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GROWTH AND ZEROS OF MEROMORPHIC SOLUTIONS TO SECOND-ORDER

LINEAR DIFFERENTIAL EQUATIONS

MAAMAR ANDASMAS AND BENHARRAT BELAÏDI∗

Abstract. The main purpose of this article is to investigate the growth of meromorphic solutions

to homogeneous and non-homogeneous second order linear differential equations f ′′+Af ′+Bf = F,
where A (z) , B (z) and F (z) are meromorphic functions with finite order having only finitely many

poles. We show that, if there exist a positive constants σ > 0, α > 0 such that |A (z)| ≥ eα|z|
σ

as |z| → +∞, z ∈ H, where dens {|z| : z ∈ H} > 0 and ρ = max {ρ (B) , ρ (F )} < σ, then every
transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their

hyper-order, exponent and hyper-exponent of convergence of distinct zeros.

1. Introduction and statement of results

We will assume that the reader is familiar with the fundamental results and the standard notations
of Nevanlinna theory of meromorphic functions (see [11], [14], [16]). In addition, for a meromorphic
function f in the complex plane C, we will use the notations λ (f) and λ (f) to denote respectively
the exponent of convergence of the zeros and the distinct zeros of a meromorphic function f, ρ (f) to
denote the order of growth of f .

In order to estimate the rate of growth of meromorphic function of infinite order more precisely,
we recall the following definition.

Definition 1.1 ([13, 16]). Let f be a meromorphic function. Then the hyper-order ρ2 (f) of f (z) is
defined by

ρ2 (f) = lim sup
r→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire function, then the
hyper-order ρ2 (f) of f (z) is defined by

ρ2 (f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM (r, f)

log r
,

where M (r, f) = max|z|=r |f (z)|.

Definition 1.2 ([7]). Let f be a meromorphic function. Then the hyper-exponent of convergence of
the sequence of zeros of f (z) is defined by

λ2 (f) = lim sup
r→+∞

log logN
(
r, 1f

)
log r

,
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where N
(
r, 1f

)
is the integrated counting function of zeros of f (z) in {z : |z| ≤ r}. Similarly, the

hyper-exponent of convergence of the sequence of distinct zeros of f (z) is defined by

λ2 (f) = lim sup
r→+∞

log logN
(
r, 1f

)
log r

,

where N
(
r, 1f

)
is the integrated counting function of distinct zeros of f (z) in {z : |z| ≤ r}.

The linear measure of a set E ⊂ (0,+∞) is defined as m (E) =
∫ +∞
0

χE (t) dt. The logarithmic

measure of a set E ⊂ (1,+∞) is defined by lm (E) =
∫ +∞
1

χE(t)
t dt, where χE (t) is the characteristic

function of the set E. The upper density of a set E ⊂ (0,+∞) is defined by

densE = lim sup
r−→ +∞

m (E ∩ [0, r])

r
.

Consider the second-order linear differential equation

(1.1) f ′′ +A (z) f ′ +B (z) f = F,

where A (z) , B (z) and F (z) are meromorphic functions of finite order having only finitely many poles.
Several authors have investigated the growth of solutions of the corresponding homogeneous equation

(1.2) f ′′ +A (z) f ′ +B (z) f = 0.

From the works of Gundersen (see [10]) and Hellerstein et al. (see [12]), we know that if A (z) and
B (z) are entire functions with ρ (A) < ρ (B), or A (z) is a polynomial, and B (z) is transcendental, or
ρ (A) < ρ (B) ≤ 1

2 , then every solution f 6≡ 0 of (1.2) is of infinite order. For entire solutions of infinite
order more precise estimates for their rate of growth would be an important achievement. Kwon (see
[13]) and Chen and Yang (see [7]) have investigated the hyper-order ρ2 (f) of solutions of (1.2), and
obtained the following results.

Theorem A ([13]) . Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0, and let
A (z) and B (z) be entire functions such that for real constants α (> 0) , β (> 0) ,

|A (z)| ≤ exp
{
o (1) |z|β

}
and

|B (z)| ≥ exp
{

(1 + o (1))α |z|β
}

as z → +∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.2) has infinite order and ρ2 (f) ≥ β.

Theorem B ([7]) . Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0, and let A (z)
and B (z) be entire functions with ρ (A) ≤ ρ (B) = ρ < +∞ such that for real constant C (> 0) and
for any given ε > 0,

|A (z)| ≤ exp
{
o (1) |z|ρ−ε

}
and

|B (z)| ≥ exp
{

(1 + o (1))C |z|ρ−ε
}

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.2) has infinite order and ρ2 (f) =
ρ (B) .

These results were improved by Beläıdi in [2, 3] by considering more general conditions to higher order
linear differential equations with entire coefficients. Recently in [8] Chen extended the previous results
by studying the zeros and the growth of meromorphic solutions of equation (1.1) when A (z) , B (z) ,
F (z) are meromorphic functions.

There exists a natural question: How about the growth of (1.1) when A (z) , B (z) and F (z) are
meromorphic functions of finite order having only finitely many poles and the dominant coefficient is
A (z) instead of B (z)?
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In this paper, we answer the above question and obtain the following results.

Theorem 1.1 Let H ⊂ [0,+∞) be a set with a positive upper density, and let A (z) , B (z) and
F (z) be meromorphic functions of finite order having only finitely many poles. Suppose there exist
positive constants σ > 0, α > 0 such that |A (z)| ≥ eαr

σ

as |z| = r ∈ H, r → +∞, and ρ =
max {ρ (B) , ρ (F )} < σ. Then every transcendental meromorphic solution f of equation (1.1) satisfies

ρ (f) = +∞ and ρ2 (f) ≤ ρ (A) .

Furthermore, if F (z) 6≡ 0 then every transcendental meromorphic solution f of equation (1.1) satisfies

λ (f) = λ (f) = ρ (f) = +∞

and

λ2 (f) = λ2 (f) = ρ2 (f) ≤ ρ (A) .

Remark 1.1 It is clear that ρ (A) = β ≥ σ in Theorem 1.1. Indeed, suppose that ρ (A) = β < σ.
Then, by using Lemma 2.2 of this paper, there exists a set E2 ⊂ (1,+∞) that has finite linear measure
such that when |z| = r /∈ [0, 1] ∪ E2, r −→ +∞, we have for any given ε (0 < ε < σ − β)

(1.3) |A (z)| ≤ er
β+ε

.

On the other hand, by the hypotheses of Theorem 1.1, there exist positive constants σ > 0, α > 0 such
that

(1.4) |A (z)| ≥ eαr
σ

as |z| = r ∈ H, r → +∞, where H is a set with m (H) = ∞. From (1.3) and (1.4) , we obtain for
|z| = r ∈ H\ [0, 1] ∪ E1, r → +∞

eαr
σ

≤ |A (z)| ≤ er
β+ε

and by ε (0 < ε < σ − β) this is a contradiction as r → +∞. Hence ρ (A) = β ≥ σ.

Corollary 1.1 Let A (z) , B (z) , F (z) be meromorphic functions of finite order having only finitely
many poles such that ρ = max {ρ (B) , ρ (F )} < ρ (A) = σ < 1

2 . Then every transcendental meromor-
phic solution f of equation (1.1) satisfies

ρ (f) = +∞ and ρ2 (f) ≤ ρ (A) = σ.

Furthermore, if F (z) 6≡ 0 then every transcendental meromorphic solution f of equation (1.1) satisfies

λ (f) = λ (f) = ρ (f) = +∞ and λ2 (f) = λ2 (f) = ρ2 (f) ≤ ρ (A) = σ.

2. Lemmas for the proofs of Theorems

Our results depend mainly on the following lemmas.

Lemma 2.1 ([9]) . Let f (z) be a transcendental meromorphic function of finite order ρ, and let ε > 0
be a given constant. Then, there exists a set E0 ⊂ (1,+∞) that has finite logarithmic measure, such
that for all z satisfying |z| /∈ E0 ∪ [0, 1] , and for all k, j, 0 ≤ j < k, we have

(2.1)

∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) .
Similarly, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that for all z = reiθ with
|z| sufficiently large and θ ∈ [0, 2π) \ E1, and for all k, j, 0 ≤ j < k, the inequality (2.1) holds.

Lemma 2.2 ([6]) . Let f (z) be a meromorphic function of order ρ (f) = ρ < +∞. Then for any
given ε > 0, there exists a set E2 ⊂ (1,+∞) that has finite linear measure and finite logarithmic
measure such that when |z| = r /∈ [0, 1] ∪ E2, r −→ +∞, we have

|f (z)| ≤ exp
{
rρ+ε

}
.
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Lemma 2.3 ([14]) . Let P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 with an 6= 0 (n ≥ 1 is an integer)
be a non constant polynomial. Then for every ε > 0, there exists R = R (ε) > 0 such that for all
z, |z| = r > R, we have

(1− ε) |an| rn ≤ |P (z)| ≤ (1 + ε) |an| rn.
Lemma 2.4 ([1]) . Suppose that k ≥ 2 and A0, A1, A2, · · · , Ak−1 ( for at least As 6≡ 0, s ∈
{0, 1, · · · , k − 1}) are meromorphic functions that have finitely many poles.
Let ρ = max{ρ (Aj) (j = 0, 1, · · · , k − 1) , ρ (F )} < +∞ and let f (z) be a meromorphic solution of
infinite order of equation

f (k) +Ak−1 f
(k−1) + · · ·+A1f

′ +A0f = F.

Then ρ2 (f) ≤ ρ.

Lemma 2.5 ([1]) . Let f (z) be a meromorphic function having only finitely many poles, and suppose
that

G (z) :=
log+

∣∣f (s) (z)
∣∣

|z|ρ
, (s ≥ 1 is an integer)

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite sequence of
points zn = rne

iθ (n = 1, 2, · · · ) tending to infinity such that G (zn)→∞ and∣∣∣∣f (j) (zn)

f (s) (zn)

∣∣∣∣ ≤ 1

(s− j)!
(1 + o (1)) |zn|s−j (j = 0, · · · , s− 1) as n→ +∞.

Lemma 2.6 ([15]) . Let f (z) be an entire function with ρ (f) < +∞. Suppose that there exists a set
E3 ⊂ [0, 2π] which has linear measure zero, such that log+ |f

(
reiθ

)
| ≤Mrσ for any ray arg (z) = θ ∈

[0, 2π] \E3, where M is a positive constant depending on θ, while σ is a positive constant independent
of θ. Then ρ (f) ≤ σ.

Lemma 2.7 ([4]) . Let f (z) be an entire function of order ρ where 0 < ρ (f) = ρ < 1
2 , and let ε > 0

be a given constant. Then there exists a set H ⊂ [0,+∞) with densH ≥ 1 − 2ρ such that for all z
satisfying |z| = r ∈ H, we have

|f (z)| ≥ exp
{
rρ−ε

}
.

Lemma 2.8 ([5]) . Let Aj (j = 0, 1, · · · , k − 1) , F 6≡ 0 be finite order meromorphic functions. If f (z)
is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then f satisfies λ (f) = λ (f) = ρ (f) = +∞.

3. Proof of Theorem 1.1

Assume that f is a transcendental (f ′ 6≡ 0) meromorphic solution of (1.1) with ρ (f) < σ. It follows
from (1.1) that

(3.1) −f
′′

f ′
−B (z)

f

f ′
+
F (z)

f ′
= A (z) .

Since ρ = max {ρ (B) , ρ (F )} < σ, then the order of growth of the left side of equation (3.1) is ρ1 =
max {ρ (B) , ρ (F ) , ρ (f)} < σ, hence ρ (A) ≤ ρ1. By Lemma 2.2, for any given ε (0 < ε < σ − ρ1) , there
exists a set E2 ⊂ (1,+∞) with a finite linear measure and finite logarithmic measure such that

(3.2) |A (z)| ≤ er
ρ1+ε

holds for all z satisfying |z| = r /∈ [0, 1] ∪ E2, r → +∞. From hypotheses of Theorem 1.1, there exist
a set H with densH > 0 and positive constants σ > 0, α > 0 such that

(3.3) |A (z)| ≥ eαr
σ

holds for all z satisfying |z| = r ∈ H, r → +∞. By (3.2) and (3.3), we conclude that

eαr
σ

≤ er
ρ1+ε
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that is,

e(1−o(1))αr
σ

≤ 1

for all z satisfying |z| = r ∈ H \ [0, 1] ∪ E2, r → +∞, this contradicts the fact e(1−o(1))αr
σ → +∞.

Consequently, any transcendental meromorphic solution f of (1.1) is of ρ (f) ≥ σ.

Now, we prove that ρ (f) = +∞. Let f be a transcendental meromorphic solution of (1.1). We assume
that f is of finite order and ρ (f) = δ. Then, we have ρ (f) = δ ≥ σ. It follows from (1.1) that

(3.4) |A| ≤
∣∣∣∣f ′′f ′

∣∣∣∣+ |B|
∣∣∣∣ ff ′
∣∣∣∣+

∣∣∣∣Ff ′
∣∣∣∣ .

By Lemma 2.1, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that if θ ∈ [0, 2π)\E1,
then there is a constant R0 = R0 (θ) > 1 such that for all z satisfying arg z = θ and |z| = r ≥ R0, we
have

(3.5)

∣∣∣∣f ′′ (z)f ′ (z)

∣∣∣∣ ≤ r2δ.
We now proceed to show that

G (z) =
log+ |f ′ (z)|
|z|ρ+ε

is bounded on the ray arg z = θ. Supposing that this is not the case, then by Lemma 2.5, there exists
an infinite sequence of points zm = rme

iθ (m = 1, 2, · · · ) tending to infinity such that

(3.6)

∣∣∣∣ f (zm)

f ′ (zm)

∣∣∣∣ ≤ (1 + o (1)) |zm| as m→ +∞

and

(3.7)
log+ |f ′ (zm)|
|zm|ρ+ε

→∞.

From (3.7) for any positive constant number M > 0, we have

(3.8) |f ′ (zm)| > eM |zm|
ρ+ε

as m→ +∞.
Since F (z) is a meromorphic function with only finitely many poles, then by Hadamard factorization

theorem, we can write F (z) = H(z)
π(z) where π (z) is a polynomial, H (z) is an entire function with

ρ (H) = ρ (F ). From (3.8), for m sufficiently large (rm →+∞), we have∣∣∣∣F (zm)

f ′ (zm)

∣∣∣∣ =

∣∣∣∣ H (zm)

π (zm) f ′ (zm)

∣∣∣∣ ≤ ∣∣∣∣ H (zm)

crsme
M |zm|ρ+ε

∣∣∣∣ ≤ |H (zm)|
eM |zm|

ρ+ε ,

where c > 0 is a constant and s = deg π ≥ 1 is an integer. Since ρ (H) = ρ (F ) ≤ ρ, then we have

(3.9)

∣∣∣∣ H (zm)

π (zm) f ′ (zm)

∣∣∣∣ ≤ |H (zm)|
eM |zm|

ρ+ε → 0 as m→ +∞.

By Lemma 2.2, for any given ε (0 < ε < σ − ρ) , there exists a set E2 ⊂ (1,+∞) with a finite linear
measure and a finite logarithmic measure such that

(3.10) |B (z)| ≤ er
ρ+ε

holds for all z satisfying |z| = r /∈ [0, 1] ∪E2, r → +∞. Also by the hypotheses of Theorem 1.1, there
exists a set H with densH > 0, such that for all z satisfying |z| = r ∈ H, r → +∞, we have

(3.11) |A (z)| ≥ eαr
σ

.

Using (3.5), (3.6), (3.9), (3.10) and (3.11), we conclude from (3.4) that for all zm = rme
iθ satisfying

θ ∈ [0, 2π) \ E1 and rm ∈ H \ [0, 1] ∪ E2, rm → +∞, we have

eαr
σ
m ≤ r2δm + er

ρ+ε
m rm (1 + o (1)) + o (1) ≤ 3r2δ+1

m er
ρ+ε
m ,

that is,

eα(1−o(1))r
σ
m ≤ 3r2δ+1

m
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which is a contradiction for m is large enough. Therefore,
log+|f ′(z)|
|z|ρ+ε is bounded on the ray arg (z) = θ,

then there exists a bounded constant M1 > 0 such that

|f ′ (z)| ≤ eM1|z|ρ+ε

on the ray arg (z) = θ. Then

(3.12) |f (z)| ≤ (1 + o (1)) r |f ′ (z)| ≤ eM1r
ρ+2ε

on the ray arg (z) = θ. Since A ,B and F are meromorphic functions having only finitely many poles
and the poles of f can only occur at the poles of A, B and F , then f (z) must have only finitely many

poles. Therefore, by Hadamard factorization theorem, we can write f as f (z) = g(z)
d(z) where d (z) is a

polynomial and g (z) is an entire function with ρ (g) = ρ (f) ≥ σ. From (3.12), we have∣∣∣∣g (z)

d (z)

∣∣∣∣ ≤ eM1r
ρ+2ε

on the ray arg (z) = θ. Then

|g (z)| ≤ |d (z)| eM1r
ρ+2ε

≤ ArkeM1r
ρ+2ε

on the ray arg (z) = θ, where A > 0 is a constant and k = deg d ≥ 1 is an integer. Hence

(3.13) |g (z)| ≤ eM1r
ρ+3ε

on the ray arg (z) = θ. Therefore, for any given θ ∈ [0, 2π) \E1, where E1 ⊂ [0, 2π) is a set of
linear measure zero, we have (3.13) holds, for sufficiently large |z| = r. Then by Lemma 2.6, we get
ρ (g) ≤ ρ + 3ε < σ for a small positive ε, a contradiction with ρ (g) ≥ σ. Hence, every transcendental
meromorphic solution f of (1.1) must be of infinite order. By Remark 1.1 we have ρ (A) ≥ σ and since
ρ = max {ρ (B) , ρ (F )} < σ, then by using Lemma 2.4, we obtain

(3.14) ρ2 (f) ≤ ρ (A) .

Suppose that F 6≡ 0. Then, by Lemma 2.8, we obtain

λ (f) = λ (f) = ρ (f) = +∞.
We know that if f has a zero at z0 of order l (l > 2) , and A (z) , B (z) are analytic at z0, then
F (z) must have a zero at z0 of order l − 2. Therefore, we get by F 6≡ 0 that

(3.15) N

(
r,

1

f

)
≤ 2N

(
r,

1

f

)
+N

(
r,

1

F

)
+N (r,A) +N (r,B) .

On the other hand, (1.1) may be rewritten as follows

1

f
=

1

F

[
f ′′

f
+A

f ′

f
+B

]
.

So

(3.16) m

(
r,

1

f

)
≤ m

(
r,

1

F

)
+m (r,A) +m (r,B) +

2∑
j=1

m

(
r,
f (j)

f

)
+O (1) .

Hence, by the lemma of logarithmic derivative [11], there exists a set E having finite linear measure
such that for all r /∈ E, we have

(3.17) m

(
r,
f (j)

f

)
= O (log (rT (r, f))) (j = 1, 2) .

By (3.15), (3.16) and (3.17), we obtain

T (r, f) = T

(
r,

1

f

)
+O (1) ≤ 2N

(
r,

1

f

)
+N

(
r,

1

F

)
+N (r,A) +N (r,B)

+m

(
r,

1

F

)
+m (r,A) +m (r,B) +

2∑
j=1

m

(
r,
f (j)

f

)
+O (1) ≤ 2N

(
r,

1

f

)
(3.18) +T (r, F ) + T (r,A) + T (r,B) + C log (rT (r, f)) ,
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where C is a positive constant. Set β = ρ (A) = max {ρ, ρ (A)} . Then, for any given ε > 0 and
sufficiently large r, we have

(3.19) C log (rT (r, f)) ≤ 1

2
T (r, f) , T (r,A) ≤ rβ+ε, T (r,B) ≤ rβ+ε, T (r, F ) ≤ rβ+ε.

Then for r /∈ E and r sufficiently large, by using (3.18) and (3.19), we conclude that

T (r, f) ≤ 2N

(
r,

1

f

)
+ 3rβ+ε +

1

2
T (r, f) ,

that is,

(3.20) T (r, f) ≤ 4N

(
r,

1

f

)
+ 6rβ+ε.

Hence, by (3.20), we get ρ2 (f) ≤ λ2 (f) . It follows that

(3.21) λ2 (f) ≥ λ2 (f) ≥ ρ2 (f) .

We have N (r, f) ≤ N (r, f) ≤ T (r, f) , then

(3.22) λ2 (f) ≤ λ2 (f) ≤ ρ2 (f) .

Therefore, by (3.21) and (3.22) , we obtain λ2 (f) = λ2 (f) = ρ2 (f) . From (3.14), we get

λ2 (f) = λ2 (f) = ρ2 (f) ≤ ρ (A) .

4. Proof of Corollary 1.1

Since A is a meromorphic function having only finitely many poles and ρ(A) = σ, then by Hadamard

factorization theorem, we can write A to A(z) = K(z)
P (z) , where K(z) is an entire function with ρ(A) =

ρ(K) = σ and P (z) is a polynomial. Hence, by Lemma 2.7, for any ε (0 < ε < σ), there exists a set
H ⊂ [0,+∞) with densH ≥ 1− 2σ > 0 such that

(4.1) |K (z)| ≥ er
σ−ε

holds for all z, |z| = r ∈ H and r → +∞. Also, by Lemma 2.3, there exist positive constants c > 0,
m ≥ 1 such that

(4.2) |P (z)| ≤ crm.

Hence from (4.1) and (4.2) , we have

(4.3) |A (z)| =
∣∣∣∣K (z)

P (z)

∣∣∣∣ ≥ er
σ−ε

crm
≥ er

σ−2ε

.

Since ρ = max {ρ (B) , ρ (F )} < σ, then for any given ε with 0 < 2ε < σ − ρ, we have (4.3) and

(4.4) ρ = max {ρ (B) , ρ (F )} < σ − 2ε.

By using Theorem 1.1 for equation (1.1), we find that every transcendental meromorphic solution f of
equation (1.1) satisfies

(4.5) ρ (f) = +∞ and ρ2 (f) ≤ ρ (A) = σ.

Furthermore, by using (4.5) and the fact F 6≡ 0, we conclude from Theorem 1.1 that every transcen-
dental meromorphic solution f of equation (1.1) with F 6≡ 0 satisfies

λ (f) = λ (f) = ρ (f) = +∞

and

λ2 (f) = λ2 (f) = ρ2 (f) ≤ ρ (A) = σ.
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