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EXPONENTIAL STABILITY OF THE HEAT EQUATION WITH BOUNDARY

TIME-VARYING DELAYS

MOUATAZ BILLAH MESMOULI1, ABDELOUAHEB ARDJOUNI1,2,∗ AND AHCENE DJOUDI1

Abstract. In this paper, we consider the heat equation with a time-varying delays term in the

boundary condition in a bounded domain of Rn, the boundary Γ is a class C2 such that Γ = ΓD∪ΓN ,

with ΓD ∩ ΓN = ∅, ΓD 6= ∅ and ΓN 6= ∅. Well-posedness of the problems is analyzed by using
semigroup theory. The exponential stability of the problem is proved. This paper extends in n-

dimensional the results of the heat equation obtained in [11].

1. Introduction

Time-delay often appears in many biological, electrical engineering systems and mechanical applica-
tions, and in many cases, delay is a source of instability [3]. In the case of distributed parameter system-
s, even arbitrarily small delays in the feedback may destabilize the system (see e.g. [1, 2, 8, 9, 10, 14]).
The stability issue of systems with delay is, therefore, of theoretical and practical importance.

In present paper, we are interested in the effect of a time-varying delays in boundary stabilization
of the heat equation in domains of Rn. Let Ω ⊂ Rn be an open bounded set with boundary Γ of class
C2. We assume that Γ is divided into two parts ΓN and ΓD; i.e., Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅,
ΓD 6= ∅ and ΓN 6= ∅.

In this domain Ω, we consider the initial boundary value problem

ut (x, t)−∆u (x, t) = 0 in Ω× (0,∞) ,(1.1)

u (x, t) = 0 on ΓD × (0,∞) ,(1.2)

∂u

∂ν
(x, t) = −µ1u (x, t)− µ2u (x, t− τ (t)) on ΓN × (0,∞) ,(1.3)

u (x, 0) = u0 (x) in Ω,(1.4)

u (x, t− τ (0)) = f0 (x, t− τ (0)) on ΓN × (0, τ (0)) ,(1.5)

where ν (x) denotes the outer unit normal vector to the point x ∈ Γ and ∂u
∂ν is the normal derivative.

Moreover, τ (t) > 0, µ1, µ2 ≥ 0 are fixed nonnegative real numbers, the initial datum (u0, f0) belongs
to a suitable space.

On the functions τ (·) we assume that there exists a positive constants τ , such that

(1.6) 0 < τ0 ≤ τ (t) ≤ τ , ∀t > 0,

Moreover, we assume

(1.7) τ ′ (t) < 1, ∀t > 0,

and

(1.8) τ ∈W 2,∞ ([0, T ]) , ∀t > 0.

Note that , if t < τ (t), then u (x, t− τ (t)) is in the past and we need an initial value in the past.
Moreover, by (1.7) and the mean value theorem, we have

τ (t)− τ (0) < t,
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which implies

t− τ (t) > −τ (0) ,

we thus obtain the initial condition (1.5).
The last boundary-value problem describes the propagation of heat in a homogeneous n-dimensional

rod. Here a stands for the heat conduction coefficient, u(x, t) is the value of the temperature field of
the plant at time moment t and location x along the rod. In the sequel, the state dependence on time
t and spatial variable x is suppressed whenever possible.

The above problem, with both µ1, µ2 > 0 and a time-varying delay, has been studied in one space
dimension by Nicaise, Valein and Fridman [12]. In [12] an exponential stability result is given, under
the condition

(1.9) µ2 <
√

1− dµ1,

where d is a constant such that

(1.10) τ ′ (t) ≤ d < 1, ∀t > 0,

We are interested in giving an exponential stability result for such a problem. Let us denote by
〈v, w〉 the Euclidean inner product between two vectors (v, w) ∈ Rn.

Under a suitable relation between the above coefficients we can give a well-posedness result and an
exponential stability estimate for problem (1.1)–(1.5).

2. Well-posedness of the problem

Using semigroup theory we can give the well-posedness of problem (1.1)-(1.5). Let us stand

z (x, ρ, t) = u (x, t− τ (t) ρ) , x ∈ ΓN , ρ ∈ (0, 1) , t > 0.

Then, the problem (1.1)-(1.5) is equivalent to

ut (x, t)−∆u (x, t) = 0 in Ω× (0,∞) ,(2.1)

τ (t) zt (x, ρ, t) + (1− τ ′ (t) ρ) zρ (x, ρ, t) = 0 in ΓN × (0, 1)× (0,∞) ,(2.2)

u (x, t) = 0 on ΓD × (0,∞) ,(2.3)

∂u

∂ν
(x, t) = −µ1u (x, t)− µ2z (x, 1, t) on ΓN × (0,∞) ,(2.4)

z (x, 0, t) = u (x, t) , x ∈ ΓN , t > 0,(2.5)

u (x, 0) = u0 (x) in Ω,(2.6)

z (x, ρ, 0) = f0 (x,−τ (0) ρ) , x ∈ ΓN , ρ ∈ (0, 1) .(2.7)

If we denote by

U := (u, z)
T
,

then

U ′ =

(
ut
zt

)
=

(
∆u

(τ ′(t)ρ−1)
τ(t) zρ

)
.

Therefore, problem (2.1)–(2.7) can be rewritten as

(2.8)

{
U ′ = A (t)U,

U (0) = (u0, f0 (·,− · τ (0)))
T
,

in the Hilbert space H defined by

(2.9) H := L2(Ω)× L2(ΓN × (0, 1)),

equipped with the standard inner product〈(
u
z

)
,

(
ũ
z̃

)〉
H

:=

∫
Ω

u(x)ũ(x)dx+

∫
ΓN

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ.
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The time varying operator A(t) is defined by

A(t)

(
u
z

)
:=

(
∆u

(τ ′(t)ρ−1)
τ(t) zρ

)
,

with domain

D (A(t)) : =
{

(u, z)
T ∈

(
E(∆, L2(Ω)) ∩ V

)
× L2

(
ΓN , H

1 (0, 1)
)

:

∂u

∂ν
= −µ1u− µ2z (·, 1) on ΓN , u = z (·, 0) on ΓN

}
,

where,

V = H1
ΓD =

{
u ∈ H1 (Ω) , u = 0 on ΓD

}
,

and

E(∆, L2(Ω)) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}.
Recall that for a function u ∈ E(∆, L2(Ω)), ∂u

∂ν belongs to H−1/2(ΓN ) and the next Green formula is
valid (see section 1.5 of [4])

(2.10)

∫
Ω

∇u∇ϕdx = −
∫

Ω

∆uϕdx+ 〈∂u
∂ν
, ϕ〉ΓN , ∀ϕ ∈ H1

ΓD (Ω),

where 〈·; ·〉ΓN means the duality pairing between H−1/2(ΓN ) and H1/2(ΓN ).
Observe that the domain of A(t) is independent of the time t, i.e.,

(2.11) D(A(t)) = D(A(0)), t > 0.

Note further that for (u, z)
T ∈ D(A(t)), ∂u/∂ν belongs to L2(ΓN ), since z (x, 1) is in L2(ΓN ).

A general theory for equations of type (2.8) has been developed using semigroup theory [6, 7, 13].
The simplest way to prove existence and uniqueness results is to show that the triplet {A,H,D(A(0))},
with A = {A(t) : t ∈ [0, T ]}, for some fixed T > 0, forms a CD-system (or constant domain system,
see [6, 7]). More precisely, we can obtain a well-posedness result using semigroup arguments by Kato
[5, 6, 13]. The following result is proved in [5, Theorem 1.9].

Theorem 1. Assume that

(i) D(A(0)) is a dense subset of H,
(ii) D(A(t)) = D(A(0)) for all t > 0,

(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and the family A =
{A(t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t (i.e. the semigroup
(St(s))s≥0 generated by A(t) satisfies ‖St(s)u‖H ≤ Cems‖u‖H, for all u ∈ H and s ≥ 0),

(iv) ∂tA belongs to L∞∗ ([0, T ], B(D(A(0)),H)), the space of equivalent classes of essentially bound-
ed, strongly measurable functions from [0, T ] into the set B(D(A(0)),H) of bounded operators
from D(A(0)) into H.

Then, problem (2.8) has a unique solution U ∈ C([0, T ],D(A(0))) ∩ C1([0, T ],H) for any initial
datum in D(A(0)).

Our goal is then to check the above assumptions for problem (2.8).

Lemma 1. D(A(0)) is dense in H.

Proof. Let (f, h)T ∈ H be orthogonal to all elements of D(A(0)), that is,

0 =

〈(
u
z

)
,

(
g
h

)〉
H

=

∫
Ω

u(x)g(x)dx+

∫
ΓN

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ,

for all (u, z)T ∈ D(A(0)). We first take u = 0 and z ∈ D(ΓN × (0, 1)). As (0, z)T ∈ D(A(0)), we obtain∫
ΓN

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ = 0.

Since D(ΓN × (0, 1)) is dense in L2(ΓN × (0, 1), we deduce that h = 0.
In the same way, by taking z = 0 and u ∈ D(Ω) we see that g = 0. �
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Assuming (1.9) and (1.10) hold. Let ξ be a positive constant that satisfies

(2.12)
µ2√
1− d

≤ ξ ≤ 2µ1 −
µ2√
1− d

.

Note that this choice of ξ is possible from assumption (1.9).
We define on the Hilbert space H the time dependent inner product

(2.13)

〈(
u
z

)
,

(
ũ
z̃

)〉
t

:=

∫
Ω

u (x) ũ (x) dx+ ξτ (t)

∫
ΓN

∫ 1

0

z (x, ρ) z̃ (x, ρ) dpdΓ.

Using this time dependent inner product and Theorem 1, we can deduce a well-posedness result.

Theorem 2. For any initial datum U0 ∈ D(A(0)) there exists a unique solution

U ∈ C([0,+∞),D(A(0))) ∩ C1([0,+∞),H),

of system (2.8).

Proof. We first observe that

(2.14)
‖φ‖t
‖φ‖s

≤ e
c

2τ0
|t−s|, ∀t, s ∈ [0, T ],

where φ = (u, z)T and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we have

‖φ‖2t − ‖φ‖2se
c
τ0
|t−s| =

(
1− e

c
τ0
|t−s|

)∫
Ω

u2dx

+ ξ
(
τ(t)− τ(s)e

c
τ0
|t−s|

)∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ.

We notice that 1 − e
c
τ0
|t−s| ≤ 0. Moreover τ(t) − τ(s)e

c
τ0
|t−s| ≤ 0 for some c > 0. Indeed, τ(t) =

τ(s) + τ ′(a)(t− s), where a ∈ (s, t), and thus,

τ(t)

τ(s)
≤ 1 +

|τ ′(a)|
τ(s)

|t− s|.

By (1.8), τ ′ is bounded on [0, T ] and therefore, recalling also (1.7),

τ(t)

τ(s)
≤ 1 +

c

τ0
|t− s| ≤ e

c
τ0
|t−s|,

which proves (2.14).
Now we calculate 〈A(t)U,U〉t for a fixed t. Take U = (u, z)T ∈ D(A(t)). Then,

〈A(t)U,U〉t =

〈(
∆u

τ ′(t)ρ−1
τ(t) zρ

)
,

(
u
z

)〉
t

=

∫
Ω

u(x)∆u(x)dx− ξ
∫

ΓN

∫ 1

0

(1− τ ′(t)ρ) zρ (x, ρ) z (x, ρ) dρdΓ.

So, by Green’s formula,

〈A(t)U,U〉t =

∫
ΓN

∂u (x)

∂ν
u(x)dΓ−

∫
Ω

|∇u(x)|2dx

− ξ
∫

ΓN

∫ 1

0

(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ.(2.15)

Integrating by parts in ρ, we obtain∫
ΓN

∫ 1

0

zρ(x, ρ)z(x, ρ)(1− τ ′(t)ρ) dρdΓ

=

∫
ΓN

∫ 1

0

1

2

∂

∂ρ
z2(x, ρ)(1− τ ′(t)ρ)dρdΓ

=
τ ′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ +
1

2

∫
ΓN

{z2(x, 1) (1− τ ′ (t))− z2(x, 0)}dΓ.(2.16)
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Therefore, from (2.15) and (2.16),

〈A(t)U,U〉t

=

∫
ΓN

∂u (x)

∂ν
u(x)dΓ−

∫
Ω

|∇u(x)|2dx

− ξ

2

∫
ΓN

{z2(x, 1) (1− τ ′ (t))− z2(x, 0)}dΓ− ξτ ′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ

= −
∫

ΓN

[µ1u (x) + µ2z (x, 1)]u(x)dΓ−
∫

Ω

|∇u(x)|2dx

+
ξ

2

∫
ΓN

u2(x)dΓ− ξ

2

∫
ΓN

{z2(x, 1) (1− τ ′ (t)) dΓ− ξτ ′(t)

2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ

= −
(
µ1 −

ξ

2

)∫
ΓN

u2(x)dΓ− µ2

∫
ΓN

z (x, 1)u(x)dΓ−
∫

Ω

|∇u(x)|2dx

− ξ

2

∫
ΓN

{z2(x, 1) (1− τ ′ (t)) dΓ− ξτ ′(t)

2

∫
ΓN

∫ 1

0

z2(x, ρ)dρdΓ,

from which, using Cauchy-Schwarz’s, Poincaré’s inequality and (1.10), it follows that

〈A(t)U,U〉t ≤
(
−µ1 +

ξ

2
+

µ2

2
√

1− d
− 1

Cp

)∫
ΓN

u2(x)dΓ

+

(
µ2

√
1− d
2

− ξ

2
(1− d)

)∫
ΓN

z2(x, 1)dΓ + κ(t)〈U,U〉t,(2.17)

where

(2.18) κ(t) =
(τ ′2 (t) + 1)

1
2

2τ(t)
.

Now, observe that from (2.12),

−µ1 +
ξ

2
+

µ2

2
√

1− d
≤ 0,

µ2

√
1− d
2

− ξ

2
(1− d) ≤ 0.

Then

(2.19) 〈A(t)U,U〉t − κ(t)〈U,U〉t ≤ 0,

which means that the operator Ã(t) = A(t)− κ(t)I is dissipative.
Moreover,

κ′(t) =
τ ′′(t)τ ′(t)

2τ(t)(τ ′2(t) + 1)
1
2

− τ ′(t)(τ ′2(t) + 1)
1
2

2τ(t)2
,

is bounded on [0, T ] for all T > 0 (by (1.6) and (1.7)) and we have

d

dt
A(t)U =

(
0

τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)
τ(t)2 zρ

)
,

with τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)
τ(t)2 bounded on [0, T ]. Thus

(2.20)
d

dt
Ã(t) ∈ L∞∗ ([0, T ], B(D(A(0)),H)),

the space of equivalence classes of essentially bounded, strongly measurable functions from [0, T ] into
B(D(A(0)),H).

Now, we show that λI − A(t) is surjective for fixed t > 0 and λ > 0. Given (g, h)T ∈ H, we seek
U = (u, z)T ∈ D(A(t)) solution of

(λI −A(t))

(
u
z

)
=

(
g
h

)
,
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that is verifying

(2.21)

{
λu−∆u = g,

λz + 1−τ ′(t)ρ
τ(t) zρ = h.

Suppose that we have found u with the appropriate regularity. We can then determine z, indeed z
satisfies the differential equation,

λz(x, ρ) +
1− τ ′ (t) ρ

τ (t)
zρ(x, ρ) = h(x, ρ), for x ∈ Γ, ρ ∈ (0, 1) ,

and the boundary condition

(2.22) z(x, 0) = u(x), for x ∈ ΓN .

Therefore z is explicitly given by

z(x, ρ) = u(x)e−λρτ(t) + τ(t)e−λρτ(t)

∫ ρ

0

h(x, σ)eλστ(t)dσ,

if τ ′(t) = 0, and

z(x, ρ) = u(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)

+ e
λ
τ(t)

τ′(t) ln(1−τ ′(t)ρ)
∫ ρ

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ,

otherwise. This means that once u is found with the appropriate properties, we can find z.
In particular, if τ ′(t) = 0,

(2.23) z(x, 1) = u(x)e−λτ(t) + z0(x), x ∈ ΓN ,

with z0 ∈ L2(ΓN ) defined by

(2.24) z0(x) = τ(t)e−λτ(t)

∫ 1

0

h(x, σ)eλστ(t)dσ, x ∈ ΓN ,

and, if τ ′(t) 6= 0,

(2.25) z(x, 1) = u(x)e
λ
τ(t)

τ′(t) ln(1−τ ′(t))
+ z0(x), x ∈ ΓN ,

with z0 ∈ L2(ΓN ) defined by

(2.26) z0(x) = e
λ
τ(t)

τ′(t) ln(1−τ ′(t))
∫ 1

0

h(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ′(t) ln(1−τ ′(t)σ)
dσ,

for x ∈ ΓN . Then, we have to find u. In view of the equation

(2.27) λu−∆u = g.

Multiplying this identity by a test function φ and integrating in space

(2.28)

∫
Ω

(λuφ−∆uφ) dx =

∫
Ω

gφdx, ∀φ ∈ H1
ΓD ,

using Green’s formula, we obtain∫
Ω

(λuφ−∆uφ) dx =

∫
Ω

(λuφ+∇u∇φ) dx−
∫

ΓN

∂u

∂ν
φdΓ

=

∫
Ω

(λuφ+∇u∇φ) dx+

∫
ΓN

(µ1u+ µ2z (x, 1))φdΓ.

By (2.23), we obtain ∫
Ω

(λuφ−∆uφ) dx =

∫
Ω

(λuφ+∇u∇φ) dx

+

∫
ΓN

(
µ1u+ µ2

(
ue−λτ(t) + z0

))
φdΓ,



EXPONENTIAL STABILITY OF THE HEAT EQUATION 49

if τ ′(t) = 0, and by (2.25)∫
Ω

(λuφ−∆uφ) dx =

∫
Ω

(λuφ+∇u∇φ) dx

+

∫
ΓN

(
µ1u+ µ2

(
ue
λ
τ(t)

τ′(t) ln(1−τ ′(t))
+ z0

))
φdΓ,

otherwise. Therefore, (2.28) can be rewritten as

(2.29)

∫
Ω

(λuφ+∇u∇φ) dx+

∫
ΓN

(
µ1u+ µ2

(
ue−λτ(t) + z0

))
φdΓ =

∫
Ω

gφdx,

if τ ′(t) = 0, and∫
Ω

(λuφ+∇u∇φ) dx+

∫
ΓN

(
µ1u+ µ2

(
ue
λ
τ(t)

τ′(t) ln(1−τ ′(t))
+ z0

))
φdΓ

=

∫
Ω

gφdx,(2.30)

otherwise. As the left-hand side of (2.29) or (2.30) is coercive on H1
ΓD

(Ω), the Lax-Milgram lemma

guarantees the existence and uniqueness of a solution u ∈ H1
ΓD

(Ω) of (2.29), (2.30).
If we consider φ ∈ D(Ω) in (2.29), (2.30), we have that u solves (2.27) in D′(Ω) and thus u ∈

E(∆, L2(Ω)).
Using Green’s formula (2.10) in (2.29) and using (2.27), we obtain, if τ ′(t) = 0∫

ΓN

(
µ1 + µ2e

−λτ(t)
)
uφdΓ + 〈∂u

∂ν
, φ〉ΓN = −µ2

∫
ΓN

z0φdΓ,

from which follows
∂u

∂ν
+
(
µ1 + µ2e

−λτ(t)
)
u = −µ2z0 on ΓN ,

which imply that
∂u

∂ν
= −µ1u− µ2z (·, 1) on ΓN ,

where we have used (2.23) and (2.27).
We find the same result if τ ′(t) 6= 0.
In conclusion, we have found (u, z)T ∈ D(A), which verifies (2.21), and thus λI −A(t) is surjective

for some λ > 0 and t > 0. Again as κ(t) > 0, this proves that

(2.31) λI − Ã(t) = (λ+ κ(t))I −A(t) is surjective,

for any λ > 0 and t > 0.
Then, (2.14), (2.19) and (2.31) imply that the family Ã = {Ã(t) : t ∈ [0, T ]} is a stable family

of generators in H with stability constants independent of t, by [6, Proposition 1.1]. Therefore, the
assumptions (i)-(iv) of Theorem 1 are satisfied by (2.11), (2.14), (2.19), (2.31), (2.20) and Lemma 1,
and thus, the problem {

Ũ ′ = Ã(t)Ũ ,

Ũ(0) = U0,

has a unique solution Ũ ∈ C([0,+∞), D(A(0))) ∩ C1([0,+∞),H) for U0 ∈ D(A(0)). The requested
solution of (2.8) is then given by

U(t) = eβ(t)Ũ(t),

with β(t) =
∫ t

0
κ(s)ds, because

U ′eβ(t)Ũ(t) + eβ(t)Ũ ′(t)

= κ(t)eβ(t)Ũ(t) + eβ(t)Ã(t)Ũ(t)

= eβ(t)(κ(t)Ũ(t) + Ã(t)Ũ(t))

= eβ(t)A(t)Ũ(t) = A(t)eβ(t)Ũ(t)

= A(t)U(t).
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This concludes the proof. �

3. The decay of the energy

Let us choose the following energy

(3.1) E (t) =
1

2

∫
Ω

u2 (x, t) dx+
ξτ (t)

2

∫
ΓN

∫ 1

0

u2 (x, t− τ (t) ρ) dpdΓ,

where ξ is a suitable positive constant.

Proposition 1. Let (1.9) and (1.10) be satisfied. Then for all regular solution of problem (2.8), the
energy is decreasing and satisfies

(3.2) E′ (t) ≤ −C
(∫

ΓN

u2 (x, t) dΓ +

∫
ΓN

u2 (x, t− τ (t)) dΓ

)
.

Proof. Differentiating (3.1), we get

E′ (t) =

∫
Ω

uutdx+
ξτ ′ (t)

2

∫
ΓN

∫ 1

0

u2 (x, t− τ (t) ρ) dpdΓ

+ ξτ (t)

∫
ΓN

∫ 1

0

(1− τ ′ (t) ρ)u (x, t− τ (t) ρ)ut (x, t− τ (t) ρ) dpdΓ,

then

E′ (t) =

∫
Ω

u∆udx+
ξτ ′ (t)

2

∫
ΓN

∫ 1

0

u2 (x, t− τ (t) ρ) dpdΓ

+ ξτ (t)

∫
ΓN

∫ 1

0

(1− τ ′ (t) ρ)u (x, t− τ (t) ρ)ut (x, t− τ (t) ρ) dpdΓ.

By Green’s formula and integrating by parts in ρ, we obtain

E′ (t) = −
∫

Ω

|∇u|2 dx+

∫
ΓN

u
∂u

∂ν
dΓ

− ξ

2

∫
ΓN

u2 (x, t− τ (t)) (1− τ ′ (t)) dΓ +
ξ

2

∫
ΓN

u2 (x, t) dΓ,

and by (1.3), we obtain

E′ (t) = −
∫

Ω

|∇u|2 dx−
∫

ΓN

[
µ1u

2 (x, t) + µ2u (x, t)u (x, t− τ (t))
]
dΓ

− ξ

2

∫
ΓN

u2 (x, t− τ (t)) (1− τ ′ (t)) dΓ +
ξ

2

∫
ΓN

u2 (x, t) dΓ.

By Cauchy-Schwarz’s and Poincaré’s inequality, we get,

E′ (t) ≤
(
− 1

Cp
− µ1 +

ξ

2
+

µ2

2
√

1− d

)∫
ΓN

u2 (x, t) dΓ

−
(
ξ (1− d)

2
+
µ2

√
1− d
2

)∫
ΓN

u2 (x, t− τ (t)) dΓ.

Since the condition (2.12), we deduce that

− 1

Cp
− µ1 +

ξ

2
+

µ2

2
√

1− d
≤ 0.

which concludes the proof. �
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4. Exponential stability

In this section, we will give an exponential stability result for the problem (1.1)–(1.5) by using the
following Lyapunov functional

(4.1) E (t) = E (t) + γÊ (t) ,

where γ > 0 is a parameter that will be fixed small enough later on, E is the standard energy defined

by (3.1) and Ê is defined by

(4.2) Ê (t) = ξτ (t)

∫
ΓN

∫ 1

0

e−2τ(t)ρu2 (x, t− τ (t) ρ) dpdΓ.

Note that, the functional Ê is equivalent to the energy E, that is there exist two positive constant d1,
d2 such that

(4.3) d1E (t) ≤ E (t) ≤ d2E (t) .

Theorem 3. Assume (1.6) and (1.7). Then, there exist positive constants C1, C2 such that for any
solution of problem (1.1)–(1.5),

E(t) ≤ C1E(0)e−C2t, ∀t ≥ 0.

Proof. First, we differentiate Ê (t) to have

d

dt
Ê (t) =

τ ′ (t)

τ (t)
Ê (t)

+ ξτ (t)

∫
ΓN

∫ 1

0

(−2τ ′ (t) ρ) e−2τ(t)ρu2 (x, t− τ (t) ρ) dpdΓ + J,

where

J = 2ξτ (t)

∫
ΓN

∫ 1

0

e−2τ(t)ρ (1− τ ′ (t) ρ)ut (x, t− τ (t) ρ)u (x, t− τ (t) ρ) dpdΓ.

Moreover, by noticing one more time that

z (x, ρ, t) = u (x, t− τ (t) ρ) , x ∈ ΓN , ρ ∈ (0, 1) , t > 0,

and by integrating by parts in ρ, we have

J = −ξ
∫

ΓN

∫ 1

0

e−2τ(t)ρ (1− τ ′ (t) ρ)
∂

∂ρ
(z (x, ρ, t))

2
dpdΓ

= ξ

∫
ΓN

∫ 1

0

e−2τ(t)ρ [−2τ (t) (1− τ ′ (t) ρ)− τ ′ (t)] z2 (x, ρ, t) dpdΓ

−ξ
∫

ΓN

e−2τ(t) (1− τ ′ (t)) z2 (x, 1, t) dΓ + ξ

∫
ΓN

z2 (x, 0, t) dΓ

= ξ

∫
ΓN

∫ 1

0

e−2τ(t)ρ [−2τ (t) (1− τ ′ (t) ρ)− τ ′ (t)]u2 (x, t− τ (t) ρ) dpdΓ

−ξ
∫

ΓN

e−2τ(t) (1− τ ′ (t))u2 (x, t− τ (t)) dΓ + ξ

∫
ΓN

u2 (x, t) dΓ.

Therefore, we have

d

dt
Ê (t) =

τ ′ (t)

τ (t)
Ê (t) + ξ

∫
ΓN

∫ 1

0

e−2τ(t)ρ [−2τ (t)− τ ′ (t)]u2 (x, t− τ (t) ρ) dpdΓ

− ξ
∫

ΓN

e−2τ(t) (1− τ ′ (t))u2 (x, t− τ (t)) dΓ + ξ

∫
ΓN

u2 (x, t) dΓ

= −2Ê (t)− ξ
∫

ΓN

e−2τ(t) (1− τ ′ (t))u2 (x, t− τ (t)) dΓ + ξ

∫
ΓN

u2 (x, t) dΓ.
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As τ ′ (t) < 1, we obtain

(4.4)
d

dt
Ê (t) ≤ −2Ê (t) + ξ

∫
ΓN

u2 (x, t) dΓ.

Consequently, gathering (3.2), (4.1) and (4.4), we obtain

d

dt
E (t) =

d

dt
E (t) + γ

d

dt
Ê (t)

≤ −2γÊ (t) + γξ

∫
ΓN

u2 (x, t) dΓ

− C
∫

ΓN

(
u2 (x, t) + u2 (x, t− τ (t))

)
dΓ.

Then, for γ sufficiently small, we can estimate

(4.5)
d

dt
E (t) ≤ −2γÊ (t)− C

∫
ΓN

(
u2 (x, t) + u2 (x, t− τ (t))

)
dΓ.

Now, observe that by assumption (1.6) on τ (t), we can deduce

Ê (t) ≥ ξτ (t)

∫
ΓN

∫ 1

0

e−2τρu2 (x, t− τ (t) ρ) dpdΓ

≥ kξτ (t)

2

∫
ΓN

∫ 1

0

u2 (x, t− τ (t) ρ) dpdΓ,(4.6)

for some positive constant k. Therefore, from (4.5) and (4.6),

d

dt
E (t) ≤ −2γÊ (t)− C

∫
ΓN

(
u2 (x, t) + u2 (x, t− τ (t))

)
dΓ

≤ −kE (t) ≤ −KE (t) .

for suitable positive constants k, K; where we used also the first inequality in (4.3). This clearly
implies

E (t) ≤ e−KtE (0) ,

and so, using (4.3),

E (t) ≤ C1e
−C2tE (0) ,

for suitable constants C1, C2 > 0. �
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