A NEW RESULT ON GENERALIZED ABSOLUTE CESÀRO SUMMABILITY

HÜSEYIN BOR ${ }^{1, *}$ AND RAM N. MOHAPATRA ${ }^{2}$

Abstract

In [4], a main theorem dealing with an application of almost increasing sequences, has been proved. In this paper, we have extended that theorem by using a general class of quasi power increasing sequences, which is a wider class of sequences, instead of an almost increasing sequence. This theorem also includes some new and known results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [1]). A sequence $\left(d_{n}\right)$ is said to be δ-quasi monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately, and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=$ $\left(\delta_{n}\right)$ is a sequence of positive numbers (see [2]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left\{f_{n}(\sigma, \gamma)\right\}=\left\{n^{\sigma}(\log n)^{\gamma}, \gamma \geq 0,0<\sigma<1\right\}$ (see [11]). If we take $\gamma=0$, then we get a quasi- σ power increasing sequence. Every almost increasing sequence is a quasi- σ-power increasing sequence for any non-negative σ, but the converse is not true for $\sigma>0$ (see [9]). Let $\sum a_{n}$ be a given infinite series. We denote by $t_{n}^{\alpha, \beta}$ the nth Cesàro mean of order (α, β), with $\alpha+\beta>-1$, of the sequence ($n a_{n}$), that is (see [6])

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 . \tag{2}
\end{equation*}
$$

Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined by (see [3])

$$
\theta_{n}^{\alpha, \beta}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1 \tag{3}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1
\end{array}\right.
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

If we take $\beta=0$, then $|C, \alpha, \beta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [8]).
The first author has proved the following main theorem.
Theorem A ([4]). Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (3). Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta|_{k}, 0<\alpha \leq 1, \alpha+\beta>0$, and $k \geq 1$.

[^0]
2. The main Result.

The aim of this paper is to extent Theorem A by using a quasi-f-power increasing sequence, which is a general class of quasi power increasing sequences, instead of an almost increasing sequence. We shall prove the following theorem.
Theorem. Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (3). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\Delta A_{n} \leq \delta_{n}, \sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the condition (5) is satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta|_{k}, 0<\alpha \leq 1, \alpha+\beta>0$, and $k \geq 1$.
If we take $\left(X_{n}\right)$ as an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$, then we get Theorem A, in this case condition ' $\Delta A_{n} \leq \delta_{n}$ ' is not needed.
We need the following lemmas for the proof of our theorem.
Lemma 1 ([3]). If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{6}
\end{equation*}
$$

Lemma 2 ([5]). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\left(A_{n}\right)$ is a δ-quasi-monotone sequence with $\Delta A_{n} \leq \delta_{n}$ and $\sum n \delta_{n} X_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
n A_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

3. Proof of the theorem

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean of the sequence ($n a_{n} \lambda_{n}$). Then, by (1), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

Applying Abel's transformation first and then using Lemma 1, we obtain that

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}, \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta}=T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

When $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta) k}}\left\{\sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left|A_{v}\right|\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \times\left\{\sum_{v=1}^{n-1}\left|A_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|A_{v}\right|\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|A_{v}\right|\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta) k}}=O(1) \sum_{v=1}^{m} v\left|A_{v}\right| \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|A_{v}\right|\right) \sum_{p=1}^{v} \frac{\left(\theta_{p}^{\alpha, \beta}\right)^{k}}{p}+O(1) m\left|A_{m}\right| \sum_{v=1}^{m} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1) \Delta| A_{v}\left|-\left|A_{v}\right|\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

in view of hypotheses of the theorem and Lemma 2. Similarly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}^{\alpha, \beta}\right|^{k} & =O(1) \sum_{n=1}^{m} \frac{\left|\lambda_{n}\right|}{n}\left(\theta_{n}^{\alpha, \beta}\right)^{k}=O(1) \sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n}=O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| X_{v} \\
& =O(1) \sum_{v=1}^{\infty}\left|A_{v}\right| X_{v}<\infty
\end{aligned}
$$

This completes the proof of the theorem. If we take $\beta=0$, then we get a new result concerning the $|C, \alpha|_{k}$ summability factors. If we set $\beta=0, \alpha=1$, and $X_{n}=\operatorname{logn}$, then we obtain the result of Mazhar dealing with $|C, 1|_{k}$ summability factors (see [10]). Finally, if we take $\gamma=0$, then we get a new result dealing with an application of quasi- σ-power increasing sequences.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč., 5 (1956), 483-522 (in Russian).
[2] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc., 14A (1965), 38-46.
[3] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci., 57 (2008), 205-209.
[4] H. Bor, On generalized absolute Cesàro summability, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), LVII (2011), 323-328.
[5] H. Bor, On the quasi monotone and generalized power increasing sequences and their new applications, J. Classical Anal., 2 (2013), 139-144.
[6] D. Borwein, Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2), 9 (1958), 310-316.
[7] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc., 67 (1970), 321-326.
[8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[9] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
[10] S. M. Mazhar, On generalized quasi-convex sequence and its applications, Indian J. Pure Appl. Math., 8 (1977), 784-790.
[11] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl., 322 (2006), 1224-1230.
${ }^{1}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
${ }^{2}$ University of Central Florida, Orlando, FL 32816, USA
*CORRESPONDING AUTHOR: HBOR33@GMAIL.COM

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05, 40 G99.
 Key words and phrases. Cesàro mean; power increasing sequence; quasi-monotone sequence; summability factors; infinite series; Hölder inequality; Minkowski inequality.

