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ON | C, 1 |k INTEGRABILITY OF IMPROPER INTEGRALS

H. N. ÖZGEN∗

Abstract. In this paper, we introduce the concept of | C, 1 |k, k ≥ 1, integrability of improper

integrals and we prove a known theorem of Mazhar [3] by using this definition.

1. Introduction

Throughout this paper we assume that f is a real valued function which is continuous on [0,∞)
and s(x) =

∫ x

0
f(t)dt. The Cesàro mean of s(x) is defined by

σ(x) =
1

x

∫ x

0

s(t)dt.

The integral
∫∞
0
f(t)dt is said to be integrable | C, 1 |k, k ≥ 1, in the sense of Flett [2], if∫ ∞

0

xk−1 | σ′(x) |k dx(1.1)

is convergent. The Kronecker identity (see [1]): s(x) − σ(x) = v(x), where v(x) = 1
x

∫ x

0
tf(t)dt is

well-known and will be used in the various steps of proofs.
Since σ′(x) = 1

xv(x), condition (1.1) can also be written as

(1.2)

∫ ∞
0

1

x
| v(x) |k dx

is convergent.

We note that for infinite series, an analogous definition was introduced by Flett [2]. Using this
definition, Mazhar [3] established the following theorem for | C, 1 |k summability factors of infinite
series.

Given any functions f, g, it is customary to write g(x) = O(f(x)), if there exist η and N, for every

x > N, | g(x)
f(x) |≤ η.

Theorem 1.1. If (Xn) is a positive monotonic non-decreasing sequence such that

(1.3) λmXm = O(1) as m→∞,

(1.4)

m∑
n=1

nXn | ∆2λn |= O(1),

(1.5)

m∑
n=1

1

n
| tn |k= O(Xm) as m→∞,

then the series
∑
anλn is summable | C, 1 |k, k ≥ 1.
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2. The Main Result

The aim of this paper is to prove Mazhar’s theorem for | C, 1 |k integrability of improper integrals.
Now, we shall state the following theorem.

Theorem 2.1. If γ(x) is a positive monotonic non-decreasing function such that

(2.1) λ(x)γ(x) = O(1) as x→∞,

(2.2)

∫ x

0

u | λ′′(u) | γ(u)du = O(1),

(2.3)

∫ x

0

| v(u) |k

u
du = O(γ(x)) as x→∞,

then the integral
∫∞
0
f(t)dt is integrable | C, 1 |k, k ≥ 1.

We need the following lemma for the proof of our theorem.

Lemma 2.2. Under the conditions of the theorem we have that

(2.4)

∫ ∞
0

γ(t) | λ′(t) | dt is convergent,

(2.5) xγ(x) | λ′(x) |= O(1) as x→∞.

Proof. Since λ′(t) =
∫ t

0
λ′′(u), we have∫ x

0

γ(t) | λ′(t) | dt =

∫ x

0

γ(t) |
∫ t

0

λ′′(u)du | dt

≤
∫ x

0

γ(t)

∫ t

0

| λ′′(u) | dudt

=

∫ x

0

| λ′′(u) | du
∫ x

u

γ(t)dt

≤
∫ x

0

uγ(u) | λ′′(u) | du = O(1) as x→∞

by (2.2).
Since xγ(x) is a non decreasing function, we get

xγ(x) | λ′(x) | = xγ(x) |
∫ x

0

λ′′(u)du |

≤ xγ(x)

∫ x

0

| λ′′(u) | du

=

∫ x

0

uγ(u) | λ′′(u) | du = O(1)

≤
∫ x

0

uγ(u) | λ′′(u) | du = O(1) as x→∞

This completes the proof of Lemma 2.2. �
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3. Proof of the Theorem

Let A(x) be the function of (C, 1) means of the integral
∫∞
0
f(t)dt. Then, by definition, we have

A(x) =
1

x

∫ x

0

∫ t

0

λ(u)f(u)dudt

=
1

x

∫ x

0

λ(u)f(u)du

∫ x

u

dt

=
1

x

∫ x

0

(x− u)λ(u)f(u)du

=

∫ x

0

(
1− u

x

)
λ(u)f(u)du

Differentiating the function A(x) and later integrating by parts, we obtain

A′(x) =
1

x2

∫ x

0

uλ(u)f(u)du

=
v(x)λ(x)

x
− 1

x2

∫ x

0

λ′(u)uv(u)du

= A1(x) +A2(x), say.

To complete the proof of the theorem, it is sufficient to show that

(3.1)

∫ x

0

tk−1 | Ar(t) |k dt = O(1) as x→∞, for r = 1, 2.

First, applying Hölder’s inequality, we have∫ x

0

tk−1 | A1(t) |k dt =

∫ x

0

tk−1
| v(t) |k| λ(t) |k

tk
dt

=

∫ x

0

1

t
| v(t) |k| λ(t) |k−1| λ(t) | dt

≤
∫ x

0

| v(t) |k

t
| λ(t) | dt

= | λ(x) |
∫ x

0

| v(t) |k

t
dt−

∫ x

0

| λ′(t) |
∫ t

0

| v(u) |k

u
dudt

= | λ(x) | γ(x)−
∫ x

0

| λ′(t) | γ(t)dt

= O(1) as x→∞

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.
Now, as in A1(x), we have that∫ x

0

tk−1 | A2(t) |k dt =

∫ x

0

tk−1
1

t2k
|
∫ t

0

uλ′(u)v(u)du |k dt

≤
∫ x

0

1

t2

{∫ t

0

| λ′(u) |k uk | v(u) |k du
}
x

{
1

t

∫ t

0

du

}k−1

dt

=

∫ x

0

| uλ′(u) |k−1| uλ′(u) || v(u) |k du
∫ x

u

dt

t2

=

∫ x

0

| uλ′(u) || v(u) |k
(

1

u
− 1

x

)
du

≤
∫ x

0

| uλ′(u) | | v(u) |k

u
du
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Integrating by parts,we get∫ x

0

tk−1 | A2(t) |k dt = x | λ′(x) |
∫ x

0

| v(u) |k

u
du+

∫ x

0

(u | λ′(u) |)′
∫ u

0

| v(t) |k

t
dtdu

= x | λ′(x) | γ(x)−
∫ x

0

(u | λ′(u) |)′γ(u)du

= x | λ′(x) | γ(x)−
∫ x

0

| λ′(u) | γ(u)du−
∫ x

0

u | λ′′(u) | γ(u)du

= O(1) as x→∞
by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.
Thus, we obtain ∫ x

0

tk−1 | A′(t) |k dt = O(1) as x→∞.

This completes the proof of the theorem.
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