IF α GS CONTINUOUS AND IF α GS IRRESOLUTE MAPPINGS

M. JEYARAMAN¹, A. YUVARANI^{2,*} AND O. RAVI³

ABSTRACT. The objective of this paper is to establish intuitionistic fuzzy α -generalized semi continuous mappings and to study some of their properties. Finally we introduce intuitionistic fuzzy α -generalized semi irresolute mappings and investigate their characterizations.

1. Introduction

As a generalization of fuzzy sets, the concepts of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker and Demirci [3] introduced the basic definitions and properties of intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In 2004, M.Rajamani and K.Viswanathan [8] introduced α generalized semi continuous maps and α generalized semi irresolute maps in topological spaces. In this paper we introduce intuitionistic fuzzy α -generalized semi continuous mappings and intuitionistic fuzzy α -generalized semi irresolute mappings. Also the interconnections between the intuitionistic fuzzy continuous mappings and the intuitionistic fuzzy irresolute mappings are investigated. Some examples are given to illustrate the results.

2. Preliminaries

Definition 2.1. [1] Let X be a non empty fixed set. An intuitionistic fuzzy set(IFS in short) A in X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}$$

where the function $\mu_A(x): X \to [0,1]$ denotes the degree of membership(namely $\mu_A(x)$) and the function $\nu_A(x): X \to [0,1]$ denotes the degree of non-membership(namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively and $0 \le \mu_A(x) + \nu_A(x) \le$ 1 for each $x \in X$.

IFS(X) denote the set of all intuitionistic fuzzy sets in X.

Definition 2.2. [1] Let A and B be IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}$ and $B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X \}$. Then (1) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\mu_A(x) \geq \mu_B(x)$ for all $x \in X$.

(1) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,

(2) A = B if and only if $A \subseteq B$ and $B \subseteq A$,

²⁰¹⁰ Mathematics Subject Classification. 54A02, 54A40, 54A99, 03F55.

Key words and phrases. Intuitionistic fuzzy topology, Intuitionistic fuzzy α -generalized semi closed set, Intuitionistic fuzzy α -generalized semi continuous mapping and Intuitionistic fuzzy α -generalized semi irresolute mapping.

 $[\]odot$ 2013 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

- (3) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle \mid x \in X \},$
- (4) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle \mid x \in X \},$
- (5) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle \mid x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle : x \in X \}$ are the empty set and the whole set of X respectively.

Definition 2.3. [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (1) $\theta_{\sim}, \ 1_{\sim} \in \tau$,
- (2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (3) $\cup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X.

The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set(IFCS in short) in X.

Definition 2.4. [3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

- (1) $int(A) = \bigcup \{ G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A \},$
- (2) $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Definition 2.5. An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (1) intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)) [3],
- (2) intuitionistic fuzzy α -closed set(IF α CS in short) if cl(int(cl(A))) \subseteq A [5],
- (3) intuitionistic fuzzy semiclosed set(IFSCS in short) if $int(cl(A)) \subseteq A$ [3],
- (4) intuitionistic fuzzy preclosed set(IFPCS in short) if $cl(int(A)) \subseteq A$ [3],
- (5) intuitionistic fuzzy semipreclosed set(IFSPCS in short) if there exists an IFPCS B such that $int(B) \subseteq A \subseteq B[14]$.

Definition 2.6. An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (1) intuitionistic fuzzy regular open set(IFROS in short) if A = int(cl(A))[3],
- (2) intuitionistic fuzzy α -open set(IF α OS in short) if $A \subset int(cl(int(A)))[5]$,
- (3) intuitionistic fuzzy semiopen set(IFSOS in short) if $A \subset cl(int(A))[3]$,
- (4) intuitionistic fuzzy preopen set (IFPOS in short) if $A \subseteq int(cl(A))[3]$,
- (5) intuitionistic fuzzy semipreopne set (IFSPOS in short) if there exists an IFPOS B such that $B \subseteq A \subseteq cl(B)[14]$

The family of all IFOS(respectively IFSOS, IF αOS , IFROS) of an IFTS (X, τ) is denoted by IFOS(X)(respectively IFSOS(X), IF $\alpha OS(X)$, IFROS(X)).

Definition 2.7. [14] Let A be an IFS in (X, τ) , then semi interior of A(sint(A) in short) and semi closure of A (scl(A) in short) are defined as

- (1) $sint(A) = \bigcup \{K \mid K \text{ is an IFSOS in } X \text{ and } K \subseteq A \},\$
- (2) $scl(A) = \cap \{K \mid K \text{ is an IFSCS in } X \text{ and } A \subseteq K\}.$

94

Definition 2.8. [12] Let A be an IFS in (X, τ) , then semipre interior of A(spint(A) in short) and semipre closure of A (spcl(A) in short) are defined as

- (1) $spint(A) = \bigcup \{ G \mid G \text{ is an IFSPOS in } X \text{ and } G \subseteq A \},$
- (2) $spcl(A) = \cap \{K \mid K \text{ is an IFSPCS in } X \text{ and } A \subseteq K\}.$

Definition 2.9. [9] Let A be an IFS of an IFTS (X, τ) . Then

- (1) $\alpha cl(A) = \cap \{K \mid K \text{ is an } IF\alpha CS \text{ in } X \text{ and } A \subseteq K\},\$
- (2) $\alpha int(A) = \bigcup \{K \mid K \text{ is an } IF\alpha OS \text{ in } X \text{ and } K \subseteq A\}.$

Definition 2.10. An IFS A of an IFTS (X, τ) is an

- (1) intuitionistic fuzzy generalized closed set(IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [13],
- (2) intuitionistic fuzzy generalized semiclosed set(IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [11],
- (3) intuitionistic fuzzy generalized semipreclosed set(IFGSPCS in short) if spcl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X [12],
- (4) intuitionistic fuzzy alpha generalized closed set(IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X [9],
- (5) intuitionitic fuzzy generalized alpha closed set (IFG α CS in short) if α cl(A) \subseteq U whenever $A \subseteq$ U and U is an IF α OS in X [7].

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets.

Definition 2.11. [15] An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy alpha generalized semi closed set(IF α GSCS in short) if α cl(A) \subseteq U whenever $A \subseteq U$ and U is an IFSOS in (X, τ) .

An IFS A is said to be an intuitionistic fuzzy α -generalized semi openset(IF α GSOS in short) in X if A^c is an IF α GSCS in X. The family of all IF α GSCSs(respective IF α GSOSs) of an IFTS (X, τ) is denoted by IF α GSCS(X)(respective IF α GSOS(X)).

Remark 2.12. [15] Every IFCS, IFRCS, IF α CS is an IF α GSCS but their separate converses may not be true in general. Every IF α GSCS is IFGSCS, IFG α CS, IF α GCS but their separate converses may not be true in general.

Definition 2.13. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (1) intuitionistic fuzzy continuous (IF continuous in short) if $f^{-1}(B) \in IFOS(X)$ for every $B \in \sigma[4]$,
- (2) intuitionistic fuzzy α -continuous (IF α continuous in short) if $f^{-1}(B) \in IF\alpha OS(X)$ for every $B \in \sigma[6]$,
- (3) intuitionistic fuzzy pre continuous (IFP continuous in short) if $f^{-1}(B) \in IFPOS(X)$ for every $B \in \sigma[6]$.

Every IF continuous mapping is an IF α -continuous mapping but not conversely.

Definition 2.14. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (1) intuitionistic fuzzy generalized continuous (IFG continuous in short) if $f^{-1}(B)$ is an IFGCS for every IFCS B of (Y, σ) [13],
- (2) intuitionistic fuzzy generalized semi continuous (IFGS continuous in short) if $f^{-1}(B)$ is an IFGSCS for every IFCS B of $(Y, \sigma)[11]$,

- (3) intuitionistic fuzzy generalized semi pre continuous(IFGSP continuous in short) if $f^{-1}(B)$ is an IFGSPCS for every IFCS B of $(Y, \sigma)[12]$,
- (4) intuitionistic fuzzy α -generalized continuous(IF α G continuous in short) if $f^{-1}(B)$ is an IF α GCS for every IFCS B of $(Y, \sigma)[10]$,
- (5) intuitionistic fuzzy generalized α continuous(IFGα continuous in short) if f⁻¹(B) is an IFGαCS for every IFCS B of (Y, σ)[7].

Definition 2.15. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (1) intuitionistic fuzzy irresolute (IF irresolute in short) if $f^{-1}(B) \in IFCS(X)$ for every IFCS B in Y[11],
- (2) intuitionistic fuzzy generalized irresolute(IFG irresolute in short) if $f^{-1}(B)$ is IFGCS in X for every IFGCS B in Y[11].

3. Intuitionistic fuzzy α -generalized semi continuous mappings

In this section we introduce intuitionistic fuzzy α -generalized semi continuous mapping and study some of its properties.

Definition 3.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy α -generalized semi continuous(IF α GS continuous in short) if $f^{-1}(B)$ is an IF α GSCS in (X, τ) for every IFCS B of (Y, σ) .

Example 3.2. Let $X = \{a, b\}$, $Y = \{u, v\}$, $T_1 = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle$ and $T_2 = \langle y, (0.9, 0.8), (0.1, 0.2) \rangle$. Then $\tau = \{ 0_{\sim}, T_1, 1_{\sim} \}$ and $\sigma = \{ 0_{\sim}, T_2, 1_{\sim} \}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF αGS continuous mapping.

Theorem 3.3. Every IF continuous mapping is an $IF\alpha GS$ continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF continuous mapping. Let A be an IFCS in Y. Since f is an IF continuous mapping, $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF α GSCS, $f^{-1}(A)$ is an IF α GSCS in X. Hence f is an IF α GS continuous mapping.

Example 3.4. IF αGS continuous mapping \Rightarrow IF continuous mapping Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$ and $T_2 = \langle y, (0.3, 0.2), (0.7, 0.8) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.7, 0.8), (0.3, 0.2) \rangle$ is IFCS in Y, $f^{-1}(A)$ is an IF $\alpha GSCS$ but not IFCS in X. Therefore f is an IF αGS continuous mapping but not an IF continuous mapping.

Theorem 3.5. Every $IF\alpha$ continuous mapping is an $IF\alpha GS$ continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α continuous mapping. Let A be an IFCS in Y. Then by hypothesis $f^{-1}(A)$ is an IF α CS in X. Since every IF α CS is an IF α GSCS, $f^{-1}(A)$ is an IF α GSCS in X. Hence f is an IF α GS continuous mapping.

Example 3.6. IF αGS continuous mapping \rightarrow IF α continuous mapping

Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ and $T_2 = \langle y, (0.2, 0.4), (0.8, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.8, 0.6), (0.2, 0.4) \rangle$ is IFCS in Y, $f^{-1}(A)$ is an IF α GSCS

96

but not $IF\alpha CS$ in X. Therefore f is an $IF\alpha GS$ continuous mapping but not an $IF\alpha$ continuous mapping.

Remark 3.7. IFG continuous mappings and $IF\alpha GS$ continuous mappings are independent of each other.

Example 3.8. IF α GS continuous mapping \rightarrow IFG continuous mapping. Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.4, 0.7), (0.5, 0.3) \rangle$ and $T_2 = \langle y, (0.6, 0.6) \rangle$

Let $X = \{a, b\}, T = \{a, b\}, T_1 = \langle x, (0.4, 0.7), (0.5, 0.6) \rangle$ and $T_2 = \langle y, (0.6, 0.8), (0.3, 0.2) \rangle$. Then $\tau = \{ 0_{\sim}, T_1, 1_{\sim} \}$ and $\sigma = \{ 0_{\sim}, T_2, 1_{\sim} \}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is IF α GS continuous mapping but not IFG continuous mapping. Since $A = \langle y, (0.3, 0.2), (0.6, 0.8) \rangle$ is IFCS in Y, $f^{-1}(A) = \langle x, (0.3, 0.2), (0.6, 0.8) \rangle$ is not IFGCS in X.

Example 3.9. IFG continuous mapping \rightarrow IF α GS continuous mapping.

Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$ and $T_2 = \langle y, (0.3, 0.1), (0.7, 0.9) \rangle$. Then $\tau = \{ 0_{\sim}, T_1, 1_{\sim} \}$ and $\sigma = \{ 0_{\sim}, T_2, 1_{\sim} \}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is IFG continuous mapping but not an IF α Gs continuous mapping. Since $A = \langle y, (0.7, 0.9), (0.3, 0.1) \rangle$ is IFCS in Y, $f^{-1}(A) = \langle x, (0.7, 0.9), (0.3, 0.1) \rangle$ is not IF α GSCS in X.

Theorem 3.10. Every $IF\alpha GS$ continuous mapping is an IFGS continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS continuous mapping. Let A be an IFCS in Y. Then by hypothesis $f^{-1}(A)$ IF α GSCS in X. Since every IF α GSCS is an IFGSCS, $f^{-1}(A)$ is an IFGSCS in X. Hence f is an IFGS continuous mapping.

Example 3.11. *IFGS continuous mapping* $\not\rightarrow$ *IF* α *GS continuous mapping.*

Let $X = \{a, b\}$, $Y = \{u, v\}$, $T_1 = \langle x, (0.7, 0.8), (0.3, 0.1) \rangle$ and $T_2 = \langle y, (0.2, 0), (0.8, 0.8) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.8, 0.8), (0.2, 0) \rangle$ is IFCS in Y, $f^{-1}(A)$ is IFGSCS in X but not IF α GSCS in X. Therefore f is an IFGS continuous mapping but not an IF α GS continuous mapping.

Remark 3.12. IFP continuous mappings and $IF\alpha GS$ continuous mappings are independent of each other.

Example 3.13. *IFP continuous mapping* \rightarrow *IF* α *GS continuous mapping*

Let $X = \{a, b\}$, $Y = \{u, v\}$, $T_1 = \langle x, (0.4, 0.3), (0.6, 0.5) \rangle$ and $T_2 = \langle y, (0.7, 0.8), (0.2, 0.1) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.2, 0.1), (0.7, 0.8) \rangle$ is IFCS in Y, $f^{-1}(A)$ is IFPCS in X but not IF α GSCS in X. Therefore f is an IFP continuous mapping but not IF α GS continuous mapping.

Example 3.14. IF αGS continuous mapping \rightarrow IFP continuous mapping

Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ and $T_2 = \langle y, (0.4, 0.5), (0.6, 0.5) \rangle$ and $T_3 = \langle y, (0.7, 0.4), (0.3, 0.6) \rangle$. Then $\tau = \{ 0_{\sim}, T_1, T_2, 1_{\sim} \}$ and $\sigma = \{ 0_{\sim}, T_3, 1_{\sim} \}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.3, 0.6), (0.7, 0.7, 0.7) \rangle$.

 $0.4\rangle$ is IF α GSCS but not IFPCS in Y, $f^{-1}(A)$ is IF α GSCS in X but not IFPCS in X. Therefore f is an IF α GS continuous mapping but not IFP continuous mapping.

Theorem 3.15. Every $IF\alpha GS$ continuous mapping is an IFGSP continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS continuous mapping. Let A be an IFCS in Y. Then by hypothesis $f^{-1}(A)$ is an IF α GSCS in X. Since every IF α GSCS is an IFGSPCS, $f^{-1}(A)$ is an IFGSPCS in X. Hence f is an IFGSP continuous mapping.

Example 3.16. IFGSP continuous mapping \rightarrow IF α GS continuous mapping. Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.3, 0.1), (0.6, 0.8) \rangle$ and $T_2 = \langle y, (0.7, 0.8), (0.2, 0.0) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.2, 0.0), (0.7, 0.8) \rangle$ is IFCS in Y, $f^{-1}(A)$ is an IFGSPCS but not IF α GSCS in X. Therefore f is an IFGSP continuous mapping but not an IF α GS continuous mapping.

Theorem 3.17. Every $IF\alpha GS$ continuous mapping is an $IF\alpha G$ continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS continuous mapping. Let A be an IFCS in Y. Since f is IF α GS continuous mapping, $f^{-1}(A)$ is an IF α GSCS in X. Since every IF α GSCS is an IF α GCS, $f^{-1}(A)$ is an IF α GCS in X. Hence f is an IF α G continuous mapping.

Example 3.18. IF αG continuous mapping \Rightarrow IF αGS continuous mapping Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.1, 0.3), (0.7, 0.6) \rangle$ and $T_2 = \langle y, (0.6, 0.5), (0.3, 0.4) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.3, 0.4), (0.6, 0.5) \rangle$ is IFCS in Y, $f^{-1}(A)$ is IF $\alpha GSCS$ in X but not IF $\alpha GSCS$ in X. Therefore f is an IF αG continuous mapping but not an IF αGS continuous mapping.

Theorem 3.19. Every $IF\alpha GS$ continuous mapping is an $IFG\alpha$ continuous mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS continuous mapping. Let A be an IFCS in Y. Since f is IF α GS continuous mapping, $f^{-1}(A)$ is an IF α GSCS in X. Since every IF α GSCS is an IFG α CS, $f^{-1}(A)$ is an IFG α CS in X. Hence f is an IFG α continuous mapping.

Example 3.20. IFG α continuous mapping \Rightarrow IF α GS continuous mapping Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.4, 0.2), (0.6, 0.8) \rangle$ and $T_2 = \langle y, (0.5, 0.4), (0.5, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.5, 0.6), (0.5, 0.4) \rangle$ is IFCS in Y, $f^{-1}(A)$ is IFG α CS in X but not IF α GSCS in X. Therefore f is an IFG α continuous mapping but not an IF α GS continuous mapping.

Remark 3.21. We obtain the following diagram from the results we discussed above.

None of the reverse implications are not true.

Theorem 3.22. A mapping $f: X \to Y$ is $IF\alpha GS$ continuous if and only if the inverse image of each IFOS in Y is an $IF\alpha GSOS$ in X.

Proof. \Rightarrow part

Let A be an IFOS in Y. This implies A^c is IFCS in Y. Since f is IF α GS continuous, $f^{-1}(A^c)$ is IF α GSCS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IF α GSOS in X. \Leftarrow part

Let A be an IFCS in Y. Then A^c is an IFOS in Y. By hypothesis $f^{-1}(A^c)$ is IF α GSOS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $(f^{-1}(A))^c$ is an IF α GSOS in X. Therefore $f^{-1}(A)$ is an IF α GSCS in X. Hence f is IF α GS continuous.

Theorem 3.23. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping and $f^{-1}(A)$ be an IFRCS in X for every IFCS A in Y. Then f is an IF α GS continuous mapping.

Proof. Let A be an IFCS in Y and $f^{-1}(A)$ be an IFRCS in X. Since every IFRCS is an IF α GSCS, $f^{-1}(A)$ is an IF α GSCS in X. Hence f is an IF α GS continuous mapping.

Definition 3.24. An IFTS (X, τ) is said to be an

- (1) intuitionistic fuzzy $\alpha ga T_{1/2}$ (in short $IF_{\alpha ga} T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFCS in X,
- (2) intuitionistic fuzzy $\alpha gbT_{1/2}$ (in short $IF_{\alpha gb}T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFGCS in X,
- (3) intuitionistic fuzzy $\alpha gc T_{1/2}$ (in short $IF_{\alpha gc} T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFGSCS in X.

Theorem 3.25. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS continuous mapping, then f is an IF continuous mapping if X is an IF $_{\alpha ga}T_{1/2}$ space.

Proof. Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF α GSCS in X, by hypothesis. Since X is an IF $_{\alpha ga}T_{1/2}$, $f^{-1}(A)$ is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.26. Let $f:(X, \tau) \to (Y, \sigma)$ be an $IF\alpha GS$ continuous mapping, then f is an IFG continuous mapping if X is an $IF_{\alpha qb}T_{1/2}$ space.

Proof. Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF α GSCS in X, by hypothesis. Since X is an IF $_{\alpha gb}T_{1/2}$, $f^{-1}(A)$ is an IFGCS in X. Hence f is an IFG continuous mapping. **Theorem 3.27.** Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS continuous mapping, then f is an IFGS continuous mapping if X is an IF $_{\alpha gc} T_{1/2}$ space.

Proof. Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF α GSCS in X, by hypothesis. Since X is an IF $_{\alpha gc}$ T_{1/2}, $f^{-1}(A)$ is an IFGSCS in X. Hence f is an IFGS continuous mapping.

Theorem 3.28. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS continuous mapping and $g:(Y, \sigma) \to (Z, \delta)$ be an IF continuous, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF αGS continuous.

Proof. Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y, by hypothesis. Since f is an IF α GS continuous mapping, $f^{-1}(g^{-1}(A))$ is an IF α GSCS in X. Hence gof is an IF α GS continuous mapping.

Theorem 3.29. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X is an $IF_{\alpha ga}T_{1/2}$ space.

- (1) f is an IF αGS continuous mapping.
- (2) If B is an IFOS in Y then $f^{-1}(B)$ is an IF α GSOS in X.
- (3) $f^{-1}(int(B)) \subseteq int(cl(int(f^{-1}(B))))$ for every IFS B in Y.

Proof. $(1) \Rightarrow (2)$: is obviously true.

 $(2) \Rightarrow (3)$: Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then $f^{-1}(int(B))$ is an IF α GSOS in X. Since X is an IF $_{\alpha ga}T_{1/2}$ space, $f^{-1}(int(B))$ is an IFOS in X. Therefore $f^{-1}(int(B)) = int(f^{-1}(int(B))) \subseteq int(cl(int(f^{-1}(B))))$.

 $(3) \Rightarrow (1)$ Let B be an IFCS in Y. Then its complement B^c is an IFOS in Y. By hypothesis $f^{-1}(int(B^c)) \subseteq int(cl(int(f^{-1}(int(B^c)))))$. This implies that $f^{-1}(B^c) \subseteq$ $int(cl(int(f^{-1}(int(B^c)))))$. Hence $f^{-1}(B^c)$ is an IF α OS in X. Since every IF α OS is an IF α GSOS, $f^{-1}(B^c)$ is an IF α GSOS in X. Therefore $f^{-1}(B)$ is an IF α GSCS in X. Hence f is an IF α GS continuous mapping.

Theorem 3.30. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if X is an $IF_{\alpha ga}T_{1/2}$ space.

- (1) f is an $IF\alpha GS$ continuous mapping.
- (2) $f^{-1}(A)$ is an IF α GSCS in X for every IFCS A in Y.
- (3) $cl(int(cl(f^{-1}(A)))) \subseteq f^{-1}(cl(A))$ for every IFS A in Y.

Proof. (1) \Rightarrow (2): is obviously true.

 $(2) \Rightarrow (3)$: Let A be an IFS in Y. Then cl(A) is an IFCS in Y. By hypothesis, $f^{-1}(cl(A))$ is an IF α GSCS in X. Since X is an IF $_{\alpha ga}T_{1/2}$ space, $f^{-1}(cl(A))$ is an IFCS in X. Therefore cl($f^{-1}(cl(A))$) = $f^{-1}(cl(A))$. Now cl(int(cl($f^{-1}(A)$))) \subseteq cl(int(cl($f^{-1}(cl(A)$)))) \subseteq $f^{-1}(cl(A))$.

(3) \Rightarrow (1): Let A be an IFCS in Y. By hypothesis $cl(int(cl(f^{-1}(A)))) \subseteq f^{-1}(cl(A)) = f^{-1}(A)$. This implies $f^{-1}(A)$ is an IF α CS in X and hence it is an IF α GSCS in X. Therefore f is an IF α GS continuous mapping.

Definition 3.31. Let (X, τ) be an IFTS. The alpha generalized semi closure $(\alpha gscl(A) \text{ in short})$ for any IFS A is defined as follows. $\alpha gscl(A) = \cap \{K \mid K \text{ is an } IF\alpha GSCS \text{ in } X \text{ and } A \subseteq K \}$. If A is $IF\alpha GSCS$, then $\alpha gscl(A) = A$.

Theorem 3.32. Let $f:(X, \tau) \to (Y, \sigma)$ be an $IF\alpha GS$ continuous mapping. Then the following conditions are hold.

- (1) $f(\alpha gscl(A)) \subseteq cl(f(A))$, for every IFS A in X.
- (2) $\alpha gscl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

Proof. (i) Since cl(f(A)) is an IFCS in Y and f is an IF α GS continuous mapping, $f^{-1}(cl(f(A)))$ is IF α GSCS in X. That is α gscl(A) $\subseteq f^{-1}(cl(f(A)))$. Therefore $f(\alpha$ gscl(A)) $\subseteq cl(f(A))$, for every IFS A in X.

(ii) Replacing A by $f^{-1}(B)$ in (i) we get $f(\alpha gscl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $\alpha gscl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

Remark 3.33. The composition of two $IF\alpha GS$ continuous mappings need not be $IF\alpha GS$ continuous as can be seen from the following example:

Example 3.34. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $Z = \{s, t\}$. Let $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$, $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$ and $\delta = \{0_{\sim}, T_3, 1_{\sim}\}$ be IFTs on X, Y and Z respectively where $T_1 = \langle x, (0.4, 0.3), (0.6, 0.7) \rangle$, $T_2 = \langle y, (0.3, 0.8), (0.7, 0.2) \rangle$ and $T_3 = \langle z, (0.4, 0.9), (0.6, 0.1) \rangle$. Define $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v and $g:(Y, \sigma) \to (Z, \delta)$ by g(u) = s and g(v) = t. Then f and g are IF αGS continuous mappings. Since $A = \langle z, (0.6, 0.1), (0.4, 0.9) \rangle$ is an IFCS in Z, $f^{-1}(A)$ is not an IF $\alpha GSCS$ in X. Therefore the composition map $g \circ f: (X, \tau) \to (Z, \delta)$ is not an IF αGS continuous.

4. Intuitionistic fuzzy α -generalized semi irresolute mappings

In this section we introduce intuitionistic fuzzy α -generalized semi irresolute mappings and study some of its characterizations.

Definition 4.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy alpha-generalized semi irresolute(IF α GS irresolute) mapping if $f^{-1}(A)$ is an IF α GSCS in (X, τ) for every IF α GSCS A of (Y, σ) .

Theorem 4.2. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS irresolute, then f is an IF α GS continuous mapping.

Proof. Let f be an IF α GS irresolute mapping. Let A be any IFCS in Y. Since every IFCS is an IF α GSCS, A is an IF α GSCS in Y. By hypothesis f⁻¹(A) is an IF α GSCS in X. Hence f is an IF α GS continuous mapping.

Example 4.3. IF αGS continuous mapping \Rightarrow IF αGS irresolute mapping. Let $X = \{a, b\}, Y = \{u, v\}, T_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$ and $T_2 = \langle y, (0.7, 0.3), (0.2, 0.6) \rangle$. Then $\tau = \{ 0_{\sim}, T_1, 1_{\sim} \}$ and $\sigma = \{ 0_{\sim}, T_2, 1_{\sim} \}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF αGS continuous. We have $B = \langle y, (0.1, 0.5), (0.8, 0.4) \rangle$ is an IF $\alpha GSCS$ in Y but $f^{-1}(B)$ is not an IF $\alpha GSCS$ in X. Therefore f is not an IF αGS irresolute mapping.

Theorem 4.4. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS irresolute, then f is an IF irresolute mapping if X is an IF $_{\alpha ga} T_{1/2}$ space.

Proof. Let A be an IFCS in Y. Then A is an IF α GSCS in Y. Therefore $f^{-1}(A)$ is an IF α GSCS in X, by hypothesis. Since X is an IF $_{\alpha ga}T_{1/2}$ space, $f^{-1}(A)$ is an IFCS in X. Hence f is an IF irresolute mapping.

Theorem 4.5. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \delta)$ be $IF\alpha GS$ irresolute mappings, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an $IF\alpha GS$ irresolute mapping.

Proof. Let A be an IF α GSCS in Z. Then $g^{-1}(A)$ is an IF α GSCS in Y. Since f is an IF α GS irresolute mapping. $f^{-1}((g^{-1}(A)))$ is an IF α GSCS in X. Hence gof is an IF α GS irresolute mapping.

Theorem 4.6. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS irresolute and $g:(Y, \sigma) \to (Z, \delta)$ be IF αGS continuous mappings, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IF αGS continuous mapping.

Proof. Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IF α GSCS in Y. Since f is an IF α GS irresolute, $f^{-1}((g^{-1}(A)))$ is an IF α GSCS in X. Hence $g \circ f$ is an IF α GS continuous mapping.

Theorem 4.7. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS irresolute, then f is an IFG irresolute mapping if X is an IF $_{\alpha gb} T_{1/2}$ space.

Proof. Let A be an IF α GSCS in Y. By hypothesis, $f^{-1}(A)$ is an IF α GSCS in X. Since X is an IF $_{\alpha gb}T_{1/2}$ space, $f^{-1}(A)$ is an IFGCS in X. Hence f is an IFG irresolute mapping.

Theorem 4.8. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are $IF_{\alpha ga}T_{1/2}$ spaces.

- (1) f is an IF αGS irresolute mapping.
- (2) $f^{-1}(B)$ is an IF α GSOS in X for each IF α GSOS B in Y.
- (3) $cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for each IFS B of Y.

Proof. (1) ⇒ (2): Let B be any IFαGSOS in Y. Then B^c is an IFαGSCS in Y. Since f is IFαGS irresolute, $f^{-1}(B^c)$ is an IFαGSCS in X. But $f^{-1}(B^c) = (f^{-1}(B))^c$. Therefore $f^{-1}(B)$ is an IFαGSOS in X.

(2) ⇒ (3): Let B be any IFS in Y and B ⊆ cl(B). Then $f^{-1}(B) ⊆ f^{-1}(cl(B))$. Since cl(B) is an IFCS in Y, cl(B) is an IF α GSCS in Y. Therefore (cl(B))^c is an IF α GSOS in Y. By hypothesis, $f^{-1}((cl(B))^c)$ is an IF α GSOS in X. Since $f^{-1}((cl(B))^c) = (f^{-1}(cl(B)))^c$, $f^{-1}(cl(B))$ is an IF α GSCS in X. Since X is IF $_{\alpha ga}T_{1/2}$ space, $f^{-1}(cl(B))$ is an IFCS in X. Hence cl($f^{-1}(B)$) ⊆ cl($f^{-1}(cl(B))$) = $f^{-1}(cl(B))$. That is cl($f^{-1}(B)$) ⊆ $f^{-1}(cl(B))$.

(3) ⇒ (1): Let B be any IF α GSCS in Y. Since Y is IF $_{\alpha ga}T_{1/2}$ space, B is an IFCS in Y and cl(B) = B. Hence $f^{-1}(B) = f^{-1}(cl(B)) \supseteq cl(f^{-1}(B))$. But clearly $f^{-1}(B)$ $\subseteq cl(f^{-1}(B))$. Therefore cl($f^{-1}(B)$) = $f^{-1}(B)$. This implies $f^{-1}(B)$ is an IFCS and hence it is an IF α GSCS in X. Thus f is an IF α GS irresolute mapping.

References

- [1] Atanassov. K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] Chang. C., Fuzzy topological spaces, J. Math.Anal.Appl., 24(1968), 182-190.
- [3] Coker. D., An introduction to fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [4] Gurcay. H., Coker. D., and Es. A. Haydar., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math., 5(1997), 365-378.
- [5] Hur. K. and Jun. Y. B., On intuitionistic fuzzy alpha continuous mappings, Honam Math. Jour., 25(2003), 131-139.
- [6] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [7] Kalamani. D, Sakthivel. K and Gowri. C. S., Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences, 6(2012), 4691-4700.

102

- [8] Rajamani. M and K. Viswanathan, On αgs-continuous maps in topological spaces, Acta Ciencia Indica, XXXI M (1)(2005), 293-303.
- [9] Sakthivel. K., Intuitionistic fuzzy alpha generalized closed sets and intuitionistic fuzzy alpha generalized open sets, The Mathematical Education, 4(2012), Submitted.
- [10] Sakthivel. K., Intuitionistic fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences, 4(37)(2010), 1831-1834.
- [11] Santhi. R and Sakthivel. K., Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [12] Santhi. R and Jayanthi. D., Intuitionistic fuzzy generalized semi-pre continuous mappings., Int.J.Contemp.Math.Sciences, 5(30)(2010), 1455-1469.
- [13] Thakur. S. S and Rekha Chaturvedi., Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [14] Young BaeJin and Seok-Zun Song, Intuitionistic fuzzy semi-pre open sets and Intuitionistic semi-pre continuous mappings, jour. of Appl. Math and computing, 19(2005), 467-474.
- [15] Jeyaraman. M, Yuvarani. A and Ravi. O., Intuitionistic fuzzy α -generalized semi closed sets (submitted)
- [16] Zadeh. L. A., Fuzzy sets, Information and control, 8(1965), 338-353.

 $^1\mathrm{Department}$ of Mathematics, H. H. The Rajah's College, Pudukkottai, Tamil Nadu, India

 $^{2}\mathrm{Department}$ of Mathematics, Raja College of Engineering and Technology, Madurai, Tamil Nadu, India

 $^{3}\mathrm{Department}$ of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India

*Corresponding Author