A NEW RESULT ON GENERALIZED ABSOLUTE CESÀRO SUMMABILITY

HÜSEYIN BOR^{1,*} AND RAM N. MOHAPATRA²

ABSTRACT. In [4], a main theorem dealing with an application of almost increasing sequences, has been proved. In this paper, we have extended that theorem by using a general class of quasi power increasing sequences, which is a wider class of sequences, instead of an almost increasing sequence. This theorem also includes some new and known results.

1. INTRODUCTION

A positive sequence (b_n) is said to be an almost increasing sequence if there exists a positive increasing sequence (c_n) and two positive constants M and N such that $Mc_n \leq b_n \leq Nc_n$ (see [1]). A sequence (d_n) is said to be δ -quasi monotone, if $d_n \to 0$, $d_n > 0$ ultimately, and $\Delta d_n \geq -\delta_n$, where $\Delta d_n = d_n - d_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [2]). A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_nX_n \geq f_mX_m$ for all $n \geq m \geq 1$, where $f = \{f_n(\sigma, \gamma)\} = \{n^{\sigma}(\log n)^{\gamma}, \gamma \geq 0, 0 < \sigma < 1\}$ (see [11]). If we take $\gamma=0$, then we get a quasi- σ power increasing sequence. Every almost increasing sequence is a quasi- σ -power increasing sequence for any non-negative σ , but the converse is not true for $\sigma > 0$ (see [9]). Let $\sum a_n$ be a given infinite series. We denote by $t_n^{\alpha,\beta}$ the *n*th Cesàro mean of order (α, β) , with $\alpha + \beta > -1$, of the sequence (na_n) , that is (see [6])

(1)
$$t_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} A_{\nu}^{\beta} v a_{\nu},$$

where

(2)
$$A_n^{\alpha+\beta} = O(n^{\alpha+\beta}), \quad A_0^{\alpha+\beta} = 1 \quad \text{and} \quad A_{-n}^{\alpha+\beta} = 0 \quad \text{for} \quad n > 0.$$

Let $(\theta_n^{\alpha,\beta})$ be a sequence defined by (see [3])

(3)
$$\theta_n^{\alpha,\beta} = \begin{cases} \left| t_n^{\alpha,\beta} \right|, & \alpha = 1, \beta > -1 \\ \max_{1 \le v \le n} \left| t_v^{\alpha,\beta} \right|, & 0 < \alpha < 1, \beta > -1. \end{cases}$$

The series $\sum a_n$ is said to be summable $|C, \alpha, \beta|_k, k \ge 1$, if (see [7])

(4)
$$\sum_{n=1}^{\infty} \frac{1}{n} \mid t_n^{\alpha,\beta} \mid^k < \infty$$

If we take $\beta = 0$, then $|C, \alpha, \beta|_k$ summability reduces to $|C, \alpha|_k$ summability (see [8]).

The first author has proved the following main theorem.

Theorem A ([4]). Let $(\theta_n^{\alpha,\beta})$ be a sequence defined as in (3). Let (X_n) be an almost increasing sequence such that $|\Delta X_n| = O(X_n/n)$ and let $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (A_n) such that it is δ -quasi-monotone with $\sum n\delta_n X_n < \infty$, $\sum A_n X_n$ is convergent, and $|\Delta \lambda_n| \leq |A_n|$ for all n. If the condition

(5)
$$\sum_{n=1}^{m} \frac{(\theta_n^{\alpha,\beta})^k}{n} = O(X_m) \quad as \quad m \to \infty$$

satisfies, then the series $\sum a_n \lambda_n$ is summable $|C, \alpha, \beta|_k$, $0 < \alpha \le 1$, $\alpha + \beta > 0$, and $k \ge 1$.

O2016 Authors retain the copyrights of

²⁰¹⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05, 40G99.

Key words and phrases. Cesàro mean; power increasing sequence; quasi-monotone sequence; summability factors; infinite series; Hölder inequality; Minkowski inequality.

their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

2. The main result.

The aim of this paper is to extent Theorem A by using a quasi-f-power increasing sequence, which is a general class of quasi power increasing sequences, instead of an almost increasing sequence. We shall prove the following theorem.

Theorem. Let $(\theta_n^{\alpha,\beta})$ be a sequence defined as in (3). Let (X_n) be a quasi-f-power increasing sequence and let $\lambda_n \to 0$ as $n \to \infty$. Suppose that there exists a sequence of numbers (A_n) such that it is δ -quasi-monotone with $\Delta A_n \leq \delta_n$, $\sum n \delta_n X_n < \infty$, $\sum A_n X_n$ is convergent, and $|\Delta \lambda_n| \leq |A_n|$ for all n. If the condition (5) is satisfied, then the series $\sum a_n \lambda_n$ is summable $|C, \alpha, \beta|_k$, $0 < \alpha \leq 1$, $\alpha + \beta > 0$, and $k \geq 1$.

If we take (X_n) as an almost increasing sequence such that $|\Delta X_n| = O(X_n/n)$, then we get Theorem A, in this case condition $\Delta A_n \leq \delta_n$ is not needed.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). If $0 < \alpha \le 1$, $\beta > -1$, and $1 \le v \le n$, then

(6)
$$|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}| \leq \max_{1 \leq m \leq v} |\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}|.$$

Lemma 2 ([5]). Let (X_n) be a quasi-f-power increasing sequence. If (A_n) is a δ -quasi-monotone sequence with $\Delta A_n \leq \delta_n$ and $\sum n \delta_n X_n < \infty$, then

(7)
$$\sum_{n=1}^{\infty} nX_n \mid \Delta A_n \mid < \infty,$$

(8)
$$nA_nX_n = O(1) \quad as \quad n \to \infty.$$

3. Proof of the theorem

Let $(T_n^{\alpha,\beta})$ be the *n*th (C,α,β) mean of the sequence $(na_n\lambda_n)$. Then, by (1), we have

$$T_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v \lambda_v.$$

Applying Abel's transformation first and then using Lemma 1, we obtain that

$$T_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p + \frac{\lambda_n}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v,$$

$$|T_n^{\alpha,\beta}| \leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} |\Delta\lambda_v|| \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^{\beta} p a_p | + \frac{|\lambda_n|}{A_n^{\alpha+\beta}} |\sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v |$$

$$\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} A_v^{(\alpha+\beta)} \theta_v^{\alpha,\beta} | \Delta\lambda_v | + |\lambda_n| \theta_n^{\alpha,\beta} = T_{n,1}^{\alpha,\beta} + T_{n,2}^{\alpha,\beta}.$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n} \mid T_{n,r}^{\alpha,\beta} \mid^k < \infty, \quad for \quad r = 1, 2.$$

When k > 1, we can apply Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n} \mid T_{n,1}^{\alpha,\beta} \mid^{k} &\leq \sum_{n=2}^{m+1} \frac{1}{n} \mid \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha,\beta} \Delta \lambda_{v} \mid^{k} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta)k}} \left\{ \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} \mid A_{v} \mid (\theta_{v}^{\alpha,\beta})^{k} \right\} \times \left\{ \sum_{v=1}^{n-1} \mid A_{v} \mid \right\}^{k-1} \\ &= O(1) \sum_{v=1}^{m} v^{(\alpha+\beta)k} \mid A_{v} \mid (\theta_{v}^{\alpha,\beta})^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta)k}} \\ &= O(1) \sum_{v=1}^{m} v^{(\alpha+\beta)k} \mid A_{v} \mid (\theta_{v}^{\alpha,\beta})^{k} \int_{v}^{\infty} \frac{dx}{x^{1+(\alpha+\beta)k}} = O(1) \sum_{v=1}^{m} v \mid A_{v} \mid \frac{(\theta_{v}^{\alpha,\beta})^{k}}{v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v \mid A_{v} \mid) \sum_{p=1}^{v} \frac{(\theta_{p}^{\alpha,\beta})^{k}}{p} + O(1)m \mid A_{m} \mid \sum_{v=1}^{m} \frac{(\theta_{v}^{\alpha,\beta})^{k}}{v} \\ &= O(1) \sum_{v=1}^{m-1} |(v+1)\Delta| A_{v} \mid - |A_{v}| \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{m} \mid X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{v} \mid X_{w} \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta A_{v} \mid X_{v} + O(1) \sum_{v=1}^{m-1} |A_{v} \mid X_{v} + O(1)m \mid A_{v} \mid X_{v} + O(1)m \mid X_{v} \mid X_{v} + O(1)m \mid X_{v} \mid$$

in view of hypotheses of the theorem and Lemma 2. Similarly, we have that

$$\sum_{n=1}^{m} \frac{1}{n} | T_{n,2}^{\alpha,\beta} |^k = O(1) \sum_{n=1}^{m} \frac{|\lambda_n|}{n} (\theta_n^{\alpha,\beta})^k = O(1) \sum_{n=1}^{m} \frac{(\theta_n^{\alpha,\beta})^k}{n} \sum_{v=n}^{\infty} |\Delta\lambda_v|$$
$$= O(1) \sum_{v=1}^{\infty} |\Delta\lambda_v| \sum_{n=1}^{v} \frac{(\theta_n^{\alpha,\beta})^k}{n} = O(1) \sum_{v=1}^{\infty} |\Delta\lambda_v| X_v$$
$$= O(1) \sum_{v=1}^{\infty} |A_v| X_v < \infty.$$

This completes the proof of the theorem. If we take $\beta = 0$, then we get a new result concerning the $|C, \alpha|_k$ summability factors. If we set $\beta = 0$, $\alpha = 1$, and $X_n = \log n$, then we obtain the result of Mazhar dealing with $|C, 1|_k$ summability factors (see [10]). Finally, if we take $\gamma=0$, then we get a new result dealing with an application of quasi- σ -power increasing sequences.

References

- N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč., 5 (1956), 483-522 (in Russian).
- [2] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc., 14A (1965), 38-46.
- [3] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci., 57 (2008), 205-209.
- [4] H. Bor, On generalized absolute Cesàro summability, An. Știinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), LVII (2011), 323-328.
- [5] H. Bor, On the quasi monotone and generalized power increasing sequences and their new applications, J. Classical Anal., 2 (2013), 139-144.
- [6] D. Borwein, Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2), 9 (1958), 310-316.
- [7] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc., 67 (1970), 321-326.
- [8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
- [9] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
- [10] S. M. Mazhar, On generalized quasi-convex sequence and its applications, Indian J. Pure Appl. Math., 8 (1977), 784-790.
- [11] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl., 322 (2006), 1224-1230.

¹P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

²UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, FL 32816, USA

*Corresponding Author: hbor33@gmail.com