_{1}, x_{1}\right) \leq p\left(x_{1}, x_{0}\right) \leq \varphi\left(p\left(x_{1}, x_{0}\right)\right)
$$

Hence by (2.22) and triangular inequality, we have

$$
\begin{aligned}
0<p\left(x_{1}, T x_{1}\right) & \leq H_{p}\left(T x_{0}, T x_{1}\right) \leq \psi\left(M_{p}\left(x_{0}, x_{1}\right)\right) \\
& \leq \psi\left(\max \left\{p\left(x_{0}, x_{1}\right), p\left(x_{0}, T x_{0}\right), p\left(x_{1}, T x_{1}\right), \frac{1}{2}\left[p\left(x_{0}, T x_{1}\right)+p\left(x_{1}, T x_{0}\right)\right]\right\}\right) \\
& \leq \psi\left(\max \left\{p\left(x_{0}, x_{1}\right), p\left(x_{1}, T x_{1}\right), \frac{1}{2}\left[p\left(x_{0}, T x_{1}\right)+p\left(x_{1}, x_{1}\right)\right]\right\}\right) \\
& \leq \psi\left(\max \left\{\sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{0}, x_{1}\right), \sigma\left(x_{1}, T x_{1}\right), \frac{1}{2}\left[p\left(x_{1}, T x_{1}\right)+p\left(x_{0}, x_{1}\right)\right]\right\}\right) \\
& =\psi\left(\max \left\{p\left(x_{0}, x_{1}\right), p\left(x_{1}, T x_{1}\right)\right\}\right)=\psi\left(p\left(x_{0}, x_{1}\right)\right)<\psi(c)
\end{aligned}
$$

Proceeding as in the proof of Theorem 2.2, we construct a sequence $\left\{x_{n}\right\}$ in X such that for all $n \in \mathbb{N}$
(i) $x_{n} \notin T x_{n}, x_{n} \neq x_{n+1}, x_{n+1} \in T x_{n} ;$
(ii)

$$
\begin{equation*}
p\left(x_{n}, x_{n+1}\right) \leq \psi^{n}(c) \tag{2.23}
\end{equation*}
$$

Now, for $m>n$, we have

$$
p\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} p\left(x_{i}, x_{i+1}\right)-\sum_{i=n+1}^{m-1} p\left(x_{i}, x_{i}\right) \leq \sum_{i=n}^{m-1} \psi^{i}(c) \leq \sum_{i=n}^{\infty} \psi^{i}(c) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0 \tag{2.24}
\end{equation*}
$$

Hence, $\left\{x_{n}\right\}$ is Cauchy in (X, p). Moreover since (X, p) is complete, it follows there exists $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=p(z, z)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0 \tag{2.25}
\end{equation*}
$$

Proceeding again as in the proof of Theorem 2.2, we prove that z is a fixed point of T.
Analogously, we can derive the following results.
Corollary 2.17. Let (X, p) be a complete partial metric space and $T: X \rightarrow C B^{p}(X)$ be a multi-valued mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$
H_{p}(T x, T y) \leq \psi\left(M_{p}(x, y)\right)+p(y, T x)-\varphi(p(y, x))
$$

where $M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}$.
Then T has a unique fixed point.
Corollary 2.18. ([4], Theorem 2.2) Let (X, p) be a complete partial metric space and $T: X \rightarrow$ $C B^{p}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 1$ such that, for all $x, y \in X$

$$
p(y, T x) \leq s p(y, x) \Rightarrow H_{p}(T x, T y) \leq r M_{p}(x, y)
$$

where $M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}$.
Then T is an MWP operator.
Proof. It suffice to take $\varphi(t)=s t$ and $\psi(t)=r t$ in Theorem 2.16.
Corollary 2.19. Let (X, p) be a complete partial metric space and $T: X \rightarrow C B^{p}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 1$ such that, for all $x, y \in X$

$$
p(y, T x) \leq s p(y, x) \Rightarrow H_{p}(T x, T y) \leq r \max \{p(x, y), p(x, T x), p(y, T y)\}
$$

Then T is an $M W P$ operator.
Corollary 2.20. Let (X, p) be a complete partial metric space and $T: X \rightarrow C B^{p}(X)$ be a multi-valued mapping. Assume that there exist $r \in[0,1)$ and $s \geq 1$ such that, for all $x, y \in X$

$$
p(y, T x) \leq s p(y, x) \Rightarrow H_{p}(T x, T y) \leq \frac{r}{3}\{p(x, y)+p(x, T x)+p(y, T y)\}
$$

Then T is an MWP operator.
If T is a single-valued mapping, we deduce the following results.
Corollary 2.21. Let (X, p) be a complete partial metric space and $T: X \rightarrow X$ be a mapping. Assume that there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that, for all $x, y \in X$

$$
p(y, T x) \leq \varphi(p(y, x)) \Rightarrow p(T x, T y) \leq \psi\left(M_{p}(x, y)\right)
$$

where $M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}$.
Then T has a unique fixed point.

Proof. The existence follows immediately also from Theorem 2.16. Thus, we need to prove uniqueness of fixed point. We assume that there exist $x, y \in X$ such that $x=T x$ and $y=T y$ with $x \neq y$.

Since $p(y, T x)=p(y, x) \leq \varphi(p(y, x))$, then by (2.22), we get

$$
\begin{aligned}
0<p(x, y)=p(T x, T y) & \leq \psi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}\right) \\
& =\psi(\max \{p(x, y), p(x, x), p(y, y), p(x, y)\})=\psi(p(x, y)) \\
& <p(x, y)
\end{aligned}
$$

which is a contradiction. Hence $x=y$, so the uniqueness of the fixed point of T.

Corollary 2.22. Let (X, p) be a complete partial metric space and $T: X \rightarrow X$ be a mapping. Assume that there exist $r \in[0,1)$ and $s \geq 1$ such that, for all $x, y \in X$

$$
p(y, T x) \leq s p(y, x) \Rightarrow p(T x, T y) \leq r M_{p}(x, y)
$$

where $M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{1}{2}[p(x, T y)+p(T x, y)]\right\}$.
Then T has a unique fixed point.

References

[1] IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of multi-valued weakly Picard operators, Stud. Univ. Babe?s-Bolyai, Math. 46 (2001), 111-121.
[2] IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), 1947-1959.
[3] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc. 136 (2008), 1861-1869.
[4] M. Jleli, H. K. Nashine, B. Samet and C. Vetro, On multi-valued weakly Picard operators in partial Hausdorff metric spaces, Fixed Point Theory Appl. 20015 (2015), Art. ID 52.
[5] I. Altun and H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1 C 8 .
[6] E. Karapinar, H. Aydi, A. Felhi and S. Sahmim, Hausdorff Metric-Like, generalized Nadler's Fixed Point Theorem on Metric-Like Spaces and application, Miskolc Math. Notes (in press).
[7] C.T. Aage and J.N. Salunke, The results on fixed points in dislocated and dislocated quasi-metric space, Appl. Math. Sci, 2(59) (2008), 2941-2948.
[8] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences, 728 (1994), 183-197.
[9] H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadlers fixed point theorem on partial metric spaces, Topol. Appl. 159 (2012), 3234-3242.
[10] R.D. Daheriya, R. Jain and M. Ughade, Some fixed point theorem for expansive type mapping in dislocated metric space, ISRN Math. Anal. 2012 (2012), Art. ID 376832.
[11] A. Isufati, Fixed point theorems in dislocated quasi-metric space, Appl. Math. Sci. 4(5) (2010), 217-233.
[12] Amini A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), Art. ID 204.
[13] R. George, Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal. 7(9) (2013), 403-411.
[14] G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16 (1973), 201C206.
[15] E. Karapınar and P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl. 2013 (2013), Art. ID 222.
[16] P.S. Kumari, W. Kumar and I.R. Sarma, Common fixed point theorems on weakly compatible maps on dislocated metric spaces, Math. Sci. 6 (2012), 71.
[17] PS. Kumari, Some fixed point theorems in generalized dislocated metric spaces, Math. Theory Model. 1(4) (2011), 16-22.
[18] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[19] I.R. Sarma and P.S. Kumari, On dislocated metric spaces, Int. J. Math. Arch. 3(1) (2012), 72-77.
[20] R. Shrivastava, ZK. Ansari and M. Sharma, Some results on fixed points in dislocated and dislocated quasi-metric spaces, J. Adv. Stud. Topol. 3(1) (2012), 25-31.
[21] M. Shrivastava, K. Qureshi and A.D. Singh, A fixed point theorem for continuous mapping in dislocated quasi-metric spaces, Int. J. Theor. Appl. Sci. 4(1) (2012), 39-40.
[22] K. Zoto, Some new results in dislocated and dislocated quasi-metric spaces. Appl. Math. Sci. 6(71) (2012), 3519-3526.
${ }^{1}$ Department of Mathematics, College of Sciences, King Faisal University, Hafouf, Saudi Arabia
${ }^{2}$ Department of Mathematics, Preparatory Engineering Institute, Bizerte, Carthage University, Tunisia

* Corresponding author: afelhi@kfu.edu.sa

