COMMON FIXED POINT THEOREMS FOR G-CONTRACTION IN C^{*}-ALGEBRA-VALUED METRIC SPACES

AKBAR ZADA ${ }^{1, *}$, SHAHID SAIFULLAH ${ }^{1}$ AND ZHENHUA MA ${ }^{2,3}$

Abstract

In this paper we prove the common fixed point theorems for two mappings in complete C^{*}-valued metric space endowed with the graph $G=(V, E)$, which satisfies G-contractive condition. Also, we provide an example in support of our main result.

1. Introduction and Preliminaries

The Banach contraction principle [5] plays an important role in solving non linear problems. The Banach contraction principle says that: if (X, d) be a complete metric space and f is a self mapping on X with the condition that there exists $\lambda \in(0,1)$ such that

$$
d(f x, f y) \leq \lambda d(x, y) \quad \text { for all } x, y \in X
$$

then f has a unique fixed point in X. Since then a lot of publications are devoted to the study and solutions of many practical and theoretical problems by using this condition. Due to a numerous applications of the fixed point theory, from the last few decades this theory is a central topic of research. In this theory one of the approach is the common fixed point theorems. The concept of the common fixed point theorems was investigated by Jungck [1]. Many authors studied the fixed and common fixed point theorems for different spaces, like in cone metric spaces [8], non-commutative Banach spaces [22], fuzzy metric spaces [14] and uniform metric spaces [21]. For more information about this topic see ($[1,6,7,9,17,18,23])$.

On the other hand the concept of C^{*}-algebra is well developed. Here we recall some basic definitions, notations and results of C^{*}-algebra that may be found in [13]. A $*$-algebra \mathcal{A} is a complex algebra with linear involution $*$ such that $x^{* *}=x$ and $(x y)^{*}=y^{*} x^{*}$, for any $x, y \in \mathcal{A}$. If $*$-algebra together with complete sub multiplicative norm satisfying $\left\|x^{*}\right\|=\|x\|$ for all $x \in \mathcal{A}$, then $*$-algebra is said to be a Banach $*$-algebra. A C^{*}-algebra is a Banach $*$-algebra such that $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $x \in \mathcal{A}$. An element of \mathcal{A} is called positive element, if $\mathcal{A}_{+}=\left\{x^{*}=x \mid x \in \mathcal{A}\right\}$ and $\sigma(x) \subset \mathbb{R}_{+}$, where $\sigma(x)$ is the spectrum of an element $x \in \mathcal{A}$, i.e., $\sigma(x)=\{\lambda \in \mathbb{C}: \lambda I-x$ is not invertible $\}$. There is a natural partial ordering on \mathcal{A}_{+}given by $x \preceq y$ if and only if $x-y \in \mathcal{A}_{+}$. In [12] Z. Ma et al., introduced the notion of C^{*}-algebra valued metric space and proved fixed point theorems for C^{*}-algebra valued contractive mapping.

Many researchers tried to obtain some fixed point theorems of Banach type contraction endowed with the graph G, we recommend $[2,3,4,15,16,20]$. Recently, T. Kamran et al., in [19] extended the results of Ma et al., which was given in[12], by using C^{*}-valued metric spaces and G-contraction principles.

Now we give some definitions of graph theory which is found in any text on graph theory, for example [11]. Following Jachymski [10], let Δ denote the diagonal of the $X \times X$ in a metric space (X, d), and consider a directed graph $G=(V(G), E(G))=(V, E)$ the set in which V of its vertices and E of its edges, and $\Delta \subseteq E$. Assume that G has no parallel edges. We may treat G as a weighted graph by assigning to each edge the distance between its vertices.

In this paper we will continue to study common fixed points in the C^{*}-valued metric space endowed with the graph G under G-contractive condition.

[^0]Definition 1.1. Let X be a nonempty set, and the mapping $d: X \times X \rightarrow \mathcal{A}$ endowed with the graph $G=(V, E)$, if it satisfies the following conditions:
(1) $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0 \Leftrightarrow x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a C^{*}-valued metric on X, and (X, d, \mathcal{A}) is called C^{*}-valued metric space.
Definition 1.2. Suppose that (X, d, \mathcal{A}) is a C^{*}-valued metric space. Let $x \in(X, d, \mathcal{A})$ and $\left\{x_{n}\right\}$ be a sequence in X. The sequence $\left\{x_{n}\right\}$ is said to be convergent, if for any $\epsilon>0$ there exists a positive integer N such that

$$
\left\|d\left(x_{n}, x\right)\right\| \leq \epsilon \quad \text { for all } n \geq N
$$

The sequence $\left\{x_{n}\right\}$ is said to be Cauchy, if for any $\epsilon>0$ there exists a positive integer N such that

$$
\left\|d\left(x_{n}, x_{m}\right)\right\| \leq \epsilon \quad \text { for all } n, m \geq N
$$

If every Cauchy sequence is convergent in (X, d, \mathcal{A}), then (X, d, \mathcal{A}) is said to be complete C^{*}-valued metric space.

Example 1.3. Let $X=\mathbb{R}$ and $\mathcal{A}=M_{2}(\mathbb{R})$. Define $d: X \times X \rightarrow \mathcal{A}$ such that

$$
d(x, y)=\left(\begin{array}{cc}
|x-y| & 0 \\
0 & \alpha|x-y|
\end{array}\right) \quad \text { for all } x, y \in \mathbb{R} \text { and } \alpha \geq 0
$$

It is essay to verify that d is a C^{*}-algebra valued metric space and $\left(X, d, M_{2}(\mathbb{R})\right)$ is a complete $C^{*}-$ algebra valued metric space.

Definition 1.4. Let (X, d, \mathcal{A}) be a C^{*}-valued metric space. A mapping $f: X \rightarrow X$ is said to be a C^{*}-algebra-valued contraction mapping on X if there exists an $a \in \mathcal{A}$ with $\|a\|<1$ such that

$$
\begin{equation*}
d(f x, f y) \leq a^{*} d(x, y) a, \quad \text { for all } x, y \in X \tag{1.1}
\end{equation*}
$$

Theorem 1.5. [12] Let (X, d, \mathcal{A}) be a complete C^{*}-algebra-valued metric space and f satisfies (1.1), then f has a unique fixed point in X.

Property 1.6. [12]
(1) For any $\left\{x_{n}\right\} \in X$ such that x_{n} converges to x with $\left(x_{n+1}, x_{n}\right) \in E$ for all $n \geq 1$ there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left(x, x_{n_{k}}\right) \in E$.
(2) For any $\left\{f^{n} x\right\} \in X$ such that $f^{n} x$ converges to $x \in X$ with $\left(f^{n+1} x, f^{n} x\right) \in E$ there exists a subsequence $\left\{f^{n_{k}} x\right\}$ and $n_{0} \in \mathbb{N}$ such that $\left(x, f^{n_{k}} x\right) \in E$ for all $k \geq n_{0}$.

2. Main Result

In this section, we prove common fixed point theorems for two mappings satisfying G-contractive condition in a complete C^{*}-valued metric space endowed with the graph $G=(V, E)$.

Definition 2.1. Let (X, d, \mathcal{A}) be a C^{*}-valued metric space endowed with the graph $G=(V, E)$. The mappings $f, g: X \rightarrow X$ are said to be C^{*}-valued G-contractive on X, if there exists an $a \in \mathcal{A}$ with $\|a\|<1$ such that

$$
\begin{equation*}
d(f x, g y) \leq a^{*} d(x, y) a, \quad \text { for all } \quad(x, y) \in E \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let (X, d, \mathcal{A}) is a complete C^{*}-valued metric space endowed with the graph $G=(V, E)$. Suppose that the mappings $f, g: X \rightarrow X$ are C^{*}-valued G-contractive mappings on X satisfying the Property 1.6 (2) and the following conditions
(1) if $(x, y) \in E$ then $(f x, g y) \in E$,
(2) there exists $z_{0} \in X$ such that $\left(z_{0}, f z_{0}\right),\left(z_{0}, g z_{0}\right) \in E$.

Then f and g has a unique common fixed point in X.

Proof. Let $z_{1} \in X$, and construct sequence $\left\{z_{n}\right\} \in X$, such that $z_{2 n+1}=f z_{2 n}, z_{2 n+2}=g z_{2 n+1}$, and $\left(z_{2 n-1}, z_{2 n}\right) \in E$ for all $n \in \mathbb{N}$. We have

$$
\begin{aligned}
d\left(z_{2 n+1}, z_{2 n+2}\right) & =d\left(g z_{2 n+1}, f z_{2 n}\right) \\
& \leq a^{*} d\left(z_{2 n+1}, z_{2 n}\right) a \\
& \leq\left(a^{*}\right)^{2} d\left(z_{2 n}, z_{2 n-1}\right)(a)^{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \leq\left(a^{*}\right)^{2 n+1} d\left(z_{1}, z_{0}\right)(a)^{2 n+1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
d\left(z_{2 n+1}, z_{2 n}\right) & =d\left(f z_{2 n}, g z_{2 n-1}\right) \\
& \leq a^{*} d\left(z_{2 n}, z_{2 n-1}\right) a \\
& \cdot \\
& \cdot \\
& \cdot \\
& \leq\left(a^{*}\right)^{2 n} d\left(z_{1}, z_{0}\right)(a)^{2 n} \\
& =\left(a^{*}\right)^{2 n} Q(a)^{2 n}
\end{aligned}
$$

Let us denote $d\left(z_{1}, z_{0}\right)$ by $Q \in \mathcal{A}$. Then for any $n \in \mathbb{N}$

$$
\begin{aligned}
d\left(z_{n+1}, z_{n}\right) & =\left(a^{*}\right)^{n} d\left(z_{1}, z_{0}\right)(a)^{n} \\
& =\left(a^{*}\right)^{n} Q(a)^{n}
\end{aligned}
$$

then for any $q \in \mathbb{N}$ and applying the triangular inequality (3) for the C^{*}-valued metric spaces,

$$
\begin{aligned}
d\left(z_{n+q}, z_{n}\right) & =d\left(z_{n+q}, z_{n+q-1}\right)+d\left(z_{n+q-1}, z_{n+q-2}\right)+\cdots+d\left(z_{n+1}, z_{n}\right) \\
& \leq \sum_{j=n}^{n+q-1}\left(a^{*}\right)^{j} d\left(z_{1}, z_{0}\right)(a)^{j} \\
& =\sum_{j=n}^{n+q-1}\left(a^{*}\right)^{j} Q(a)^{j} \\
& =\sum_{j=n}^{n+q-1}\left(a^{*}\right)^{j} Q^{\frac{1}{2}} Q^{\frac{1}{2}}(a)^{j} \\
& =\sum_{j=n}^{n+q-1}\left(Q^{\frac{1}{2}} a^{j}\right)^{*}\left(Q^{\frac{1}{2}} a^{j}\right) \\
& =\sum_{j=n}^{n+q-1}\left|Q^{\frac{1}{2}} a^{j}\right|^{2} \\
& \leq \sum_{j=n}^{n+q-1}\left\|\left|Q^{\frac{1}{2}} a^{j}\right|^{2}\right\| \cdot I \\
& =\left\|Q^{\frac{1}{2}}\right\|^{2} \sum_{j=n}^{n+q-1}\left\|a^{2 j}\right\| .
\end{aligned}
$$

Since $\|a\|<1$, thus $d\left(z_{n+q}, z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus we conclude that the sequence $\left\{z_{n}\right\}$ is a Cauchy sequence, with respect to \mathcal{A}. Using the completeness of X, there exists an element $z_{0} \in X=V$, such that $z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$.

On the other hand, using the triangular inequality, we get

$$
\begin{aligned}
d\left(z_{0}, f z_{0}\right) & =d\left(z_{0}, z_{2 n+1}\right)+d\left(z_{2 n+1}, f z_{0}\right) \\
& =d\left(z_{0}, z_{2 n+1}\right)+d\left(g z_{2 n}, f z_{0}\right) \\
& \leq d\left(z_{0}, z_{2 n+1}\right)+a^{*} d\left(z_{2 n}, z_{0}\right) a
\end{aligned}
$$

Thus if $n \rightarrow \infty$, then $d\left(z_{0}, f z_{0}\right) \rightarrow 0$ i.e. $f z_{0}=z_{0}$. Similarly we can prove that $g z_{0}=z_{0}$. Now we will show the uniqueness of common fixed points in X. For this we assume that there is another point $z^{*} \in X=V$, such $\operatorname{that}\left(z_{0}, z^{*}\right) \in E$. Consider

$$
d\left(z_{0}, z^{*}\right)=d\left(f z_{0}, g z_{0}\right) \leq a^{*} d\left(z_{0}, z^{*}\right) a .
$$

Since $\|a\|<1$, then the above inequality yields that

$$
0 \leq\left\|d\left(z_{0}, z^{*}\right)\right\| \leq\|a\|^{2}\left\|d\left(z_{0}, z^{*}\right)\right\|<\left\|d\left(z_{0}, z^{*}\right)\right\| .
$$

Which is a contradiction. Thus, $\left\|d\left(z_{0}, z^{*}\right)\right\|=0$ which implies that $d\left(z_{0}, z^{*}\right)=0$ i.e. $z_{0}=z^{*}$. Thus the proof is complete.

Corollary 2.3. Suppose that (X, d, \mathcal{A}) is a C^{*}-valued metric space endowed with the graph G, and suppose that the mappings $f, g: X \rightarrow X$ are G-contractive, satisfying

$$
\|d(f x, g y)\| \leq\|a\|\|d(x, y)\|, \text { for all }(x, y) \in E
$$

where $a \in \mathcal{A}$ with $\|a\|<1$. Then f and g have a unique common fixed point in X.
Corollary 2.4. Let (X, d, \mathcal{A}) is a C^{*}-valued metric space endowed with the graph G, and suppose that the mapping $f: X \rightarrow X$ is G-contractive, satisfying

$$
\left\|d\left(f^{m} x, f^{n} y\right)\right\| \leq a^{*} d(x, y) a, \quad \text { for all }(x, y) \in E
$$

where $a \in \mathcal{A}$ with $\|a\|<1$ and m, n are positive integers. Then f has a unique fixed point in X.
Remark 2.5. In Theorem 2.2, if $g=f$, then we have

$$
\begin{equation*}
d(f x, f y) \leq a^{*} d(x, y) a, \quad \text { for all }(x, y) \in E \tag{2.2}
\end{equation*}
$$

In this case we have the following corollary, which can also be found in [12].
Corollary 2.6. Let (X, d, \mathcal{A}) be a complete C^{*}-valued metric space, and consider the mapping f : $X \rightarrow X$ such that it satisfies (2.2), then f has a unique fixed point in X.
Example 2.7. Consider, $\mathcal{A}=M_{2 \times 2}(\mathbb{R})$, of all 2×2 matrices with the usual operation of addition, scalar multiplication, and matrix multiplication. Thus \mathcal{A} becomes C^{*}-algebra. Let us define $d: \mathbb{R} \times \mathbb{R} \rightarrow$ \mathcal{A} by

$$
d(x, y)=\left(\begin{array}{cc}
|x-y| & 0 \\
0 & |x-y|
\end{array}\right)
$$

It is essay to check that d satisfies all the conditions of Definition 1.1. Therefore $(\mathbb{R}, \mathcal{A}, d)$ is C^{*}-valued metric space. Define $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{x^{2}}{4} \quad \text { and } \quad g(x)=\frac{x^{2}}{3}
$$

and consider the graph $G=(V, E)$, where $V=\mathbb{R}$ and

$$
E=\left\{\left(\frac{1}{4^{m}}, \frac{1}{3^{2 m+1}}\right) ; m=1,2, \ldots\right\} \cup\left\{\left(\frac{1}{4^{m}}, 0\right) ; m=1,2, \ldots\right\} \cup\{(x, x) ; x \in \mathbb{R}\}
$$

Note that, for each $m \in \mathbb{N}$,

$$
\left(f\left(\frac{1}{4^{m}}\right), g\left(\frac{1}{3^{2 m+1}}\right)\right)=\left(\frac{1}{4^{2 n+1}}, \frac{1}{3^{4 n+3}}\right) \in E
$$

and

$$
\left(f\left(\frac{1}{4^{m}}\right), g(0)\right)=\left(\frac{1}{4^{2 m+1}}, 0\right) \in E
$$

Also, $(f x, g x)=\left(\frac{x^{2}}{4}, \frac{x^{2}}{3}\right)$, for each $x \in \mathbb{R}$, which is again in E. Moreover, by taking $A=\left(\begin{array}{cc}\frac{1}{\sqrt{ } 2} & 0 \\ 0 & \frac{1}{\sqrt{ } 2}\end{array}\right)$, we have $\|A\|<1$, so all the conditions of Theorem 2.2 are satisfied and thus the common fixed point of f and g is 0 .

References

[1] M. Abbas, G. Jungck, Common fixed points results for noncommuting mapping without continuity in cone metric space, J. Math. Anal. Appl. 341 (2008), 416-420.
[2] M. Abbas, T. Nazir, H. Aydi, Fixed points of generalized graphic contraction mappings in partial metric spaces endowed with a graph. J. Adv. Math. Stud. 6 (2013), 130-139.
[3] S. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph. Topol. Appl. 159 (2012), 659-663.
[4] M. Ali, T. Kamran, L. Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph. J. Inequal. Appl. 2015 (2015), Article ID 205.
[5] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3 (1922), 133-181.
[6] B. Choudhury, N. Metiya, The point of coincidence and common fixed point for a pair of mappings in cone metric spaces, Comput. Math. Appl. 60 (2010), 1686-1695.
[7] L. Cirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398-2406.
[8] L. Haung, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal., Apal, Vol. 332 2007, 1468-1476.
[9] S. Janković, Z. Golubović, S. Radenović, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 643840.
[10] J. Jachymski, The contraction principle for the mappings on a metric space with a graph. Proc. Am. Math. Soc. 136 (2008), 1359-1373.
[11] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Englewood Cliffs (1997).
[12] Z. Ma, L. Jiang, H. Sun, C^{*}-Algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014 (2014), Article ID 206.
[13] GJ. Murphy, C^{*}-Algebras and Operator Theory. Academic Press, London (1990).
[14] M. A. Osman, Fuzzy metric space and fixed fuzzy set theorem, Bull. Malaysian Math. Soc. 6 (1983), 1-4.
[15] M. Samreen, T. Kamran, Fixed point theorems for weakly contractive mappings on a metric space endowed with a graph. Filomat 28 (2014), 441-450.
[16] M. Samreen, T. Kamran, N. Shahzad, Some fixed point theorems in b-metric space endowed with graph. Abstr. Appl. Anal. 2013 (2013), Article ID 967132.
[17] W. Shatanawi, M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 271.
[18] W. Shatanawi, M. Postolache, Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 60.
[19] D. Shehwar, T. Kamran, C^{*}-valued G-contractions and fixed points, J. Inequal. Appl. 2015 (2015), Article ID 304.
[20] T. Sistani, M. Kazemipour, Fixed points for $\alpha-\psi$-contractions on metric spaces with a graph. J. Adv. Math. Stud. 7 (2014), 65-79.
[21] E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), $209-225$.
[22] Q. Xin, L. Jiang, Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 77.
[23] A. Zada, R. Shah, T. Li, Integral Type Contraction and Coupled Coincidence Fixed Point Theorems for Two Pairs in G-metric Spaces, Hacet. J. Math. Stat., in press.
${ }^{1}$ Department of Mathematics, University of Peshawar, Peshawar, Pakistan
${ }^{2}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China
${ }^{3}$ Department of Mathematics and Physics, Hebei Institute of Architecture and Civil Engineering, ZhangjiAKOU, 075024, CHiNA
*Corresponding author: Zadababo@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47H10, 47A56.
 Key words and phrases. metric space; C^{*}-algebra valued metric spaces; G-contraction; common fixed point.

