COMMON FIXED POINT THEOREMS FOR G-CONTRACTION IN C^* -ALGEBRA-VALUED METRIC SPACES

AKBAR ZADA^{1,*}, SHAHID SAIFULLAH¹ AND ZHENHUA MA^{2,3}

ABSTRACT. In this paper we prove the common fixed point theorems for two mappings in complete C^* -valued metric space endowed with the graph G = (V, E), which satisfies G-contractive condition. Also, we provide an example in support of our main result.

1. INTRODUCTION AND PRELIMINARIES

The Banach contraction principle [5] plays an important role in solving non linear problems. The Banach contraction principle says that: if (X, d) be a complete metric space and f is a self mapping on X with the condition that there exists $\lambda \in (0, 1)$ such that

$$d(fx, fy) \le \lambda d(x, y)$$
 for all $x, y \in X$,

then f has a unique fixed point in X. Since then a lot of publications are devoted to the study and solutions of many practical and theoretical problems by using this condition. Due to a numerous applications of the fixed point theory, from the last few decades this theory is a central topic of research. In this theory one of the approach is the common fixed point theorems. The concept of the common fixed point theorems was investigated by Jungck [1]. Many authors studied the fixed and common fixed point theorems for different spaces, like in cone metric spaces [8], non-commutative Banach spaces [22], fuzzy metric spaces [14] and uniform metric spaces [21]. For more information about this topic see ([1, 6, 7, 9, 17, 18, 23]).

On the other hand the concept of C^* -algebra is well developed. Here we recall some basic definitions, notations and results of C^* -algebra that may be found in [13]. A *-algebra \mathcal{A} is a complex algebra with linear involution * such that $x^{**} = x$ and $(xy)^* = y^*x^*$, for any $x, y \in \mathcal{A}$. If *-algebra together with complete sub multiplicative norm satisfying $||x^*|| = ||x||$ for all $x \in \mathcal{A}$, then *-algebra is said to be a Banach *-algebra. A C^* -algebra is a Banach *-algebra such that $||x^*x|| = ||x||^2$ for all $x \in \mathcal{A}$. An element of \mathcal{A} is called positive element, if $\mathcal{A}_+ = \{x^* = x | x \in \mathcal{A}\}$ and $\sigma(x) \subset \mathbb{R}_+$, where $\sigma(x)$ is the spectrum of an element $x \in \mathcal{A}$, i.e., $\sigma(x) = \{\lambda \in \mathbb{C} : \lambda I - x \text{ is not invertible}\}$. There is a natural partial ordering on \mathcal{A}_+ given by $x \preceq y$ if and only if $x - y \in \mathcal{A}_+$. In [12] Z. Ma et al., introduced the notion of C^* -algebra valued metric space and proved fixed point theorems for C^* -algebra valued contractive mapping.

Many researchers tried to obtain some fixed point theorems of Banach type contraction endowed with the graph G, we recommend [2, 3, 4, 15, 16, 20]. Recently, T. Kamran et al., in [19] extended the results of Ma et al., which was given in [12], by using C^* -valued metric spaces and G-contraction principles.

Now we give some definitions of graph theory which is found in any text on graph theory, for example [11]. Following Jachymski [10], let Δ denote the diagonal of the $X \times X$ in a metric space (X, d), and consider a directed graph G = (V(G), E(G)) = (V, E) the set in which V of its vertices and E of its edges, and $\Delta \subseteq E$. Assume that G has no parallel edges. We may treat G as a weighted graph by assigning to each edge the distance between its vertices.

In this paper we will continue to study common fixed points in the C^* -valued metric space endowed with the graph G under G-contractive condition.

²⁰¹⁰ Mathematics Subject Classification. 47H10, 47A56.

Key words and phrases. metric space; C*-algebra valued metric spaces; G-contraction; common fixed point.

^{©2016} Authors retain the copyrights of

their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Definition 1.1. Let X be a nonempty set, and the mapping $d : X \times X \to A$ endowed with the graph G = (V, E), if it satisfies the following conditions: (1) $d(x, y) \ge 0$ for all $x, y \in X$ and $d(x, y) = 0 \Leftrightarrow x = y$;

- (1) $a(x,y) \ge 0$ for all $x, y \in X$ and $a(x,y) = 0 \Leftrightarrow x = y$
- (2) d(x,y) = d(y,x) for all $x, y \in X$;

(3) $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$.

Then d is called a C^* -valued metric on X, and (X, d, A) is called C^* -valued metric space.

Definition 1.2. Suppose that (X, d, A) is a C^* -valued metric space. Let $x \in (X, d, A)$ and $\{x_n\}$ be a sequence in X. The sequence $\{x_n\}$ is said to be convergent, if for any $\epsilon > 0$ there exists a positive integer N such that

$$||d(x_n, x)|| \le \epsilon$$
 for all $n \ge N$.

The sequence $\{x_n\}$ is said to be Cauchy, if for any $\epsilon > 0$ there exists a positive integer N such that

 $||d(x_n, x_m)|| \le \epsilon$ for all $n, m \ge N$.

If every Cauchy sequence is convergent in (X, d, A), then (X, d, A) is said to be complete C^* -valued metric space.

Example 1.3. Let $X = \mathbb{R}$ and $\mathcal{A} = M_2(\mathbb{R})$. Define $d: X \times X \to \mathcal{A}$ such that

$$d(x,y) = \begin{pmatrix} |x-y| & 0\\ 0 & \alpha |x-y| \end{pmatrix} \text{ for all } x, y \in \mathbb{R} \text{ and } \alpha \ge 0.$$

It is essay to verify that d is a C^* -algebra valued metric space and $(X, d, M_2(\mathbb{R}))$ is a complete C^* -algebra valued metric space.

Definition 1.4. Let (X, d, A) be a C^* -valued metric space. A mapping $f : X \to X$ is said to be a C^* -algebra-valued contraction mapping on X if there exists an $a \in A$ with ||a|| < 1 such that

(1.1)
$$d(fx, fy) \le a^* d(x, y)a, \quad \text{for all } x, y \in X.$$

Theorem 1.5. [12] Let (X, d, A) be a complete C^* -algebra-valued metric space and f satisfies (1.1), then f has a unique fixed point in X.

Property 1.6. [12]

- (1) For any $\{x_n\} \in X$ such that x_n converges to x with $(x_{n+1}, x_n) \in E$ for all $n \ge 1$ there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $(x, x_{n_k}) \in E$.
- (2) For any $\{f^nx\} \in X$ such that f^nx converges to $x \in X$ with $(f^{n+1}x, f^nx) \in E$ there exists a subsequence $\{f^{n_k}x\}$ and $n_0 \in \mathbb{N}$ such that $(x, f^{n_k}x) \in E$ for all $k \ge n_0$.

2. Main Result

In this section, we prove common fixed point theorems for two mappings satisfying G-contractive condition in a complete C^* -valued metric space endowed with the graph G = (V, E).

Definition 2.1. Let (X, d, A) be a C^* -valued metric space endowed with the graph G = (V, E). The mappings $f, g: X \to X$ are said to be C^* -valued G-contractive on X, if there exists an $a \in A$ with ||a|| < 1 such that

(2.1)
$$d(fx,gy) \le a^* d(x,y)a, \quad for \ all \quad (x,y) \in E.$$

Theorem 2.2. Let (X, d, A) is a complete C^* -valued metric space endowed with the graph G = (V, E). Suppose that the mappings $f, g : X \to X$ are C^* -valued G-contractive mappings on X satisfying the Property 1.6 (2) and the following conditions

(1) if $(x, y) \in E$ then $(fx, gy) \in E$,

(2) there exists $z_0 \in X$ such that $(z_0, fz_0), (z_0, gz_0) \in E$.

Then f and g has a unique common fixed point in X.

Proof. Let $z_1 \in X$, and construct sequence $\{z_n\} \in X$, such that $z_{2n+1} = fz_{2n}$, $z_{2n+2} = gz_{2n+1}$, and $(z_{2n-1}, z_{2n}) \in E$ for all $n \in \mathbb{N}$. We have

$$d(z_{2n+1}, z_{2n+2}) = d(gz_{2n+1}, fz_{2n})$$

$$\leq a^* d(z_{2n+1}, z_{2n})a$$

$$\leq (a^*)^2 d(z_{2n}, z_{2n-1})(a)^2$$

$$\cdot$$

$$\cdot$$

$$\leq (a^*)^{2n+1} d(z_1, z_0)(a)^{2n+1}.$$

Similarly,

$$d(z_{2n+1}, z_{2n}) = d(f z_{2n}, g z_{2n-1})$$

$$\leq a^* d(z_{2n}, z_{2n-1})a$$

$$\vdots$$

$$\vdots$$

$$\leq (a^*)^{2n} d(z_1, z_0)(a)^{2n}$$

$$= (a^*)^{2n} Q(a)^{2n}.$$

Let us denote $d(z_1, z_0)$ by $Q \in \mathcal{A}$. Then for any $n \in \mathbb{N}$

$$d(z_{n+1}, z_n) = (a^*)^n d(z_1, z_0)(a)^n$$

= $(a^*)^n Q(a)^n$,

then for any $q \in \mathbb{N}$ and applying the triangular inequality (3) for the C^{*}-valued metric spaces,

$$d(z_{n+q}, z_n) = d(z_{n+q}, z_{n+q-1}) + d(z_{n+q-1}, z_{n+q-2}) + \dots + d(z_{n+1}, z_n)$$

$$\leq \sum_{j=n}^{n+q-1} (a^*)^j d(z_1, z_0)(a)^j$$

$$= \sum_{j=n}^{n+q-1} (a^*)^j Q^{\frac{1}{2}} Q^{\frac{1}{2}}(a)^j$$

$$= \sum_{j=n}^{n+q-1} (Q^{\frac{1}{2}} a^j)^* (Q^{\frac{1}{2}} a^j)$$

$$= \sum_{j=n}^{n+q-1} |Q^{\frac{1}{2}} a^j|^2$$

$$\leq \sum_{j=n}^{n+q-1} ||Q^{\frac{1}{2}} a^j|^2 ||.I$$

$$= ||Q^{\frac{1}{2}}||^2 \sum_{j=n}^{n+q-1} ||a^{2j}||.$$

Since ||a|| < 1, thus $d(z_{n+q}, z_n) \to 0$ as $n \to \infty$. Thus we conclude that the sequence $\{z_n\}$ is a Cauchy sequence, with respect to \mathcal{A} . Using the completeness of X, there exists an element $z_0 \in X = V$, such that $z_n \to z_0$ as $n \to \infty$.

On the other hand, using the triangular inequality, we get

$$d(z_0, fz_0) = d(z_0, z_{2n+1}) + d(z_{2n+1}, fz_0)$$

= $d(z_0, z_{2n+1}) + d(gz_{2n}, fz_0)$
 $\leq d(z_0, z_{2n+1}) + a^* d(z_{2n}, z_0)a.$

Thus if $n \to \infty$, then $d(z_0, fz_0) \to 0$ i.e. $fz_0 = z_0$. Similarly we can prove that $gz_0 = z_0$. Now we will show the uniqueness of common fixed points in X. For this we assume that there is another point $z^* \in X = V$, such that $(z_0, z^*) \in E$. Consider

$$d(z_0, z^*) = d(fz_0, gz_0) \le a^* d(z_0, z^*)a.$$

Since ||a|| < 1, then the above inequality yields that

$$0 \le ||d(z_0, z^*)|| \le ||a||^2 ||d(z_0, z^*)|| < ||d(z_0, z^*)||.$$

Which is a contradiction. Thus, $||d(z_0, z^*)|| = 0$ which implies that $d(z_0, z^*) = 0$ i.e. $z_0 = z^*$. Thus the proof is complete.

Corollary 2.3. Suppose that (X, d, A) is a C^* -valued metric space endowed with the graph G, and suppose that the mappings $f, g: X \to X$ are G-contractive, satisfying

 $||d(fx, gy)|| \le ||a||||d(x, y)||, \text{ for all } (x, y) \in E,$

where $a \in \mathcal{A}$ with ||a|| < 1. Then f and g have a unique common fixed point in X.

Corollary 2.4. Let (X, d, A) is a C^* -valued metric space endowed with the graph G, and suppose that the mapping $f : X \to X$ is G-contractive, satisfying

$$||d(f^m x, f^n y)|| \le a^* d(x, y)a, \quad \text{for all } (x, y) \in E,$$

where $a \in \mathcal{A}$ with ||a|| < 1 and m, n are positive integers. Then f has a unique fixed point in X.

Remark 2.5. In Theorem 2.2, if g = f, then we have

(2.2)
$$d(fx, fy) \le a^* d(x, y)a, \quad \text{for all } (x, y) \in E.$$

In this case we have the following corollary, which can also be found in [12].

Corollary 2.6. Let (X, d, \mathcal{A}) be a complete C^* -valued metric space, and consider the mapping $f : X \to X$ such that it satisfies (2.2), then f has a unique fixed point in X.

Example 2.7. Consider, $\mathcal{A} = M_{2 \times 2}(\mathbb{R})$, of all 2×2 matrices with the usual operation of addition, scalar multiplication, and matrix multiplication. Thus \mathcal{A} becomes C^* -algebra. Let us define $d : \mathbb{R} \times \mathbb{R} \to \mathcal{A}$ by

$$d(x,y) = \left(\begin{array}{cc} |x-y| & 0\\ 0 & |x-y| \end{array} \right).$$

It is essay to check that d satisfies all the conditions of Definition 1.1. Therefore $(\mathbb{R}, \mathcal{A}, d)$ is C^* -valued metric space. Define $f, g : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \frac{x^2}{4}$$
 and $g(x) = \frac{x^2}{3}$,

and consider the graph G = (V, E), where $V = \mathbb{R}$ and

$$E = \left\{ \left(\frac{1}{4^m}, \frac{1}{3^{2m+1}}\right); m = 1, 2, \dots \right\} \cup \left\{ \left(\frac{1}{4^m}, 0\right); m = 1, 2, \dots \right\} \cup \{(x, x); x \in \mathbb{R}\}.$$

Note that, for each $m \in \mathbb{N}$,

$$\left(f(\frac{1}{4^m}), g(\frac{1}{3^{2m+1}})\right) = \left(\frac{1}{4^{2n+1}}, \frac{1}{3^{4n+3}}\right) \in E,$$

and

$$\left(f(\frac{1}{4^m}), g(0)\right) = \left(\frac{1}{4^{2m+1}}, 0\right) \in E$$

Also, $(fx, gx) = (\frac{x^2}{4}, \frac{x^2}{3})$, for each $x \in \mathbb{R}$, which is again in E. Moreover, by taking $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$,

we have ||A|| < 1, so all the conditions of Theorem 2.2 are satisfied and thus the common fixed point of f and g is 0.

References

- M. Abbas, G. Jungck, Common fixed points results for noncommuting mapping without continuity in cone metric space, J. Math. Anal. Appl. 341 (2008), 416–420.
- M. Abbas, T. Nazir, H. Aydi, Fixed points of generalized graphic contraction mappings in partial metric spaces endowed with a graph. J. Adv. Math. Stud. 6 (2013), 130–139.
- [3] S. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph. Topol. Appl. 159 (2012), 659–663.
- [4] M. Ali, T. Kamran, L. Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph. J. Inequal. Appl. 2015 (2015), Article ID 205.
- [5] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3 (1922), 133–181.
- [6] B. Choudhury, N. Metiya, The point of coincidence and common fixed point for a pair of mappings in cone metric spaces, Comput. Math. Appl. 60 (2010), 1686–1695.
- [7] L. Cirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406.
- [8] L. Haung, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal., Apal, Vol. 332 2007, 1468–1476.
- [9] S. Janković, Z. Golubović, S. Radenović, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 643840.
- [10] J. Jachymski, The contraction principle for the mappings on a metric space with a graph. Proc. Am. Math. Soc. 136 (2008), 1359–1373.
- [11] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Englewood Cliffs (1997).
- [12] Z. Ma, L. Jiang, H. Sun, C*-Algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014 (2014), Article ID 206.
- [13] GJ. Murphy, C*-Algebras and Operator Theory. Academic Press, London (1990).
- [14] M. A. Osman, Fuzzy metric space and fixed fuzzy set theorem, Bull. Malaysian Math. Soc. 6 (1983), 1–4.
- [15] M. Samreen, T. Kamran, Fixed point theorems for weakly contractive mappings on a metric space endowed with a graph. Filomat 28 (2014), 441–450.
- [16] M. Samreen, T. Kamran, N. Shahzad, Some fixed point theorems in b-metric space endowed with graph. Abstr. Appl. Anal. 2013 (2013), Article ID 967132.
- [17] W. Shatanawi, M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 271.
- [18] W. Shatanawi, M. Postolache, Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013 (2013), Article ID 60.
- [19] D. Shehwar, T. Kamran, C*-valued G-contractions and fixed points, J. Inequal. Appl. 2015 (2015), Article ID 304.
- [20] T. Sistani, M. Kazemipour, Fixed points for α-ψ-contractions on metric spaces with a graph. J. Adv. Math. Stud. 7 (2014), 65–79.
- [21] E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.
- [22] Q. Xin, L. Jiang, Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 77.
- [23] A. Zada, R. Shah, T. Li, Integral Type Contraction and Coupled Coincidence Fixed Point Theorems for Two Pairs in G-metric Spaces, Hacet. J. Math. Stat., in press.

¹Department of Mathematics, University of Peshawar, Peshawar, Pakistan

²School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China

³Department of Mathematics and Physics, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, 075024, China

*Corresponding Author: Zadababo@yahoo.com