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A NEW RESULT ON GENERALIZED ABSOLUTE CESÀRO SUMMABILITY

HÜSEYIN BOR1,∗ AND RAM N. MOHAPATRA2

Abstract. In [4], a main theorem dealing with an application of almost increasing sequences, has

been proved. In this paper, we have extended that theorem by using a general class of quasi power

increasing sequences, which is a wider class of sequences, instead of an almost increasing sequence.
This theorem also includes some new and known results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [1]). A sequence (dn) is
said to be δ-quasi monotone, if dn → 0, dn > 0 ultimately, and ∆dn ≥ −δn, where ∆dn = dn − dn+1 and δ=
(δn) is a sequence of positive numbers (see [2]). A positive sequence X = (Xn) is said to be a quasi-f-power
increasing sequence if there exists a constant K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1,
where f = {fn(σ, γ)} = {nσ(logn)γ , γ ≥ 0, 0 < σ < 1}(see [11]). If we take γ=0, then we get a quasi-σ-
power increasing sequence. Every almost increasing sequence is a quasi-σ-power increasing sequence for any
non-negative σ, but the converse is not true for σ > 0 (see [9]). Let

∑
an be a given infinite series. We denote

by tα,βn the nth Cesàro mean of order (α, β), with α+ β > −1, of the sequence (nan), that is (see [6])

(1) tα,βn =
1

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvav,

where

(2) Aα+βn = O(nα+β), Aα+β0 = 1 and Aα+β−n = 0 for n > 0.

Let (θα,βn ) be a sequence defined by (see [3])

θα,βn =

{ ∣∣tα,βn ∣∣ , α = 1, β > −1

max1≤v≤n
∣∣tα,βv ∣∣ , 0 < α < 1, β > −1.

(3)

The series
∑
an is said to be summable | C,α, β |k, k ≥ 1, if (see [7])

(4)

∞∑
n=1

1

n
| tα,βn |k<∞.

If we take β = 0, then | C,α, β |k summability reduces to | C,α |k summability (see [8]).
The first author has proved the following main theorem.
Theorem A ([4]). Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be an almost increasing sequence
such that | ∆Xn |= O(Xn/n) and let λn → 0 as n → ∞. Suppose that there exists a sequence of numbers
(An) such that it is δ-quasi-monotone with

∑
nδnXn <∞,

∑
AnXn is convergent, and | ∆λn |≤ | An | for all

n. If the condition
m∑
n=1

(θα,βn )k

n
= O(Xm) as m→∞(5)

satisfies, then the series
∑
anλn is summable | C,α, β |k, 0 < α ≤ 1, α+ β > 0, and k ≥ 1.
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2. The main result.

The aim of this paper is to extent Theorem A by using a quasi-f-power increasing sequence, which is a
general class of quasi power increasing sequences, instead of an almost increasing sequence. We shall prove the
following theorem.
Theorem. Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be a quasi-f-power increasing sequence and
let λn → 0 as n→∞. Suppose that there exists a sequence of numbers (An) such that it is δ-quasi-monotone
with ∆An ≤ δn,

∑
nδnXn < ∞,

∑
AnXn is convergent, and | ∆λn |≤ | An | for all n. If the condition (5) is

satisfied, then the series
∑
anλn is summable | C,α, β |k, 0 < α ≤ 1, α+ β > 0, and k ≥ 1.

If we take (Xn) as an almost increasing sequence such that | ∆Xn |= O(Xn/n), then we get Theorem A, in
this case condition ’∆An ≤ δn’ is not needed.
We need the following lemmas for the proof of our theorem.
Lemma 1 ([3]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

(6) |
v∑
p=0

Aα−1
n−pA

β
pap |≤ max

1≤m≤v
|
m∑
p=0

Aα−1
m−pA

β
pap | .

Lemma 2 ([5]). Let (Xn) be a quasi-f-power increasing sequence. If (An) is a δ-quasi-monotone sequence
with ∆An ≤ δn and

∑
nδnXn <∞ , then

∞∑
n=1

nXn | ∆An |<∞,(7)

nAnXn = O(1) as n→∞.(8)

3. Proof of the theorem

Let (Tα,βn ) be the nth (C,α, β) mean of the sequence (nanλn). Then, by (1), we have

Tα,βn =
1

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvavλv.

Applying Abel’s transformation first and then using Lemma 1, we obtain that

Tα,βn =
1

Aα+βn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λn

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvav,

| Tα,βn | ≤ 1

Aα+βn

n−1∑
v=1

| ∆λv ||
v∑
p=1

Aα−1
n−pA

β
ppap | +

| λn |
Aα+βn

|
n∑
v=1

Aα−1
n−vA

β
vvav |

≤ 1

Aα+βn

n−1∑
v=1

A(α+β)
v θα,βv | ∆λv | + | λn | θα,βn = Tα,βn,1 + Tα,βn,2 .

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

1

n
| Tα,βn,r |k<∞, for r = 1, 2.
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When k > 1, we can apply Hölder’s inequality with indices k and k′, where 1
k

+ 1
k′ = 1, we get that

m+1∑
n=2

1

n
| Tα,βn,1 |

k ≤
m+1∑
n=2

1

n
| 1

Aα+βn

n−1∑
v=1

A(α+β)
v θα,βv ∆λv |k

= O(1)

m+1∑
n=2

1

n1+(α+β)k

{
n−1∑
v=1

v(α+β)k| Av |(θα,βv )k
}
×

{
n−1∑
v=1

| Av |

}k−1

= O(1)

m∑
v=1

v(α+β)k| Av |(θα,βv )k
m+1∑
n=v+1

1

n1+(α+β)k

= O(1)

m∑
v=1

v(α+β)k| Av |(θα,βv )k
∫ ∞
v

dx

x1+(α+β)k
= O(1)

m∑
v=1

v| Av |
(θα,βv )k

v

= O(1)

m−1∑
v=1

∆(v| Av |)
v∑
p=1

(θα,βp )k

p
+O(1)m| Am |

m∑
v=1

(θα,βv )k

v

= O(1)

m−1∑
v=1

| (v + 1)∆ | Av | − | Av || Xv +O(1)m| Am |Xm

= O(1)

m−1∑
v=1

v | ∆Av | Xv +O(1)

m−1∑
v=1

| Av |Xv +O(1)m| Am |Xm

= O(1) as m→∞,
in view of hypotheses of the theorem and Lemma 2. Similarly, we have that

m∑
n=1

1

n
| Tα,βn,2 |

k = O(1)

m∑
n=1

| λn |
n

(θα,βn )k = O(1)

m∑
n=1

(θα,βn )k

n

∞∑
v=n

| ∆λv |

= O(1)

∞∑
v=1

| ∆λv |
v∑

n=1

(θα,βn )k

n
= O(1)

∞∑
v=1

| ∆λv | Xv

= O(1)

∞∑
v=1

| Av |Xv <∞.

This completes the proof of the theorem. If we take β = 0, then we get a new result concerning the | C,α |k
summability factors. If we set β = 0, α = 1, and Xn= logn, then we obtain the result of Mazhar dealing
with | C, 1 |k summability factors (see [10]). Finally, if we take γ=0, then we get a new result dealing with an
application of quasi-σ-power increasing sequences.
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Moskov. Mat. Obšč., 5 (1956), 483-522 (in Russian).
[2] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc., 14A (1965), 38-46.

[3] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci., 57 (2008), 205-209.
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