ON QUASI-POWER INCREASING SEQUENCES AND THEIR SOME APPLICATIONS

HÜSEYIN BOR*

Abstract

In [6], we proved a main theorem dealing with $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors using a new general class of power increasing sequences instead of a quasi- σ-power increasing sequence. In this paper, we prove that theorem under weaker conditions. This theorem also includes some new results.

1. Introduction

A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left(f_{n}\right)=$ $\left\{n^{\sigma}(\log n)^{\eta}, \eta \geq 0,0<\sigma<1\right\}$ (see [13]). If we set $\eta=0$, then we get a quasi- σ-power increasing sequence (see [10]). We write $\mathcal{B} V_{O}=\mathcal{B} V \cap C_{O}$, where $\mathcal{C}_{O}=\left\{x=\left(x_{k}\right) \in \Omega: \lim _{k}\left|x_{k}\right|=0\right\}$, $\mathcal{B} V=\left\{x=\left(x_{k}\right) \in \Omega: \sum_{k}\left|x_{k}-x_{k+1}\right|<\infty\right\}$ and Ω being the space of all real-valued sequences. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$, that is (see [7]),

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

If we take $\alpha=1$, then we get the $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{4}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
v_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left(v_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [9]). Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [12])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|v_{n}-v_{n-1}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99, 46A45.
Key words and phrases. sequence spaces; Riesz mean; summability factors; increasing sequences; infinite series; Hölder inequality; Minkowski inequality.

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [1]). Also, if we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability (see [2]).
2. Known Results. The following theorems are known:

Theorem A ([4]). Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. Let $\left(\lambda_{n}\right) \in \mathcal{B} V_{O}$ and let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence for some $\sigma(0<\sigma<1)$. Suppose also that there exist sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{7}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{8}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{9}\\
\left|\lambda_{n}\right| X_{n}=O(1) \tag{10}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{12}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{13}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
Remark. We can take $\left(\lambda_{n}\right) \in \mathcal{B} V$ instead of $\left(\lambda_{n}\right) \in \mathcal{B} V_{O}$ and it is sufficient to prove Theorem A.
Theorem B ([6]). Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. Let $\left(\lambda_{n}\right) \in \mathcal{B} V$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\sigma(0<\sigma<1)$ and $\eta \geq 0$. If the conditions (7)-(13) are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $\eta=0$, then we obtain Theorem A.
3. The Main result. The purpose of this paper is to prove Theorem B under weaker conditions. Now, we shall prove the following general theorem.
Theorem. Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\sigma(0<\sigma<1)$ and $\eta \geq 0$. If the conditions (7)-(10), (12)-(13), and

$$
\begin{equation*}
\sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{14}
\end{equation*}
$$

are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
Remark. It should be noted that condition (14) is reduced to the condition (11), when $\mathrm{k}=1$. When $k>1$, the condition (14) is weaker than the condition (11), but the converse is not true. As in [14] we can show that if (11) is satisfied, then we get that

$$
\sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}{ }^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k}}=O\left(X_{n}\right)
$$

If (14) is satisfied, then for $k>1$ we obtain that

$$
\sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k}}=\sum_{v=1}^{n} \theta_{v}^{k-1} X_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}{ }^{k-1}}=O\left(X_{n}^{k-1}\right) \sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}{ }^{k-1}}=O\left(X_{n}^{k}\right) \neq O\left(X_{n}\right)
$$

Also, it should be noted that the condition " $\left(\lambda_{n}\right) \in \mathcal{B} V$ " has been removed.
We require the following lemmas for the proof of the theorem.

Lemma 1 ([5]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following;

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{15}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{16}
\end{align*}
$$

Lemma 2 ([11]). If the conditions (12) and (13) are satisfied, then we have that

$$
\begin{equation*}
\Delta\left(\frac{P_{n}}{n p_{n}}\right)=O\left(\frac{1}{n}\right) \tag{17}
\end{equation*}
$$

4. Proof of the theorem. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}}
$$

Then, for $n \geq 1$ we obtain that

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v p_{v}}\right)+\frac{\lambda_{n} s_{n}}{n} \\
& =\frac{s_{n} \lambda_{n}}{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \frac{P_{v+1} P_{v} \Delta \lambda_{v}}{(v+1) p_{v+1}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} \lambda_{v} \frac{1}{v} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{18}
\end{equation*}
$$

Firstly, by using Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1} n^{-k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\frac{1}{X_{n}}\right)^{k-1} \theta_{n}^{k-1} n^{-k}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{X_{v}^{k-1} v^{k}} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \theta_{n}^{k-1} \frac{\left|s_{n}\right|^{k}}{X_{n}{ }^{k-1} n^{k}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 1. Now, using (12) and applying Hölder's inequality, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|s_{v}\right| p_{v}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k}\left(\beta_{v}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right) \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)^{k-1} v \beta_{v} \frac{1}{v^{k}} \theta_{v}^{k-1}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1} v \beta_{v} \frac{1}{v^{k}} \theta_{v}^{k-1}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \theta_{r}^{k-1} \frac{\left|s_{r}\right|^{k}}{r^{k} X_{r}{ }^{k-1}}+O(1) m \beta_{m} \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, in view of the hypotheses of the theorem and Lemma 1. Again, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|s_{v} \| \lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} v^{-k} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{1}{X_{v}}\right)^{k-1} \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of the theorem, Lemma 1 and Lemma 2. Finally, using Hölder's inequality, as in $T_{n, 1}$ we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v} \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v p_{v}} p_{v} \lambda\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k} p_{v}\left|\lambda_{v}\right|^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} v^{-k}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \theta_{v}^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v} \| s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1} \frac{\left|s_{v}\right|^{k}}{v^{k} X_{v}^{k-1}}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem. If we set $\eta \geq 0$, then we obtain Theorem B under weaker conditions. If we take $p_{n}=1$ for all values of n, then we have a new result for $\left|C, 1, \theta_{n}\right|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then we have another new result for $\left|R, p_{n}\right|_{k}$ summability. Finally, if we take $p_{n}=1$ for all values of n and $\theta_{n}=n$, then we get a new result dealing with $|C, 1|_{k}$ summability factors.

References

[1] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc., 97 (1985), 147-149.
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 10091012.
[3] H. Bor, A general note on increasing sequences, JIPAM. J. Inequal. Pure Appl. Math., 8 (2007), Article ID 82.
[4] H. Bor, New application of power increasing sequences, Math. Aeterna, 2 (2012), 423-429.
[5] H. Bor, A new application of generalized power increasing sequences, Filomat, 26 (2012), 631-635.
[6] H. Bor, A new application of generalized quasi-power increasing sequences, Ukrainian Math. J., 64 (2012), 731-738.
[7] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math., 14 (1890), 114-120.
[8] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[9] G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).
[10] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
[11] K. N. Mishra and R. S. L. Srivastava, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Pure Appl. Math., 15 (1984), 651-656.
[12] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.
[13] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl., 322 (2006), 1224-1230.
[14] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput., 216 (2010), 2645-2648.
P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

* Corresponding author: HBOR33@GMAIL.COM

