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ON WEAK AND STRONG CONVERGENCE THEOREMS OF MODIFIED

SP -ITERATION SCHEME FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE

MAPPINGS

G. S. SALUJA∗

Abstract. In this paper, we study modified SP -iteration scheme for three total asymptotically

nonexpansive mappings and also establish some weak and strong convergence theorems for mentioned
mappings and scheme to converge to common fixed points in the framework of Banach spaces. Our

results extend and generalize the previous works from the current existing literature.

1. Introduction

Let C be a nonempty subset of a Banach space E and T : C → C a nonlinear mapping. We denote
the set of all fixed points of T by F (T ). The set of common fixed points of three mappings T1, T2 and
T3 will be denoted by F = ∩3i=1F (Ti).

Definition 1.1. Let T : C → C be a mapping. Then
(1) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖(1.1)

for all x, y ∈ C.

(2) T is said to be asymptotically nonexpansive if there exists a positive sequence hn ∈ [1,∞) with
limn→∞ hn = 1 such that

‖Tnx− Tny‖ ≤ hn ‖x− y‖(1.2)

for all x, y ∈ C and n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [6] as a
generalization of the class of nonexpansive mappings. They proved that if C is a nonempty closed con-
vex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive mapping
on C, then has a fixed point.

T is said to be asymptotically noneexpansive in the intermediate sense if it is continuous and the
following inequality holds:

lim sup
n→∞

sup
x,y∈C

(
‖Tnx− Tny‖ − ‖x− y‖

)
≤ 0.(1.3)

Observe that if we define

cn = lim sup
n→∞

sup
x,y∈C

(
‖Tnx− Tny‖ − ‖x− y‖

)
and νn = max{0, cn},

then νn → 0 as n→∞. It follows that (1.3) is reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ νn,(1.4)
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for all x, y ∈ C and n ≥ 1.

The class of mappings which are asymptotically nonexpansive in the intermediate sense was intro-
duced by Bruck, Kuczumow and Reich [3]. It is known [10] that if C is a nonempty closed convex
bounded subset of a uniformly convex Banach space E and T is asymptotically nonexpansive in the in-
termediate sense mapping, then T has a fixed point. It is worth mentioning that the class of mappings
which are asymptotically nonexpansive in the intermediate contains properly the class of asymptoti-
cally nonexpansive mappings.

In 2006, Albert et al. [2] introduced the notion of total asymptotically nonexpansive mappings.

Definition 1.2. ([2]) The mapping T is said to be total asymptotically nonexpansive if

‖Tnx− Tny‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,(1.5)

for all x, y ∈ C and n ≥ 1, where {µn} and {νn} are nonnegative real sequences such that µn → 0
and νn → 0 as n→∞ and a strictly increasing continuous function ψ : [0,∞)→ [0,∞) with ψ(0) = 0.
From the definition, we see that the class of total asymptotically nonexpansive mappings include the
class of asymptotically nonexpansive mappings as a special case; see also [4] for more details.

Remark 1.3. From the above definition, it is clear that each asymptotically nonexpansive mapping is
a total asymptotically nonexpansive mapping with νn = 0, µn = kn − 1 for all n ≥ 1, ψ(t) = t, t ≥ 0.

(1) Mann iteration [12]: Chose x1 ∈ C and define

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,(1.6)

where {αn} is a sequence in (0,1).

(2) Ishikawa iteration [9]: Chose x1 ∈ C and define

yn = (1− βn)xn + βnTxn

xn+1 = (1− αn)xn + αnTyn, n ≥ 1,(1.7)

where {αn} and {βn} are sequences in (0,1).

(3) S-iteration [1]: Chose x1 ∈ C and define

yn = (1− βn)xn + βnTxn

xn+1 = (1− αn)Txn + αnTyn, n ≥ 1,(1.8)

where {αn} and {βn} are sequences in (0,1). Note that (1.8) is independent of (1.7) (and hence (1.6)).
Agarwal, O’Regan and Sahu [1] showed that their process independent of those of Mann and Ishikawa
and converges faster than both of these (see [[1], Proposition 3.1]).

(4) Modified S-iteration [1]: Chose x1 ∈ C and define

yn = (1− βn)xn + βnT
nxn

xn+1 = (1− αn)Tnxn + αnT
nyn, n ≥ 1,(1.9)

where {αn} and {βn} are sequences in (0,1).

(5) Noor iteration [13]: Chose x1 ∈ C and define

zn = (1− γn)xn + γnTxn

yn = (1− βn)xn + βnTzn

xn+1 = (1− αn)xn + αnTyn, n ≥ 1,(1.10)

where {αn}, {βn} and {γn} are sequences in [0,1].
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(6) Modified Noor iteration [21]: Chose x1 ∈ C and define

zn = (1− γn)xn + γnT
nxn

yn = (1− βn)xn + βnT
nzn

xn+1 = (1− αn)xn + αnT
nyn, n ≥ 1,(1.11)

where {αn}, {βn} and {γn} are sequences in [0,1].

Recently, Phuengrattana and Suantai [16] introduced the following iteration scheme.

(7) SP -iteration [16]: Chose x1 ∈ C and define

zn = (1− γn)xn + γnTxn

yn = (1− βn)zn + βnTzn

xn+1 = (1− αn)yn + αnTyn, n ≥ 1,(1.12)

where {αn}, {βn} and {γn} are sequences in [0,1].

Inspired and motivated by [16], we modify iteration scheme (1.12) for three total asymptotically
nonexpansive self mappings of C as follows:

(8) Modified SP -iteration: Chose x1 ∈ C and define

zn = (1− γn)xn + γnT
n
3 xn

yn = (1− βn)zn + βnT
n
2 zn

xn+1 = (1− αn)yn + αnT
n
1 yn, n ≥ 1,(1.13)

where {αn}, {βn} and {γn} are sequences in [0,1].

Remark 1.4. If we take Tn
1 = Tn

2 = Tn
3 = T for all n ≥ 1, then (1.13) reduces to the SP -iteration

scheme (1.12).

The three-step iterative approximation problems were studied extensively by Noor [13, 14], Glowin-
sky and Le Tallec [7], and Haubruge et al [8]. It has been shown [7] that three-step iterative scheme
gives better numerical results than the two step and one step approximate iterations. Thus we conclude
that three step scheme plays an important and significant role in solving various problems, which arise
in pure and applied sciences.

The purpose of this paper is to study modified SP -iteration scheme (1.13) and establish some strong
and weak convergence theorems for total asymptotically nonexpansive mappings in the setting of Ba-
nach spaces. Our results extend and generalize the previous works from the current existing literature.

2. Preliminaries

For the sake of convenience, we restate the following definitions and lemmas.
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of convexity

of E is the function δE(ε) : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1− ‖1

2
(x+ y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].

We recall the following:
Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E, that is, the space of all continuous linear

functionals f on E.

Definition 2.1. (i) Opial condition: The space E has Opial condition [15] if for any sequence {xn} in
E, xn converges to x weakly it follows that lim supn→∞ ‖xn− x‖ < lim supn→∞ ‖xn− y‖ for all y ∈ E
with y 6= x. Examples of Banach spaces satisfying Opial condition are Hilbert spaces and all spaces
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lp(1 < p <∞). On the other hand, Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial condition.

(ii) A mapping T : C → C is said to be demiclosed at zero, if for any sequence {xn} in K, the
condition xn converges weakly to x ∈ C and Txn converges strongly to 0 imply Tx = 0.

(iii) A Banach space E has the Kadec-Klee property [19] if for every sequence {xn} in E, xn → x
weakly and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

Definition 2.2. Condition (A): The mapping T : C → E with F (T ) 6= ∅ is said to satisfy condition
(A) [18] if there is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0, f(t) > 0 for all t ∈ (0,∞)
such that ‖x− Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C, where d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.

Now, we modify Condition (A) for three mappings.

Definition 2.3. Condition (B): Three mappings T1, T2, T3 : C → C are said to satisfy condition (B)
if there is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0, f(t) > 0 for all t ∈ (0,∞) such
that a1 ‖x − T1x‖ + a2 ‖x − T2x‖ + a3 T3x ≥ f(d(x, F )) for all x ∈ C, where d(x, F ) = inf{‖x − p‖ :
p ∈ F = ∩3i=1F (Ti)}, where a1, a2 and a3 are nonnegative real numbers such that a1 + a2 + a3 = 1.

Note that condition (B) reduces to condition (A) when T1 = T2 = T3 = T and hence is more general
than the demicompactness of T1, T2 and T3 [18]. A mapping T : C → C is called: (1) demicompact
if any bounded sequence {xn} in C such that {xn − Txn} converges has a convergent subsequence;
(2) semicompact (or hemicompact) if any bounded sequence {xn} in C such that {xn − Txn} → 0 as
n→∞ has a convergent subsequence. Every demicompact mapping is semicompact but the converse
is not true in general.

Senter and Dotson [18] have approximated fixed points of a nonexpansive mapping T by Mann
iterates whereas Maiti and Ghosh [11] and Tan and Xu [20] have approximated the fixed points using
Ishikawa iterates under the condition (A) of [18]. Tan and Xu [20] pointed out that condition (A) is
weaker than the compactness of C. We shall use condition (B) instead of compactness of C to study
the strong convergence of {xn} defined by iteration scheme (1.13).

Lemma 2.4. (See [20]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of nonnegative numbers
satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn <∞ and
∑∞

n=1 rn <∞, then
(i) limn→∞ αn exists;
(ii) In particular, if {αn}∞n=1 has a subsequence which converges strongly to zero, then limn→∞ αn =

0.

Lemma 2.5. (See [17]) Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for
all n ∈ N. Suppose further that {xn} and {yn} are sequences of E such that lim supn→∞ ‖xn‖ ≤ a,
lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn+(1−tn)yn‖ = a hold for some a ≥ 0. Then limn→∞ ‖xn−yn‖
= 0.

Lemma 2.6. (See [19]) Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee
property. Let {xn} be a bounded sequence in E and p, q ∈ ww(xn) (where ww(xn) denotes the set of
all weak subsequential limits of {xn}). Suppose limn→∞ ‖txn + (1 − t)p − q‖ exists for all t ∈ [0, 1].
Then p = q.

Lemma 2.7. (See [19]) Let K be a nonempty convex subset of a uniformly convex Banach space E.
Then there exists a strictly increasing continuous convex function φ : [0,∞) → [0,∞) with φ(0) = 0
such that for each Lipschitzian mapping T : C → C with the Lipschitz constant L,

‖tTx+ (1− t)Ty − T (tx+ (1− t)y)‖ ≤ Lφ−1
(
‖x− y‖ − 1

L
‖Tx− Ty‖

)
for all x, y ∈ K and all t ∈ [0, 1].
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Proposition 2.8. Let C be a nonempty subset of a Banach space E and T1, T2, T3 : C → C be three
total asymptotically nonexpansive mappings. Then there exist nonnegative real sequences {µn} and
{νn} in [0,∞) with µn → 0 and νn → 0 as n → ∞ and a strictly increasing continuous function
ψ : R+ → R+ with ψ(0) = 0 such that

‖Tn
1 x− Tn

1 y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,(2.1)

‖Tn
2 x− Tn

2 y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,(2.2)

and

‖Tn
3 x− Tn

3 y‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,(2.3)

for all x, y ∈ C and n ≥ 1.

Proof. Since T1, T2, T3 : C → C are three total asymptotically nonexpansive mappings, there exist
nonnegative real sequences {µn1

}, {µn2
}, {µn3

}, {νn1
}, {νn2

} and {νn3
} in [0,∞) with µn1

, µn2
, µn3

→
0 and νn1 , νn2 , νn3 → 0 as n → ∞ and strictly increasing continuous functions ψ1, ψ2, ψ3 : R+ → R+

with ψi(0) = 0 for i = 1, 2, 3 such that

‖Tn
1 x− Tn

1 y‖ ≤ ‖x− y‖+ µn1
ψ1(‖x− y‖) + νn1

,(2.4)

‖Tn
2 x− Tn

2 y‖ ≤ ‖x− y‖+ µn2
ψ2(‖x− y‖) + νn2

,(2.5)

and

‖Tn
3 x− Tn

3 y‖ ≤ ‖x− y‖+ µn3
ψ3(‖x− y‖) + νn3

,(2.6)

for all x, y ∈ C and n ≥ 1.
Setting

µn = max{µn1
, µn2

, µn3
}, νn = max{νn1

, νn2
, νn3

}
and

ψ(r) = max{ψi(r), for i = 1, 2, 3 and for r ≥ 0},
then we get that there exist nonnegative real sequences {µn} and {νn} with µn → 0 and νn → 0 as
n→∞ and strictly increasing continuous function ψ : R+ → R+ with ψ(0) = 0 such that

‖Tn
1 x− Tn

1 y‖ ≤ ‖x− y‖+ µn1
ψ1(‖x− y‖) + νn1

≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

‖Tn
2 x− Tn

2 y‖ ≤ ‖x− y‖+ µn2
ψ2(‖x− y‖) + νn2

≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

and

‖Tn
3 x− Tn

3 y‖ ≤ ‖x− y‖+ µn3
ψ3(‖x− y‖) + νn3

≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

for all x, y ∈ C and n ≥ 1. �

3. Strong Convergence Theorems

In this section, we prove some strong convergence theorems for three total asymptotically nonex-
pansive mappings in the framework of real Banach spaces. First, we shall need the following lemmas.

Lemma 3.1. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by
(1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
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Then limn→∞ ‖xn − p‖ and limn→∞ d(xn, F ) both exist for all p ∈ F .

Proof. Let p ∈ F . Then from (1.13), we have

‖zn − p‖ = ‖(1− γn)xn + γnT
n
3 xn − p‖

≤ (1− γn)‖xn − p‖+ γn‖Tn
3 xn − p‖

≤ (1− γn)‖xn − p‖+ γn[‖xn − p‖
+µnψ(‖xn − p‖) + νn]

≤ (1− γn)‖xn − p‖+ γn[‖xn − p‖
+µnM‖xn − p‖+ νn]

≤ ‖xn − p‖+ µnM‖xn − p‖+ νn

= (1 + µnM)‖xn − p‖+ νn.(3.1)

Again from (1.13) and (3.1), we have

‖yn − p‖ = ‖(1− βn)zn + βnT
n
2 zn − p‖

≤ (1− βn)‖zn − p‖+ βn‖Tn
2 zn − p‖

≤ (1− βn)‖zn − p‖+ βn[‖zn − p‖
+µnψ(‖zn − p‖) + νn]

≤ (1− βn)‖zn − p‖+ βn[‖zn − p‖
+µnM‖zn − p‖+ νn]

≤ ‖zn − p‖+ µnM‖zn − p‖+ νn

= (1 + µnM)‖zn − p‖+ νn

≤ (1 + µnM)[(1 + µnM)‖xn − p‖+ νn] + νn

≤ (1 + µnM)2‖xn − p‖+ (2 + µnM)νn.(3.2)

Finally, using (1.13) and (3.2), we have

‖xn+1 − p‖ = ‖(1− αn)yn + αnT
n
1 yn − p‖

≤ (1− αn)‖yn − p‖+ αn‖Tn
1 yn − p‖

≤ (1− αn)‖yn − p‖+ αn[‖yn − p‖
+µnψ(‖yn − p‖) + νn]

≤ (1− αn)‖yn − p‖+ αn[‖yn − p‖
+µnM‖yn − p‖+ νn]

≤ ‖yn − p‖+ µnM‖yn − p‖+ νn

= (1 + µnM)‖yn − p‖+ νn

≤ (1 + µnM)[(1 + µnM)2‖xn − p‖
+(2 + µnM)νn] + νn

≤ (1 + µnM)3‖xn − p‖+ (1 + µnM)×
(2 + µnM)νn + νn

≤ (1 + µnQ1)‖xn − p‖+ νnQ2(3.3)

for some Q1, Q2 > 0.
For any p ∈ F , from (3.3), we obtain the following inequality

d(xn+1, F ) ≤ (1 + µnQ1)d(xn, F ) + νnQ2.(3.4)

Since
∑∞

n=1 µn < ∞ and
∑∞

n=1 νn < ∞, therefore applying Lemma 2.4(i) in (3.3) and (3.4), we have
limn→∞ ‖xn − p‖ and limn→∞ d(xn, F ) both exist. This completes the proof. �

Lemma 3.2. Let E be a uniformly convex Banach space and C be a nonempty closed convex subset
of E. Let T1, T2, T3 : C → C be three uniformly continuous and total asymptotically nonexpansive
mappings with sequences {µn} and {νn} as defined in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let
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{xn} be the iteration scheme defined by (1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1− δ]
for all n ∈ N and for some δ ∈ (0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
Then limn→∞ ‖xn − Tixn‖ = 0 for i = 1, 2, 3.

Proof. By Lemma 3.1, limn→∞ ‖xn−p‖ exists for all p ∈ F , so we can assume that limn→∞ ‖xn−p‖ = c.
Then c > 0 otherwise there is nothing to prove.

Now (3.1) and (3.2) implies that

lim sup
n→∞

‖zn − p‖ ≤ c,(3.5)

and

lim sup
n→∞

‖yn − p‖ ≤ c.(3.6)

Also

‖Tn
1 yn − p‖ ≤ ‖yn − p‖+ µnψ(‖yn − p‖) + νn

≤ ‖yn − p‖+ µnM‖yn − p‖+ νn

= (1 + µnM)‖yn − p‖+ νn,

and so

lim sup
n→∞

‖Tn
1 yn − p‖ ≤ c.(3.7)

Since

c = ‖xn+1 − p‖ = ‖(1− αn)(yn − p) + αn(Tn
1 yn − p)‖.

It follows from Lemma 2.5 that

lim
n→∞

‖Tn
1 yn − yn‖ = 0.(3.8)

Again note that

‖Tn
3 xn − p‖ ≤ ‖xn − p‖+ µnψ(‖xn − p‖) + νn

≤ ‖xn − p‖+ µnM‖xn − p‖+ νn

= (1 + µnM)‖xn − p‖+ νn,

‖Tn
2 zn − p‖ ≤ ‖zn − p‖+ µnψ(‖zn − p‖) + νn

≤ ‖zn − p‖+ µnM‖zn − p‖+ νn

= (1 + µnM)‖zn − p‖+ νn.

Hence, from above inequalities, we obtain

lim sup
n→∞

‖Tn
3 xn − p‖ ≤ c,(3.9)

and

lim sup
n→∞

‖Tn
2 zn − p‖ ≤ c.(3.10)

Further, note that

‖yn − p‖ ≤ ‖yn − Tn
1 yn‖+ ‖Tn

1 yn − p‖
≤ ‖yn − Tn

1 yn‖+ ‖yn − p‖+ µnψ(‖yn − p‖) + νn

≤ ‖yn − Tn
1 yn‖+ ‖yn − p‖+ µnM‖yn − p‖+ νn

≤ ‖yn − Tn
1 yn‖+ (1 + µnM)‖yn − p‖+ νn.
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It follows from (3.6) and (3.8) that

c ≤ lim inf
n→∞

‖yn − p‖.(3.11)

From (3.6) and (3.11), we get

lim
n→∞

‖yn − p‖ = c.(3.12)

Now, we have

c = lim
n→∞

‖yn − p‖ = ‖(1− βn)(zn − p) + βn(Tn
2 zn − p)‖.(3.13)

It follows from (3.5), (3.10) and Lemma 2.5 that

lim
n→∞

‖Tn
2 zn − zn‖ = 0.(3.14)

Again note that

‖zn − p‖ ≤ ‖zn − Tn
2 zn‖+ ‖Tn

2 zn − p‖
≤ ‖zn − Tn

2 zn‖+ ‖zn − p‖+ µnψ(‖zn − p‖) + νn

≤ ‖zn − Tn
2 zn‖+ ‖zn − p‖+ µnM‖zn − p‖+ νn

≤ ‖zn − Tn
2 zn‖+ (1 + µnM)‖zn − p‖+ νn.

It follows from (3.5) and (3.14) that

c ≤ lim inf
n→∞

‖zn − p‖.(3.15)

From (3.5) and (3.15), we get

lim
n→∞

‖zn − p‖ = c.(3.16)

Now, we see that

c = lim
n→∞

‖zn − p‖ = ‖(1− γn)(xn − p) + γn(Tn
3 xn − p)‖.(3.17)

It follows from Lemma 2.5 that

lim
n→∞

‖Tn
3 xn − xn‖ = 0.(3.18)

Again note that

‖xn − zn‖ = γn‖xn − Tn
3 xn‖

≤ (1− δ)‖xn − Tn
3 xn‖.(3.19)

Using (3.18) in (3.19), we get

lim
n→∞

‖xn − zn‖ = 0.(3.20)

Further, note that

‖xn − yn‖ = βn‖zn − Tn
2 zn‖

≤ (1− δ)‖zn − Tn
2 zn‖.(3.21)

Using (3.14) in (3.21), we get

lim
n→∞

‖xn − yn‖ = 0.(3.22)

Note that

‖xn − Tn
2 zn‖ ≤ ‖xn − zn‖+ ‖zn − Tn

2 zn‖.(3.23)

Using (3.14) and (3.20) in (3.23), we get

lim
n→∞

‖xn − Tn
2 zn‖ = 0.(3.24)
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Hence

‖xn − Tn
2 xn‖ ≤ ‖xn − Tn

2 zn‖+ ‖Tn
2 zn − Tn

2 xn‖
≤ ‖xn − Tn

2 zn‖+ ‖zn − xn‖+ µnψ(‖zn − xn‖) + νn

≤ ‖xn − Tn
2 zn‖+ ‖zn − xn‖+ µnM‖zn − xn‖+ νn

= ‖xn − Tn
2 zn‖+ (1 + µnM)‖zn − xn‖+ νn.(3.25)

Using (3.20) and (3.24) in (3.25), we get

lim
n→∞

‖xn − Tn
2 xn‖ = 0.(3.26)

Again notice that

‖xn − Tn
1 yn‖ ≤ ‖xn − yn‖+ ‖yn − Tn

1 yn‖.(3.27)

Using (3.8) and (3.22) in (3.27), we get

lim
n→∞

‖xn − Tn
1 yn‖ = 0.(3.28)

Hence

‖xn − Tn
1 xn‖ ≤ ‖xn − Tn

1 yn‖+ ‖Tn
1 xn − Tn

1 yn‖
≤ ‖xn − Tn

1 yn‖+ ‖xn − yn‖+ µnψ(‖xn − yn‖) + νn

≤ ‖xn − Tn
1 yn‖+ ‖xn − yn‖+ µnM‖xn − yn‖+ νn

= ‖xn − Tn
1 yn‖+ (1 + µnM)‖xn − yn‖+ νn.(3.29)

Using (3.22) and (3.28) in (3.29), we get

lim
n→∞

‖xn − Tn
1 xn‖ = 0.(3.30)

By the definitions of xn+1, we have

‖xn − xn+1‖ ≤ ‖xn − yn‖+ ‖Tn
1 yn − yn‖.(3.31)

Using (3.8) and (3.22) in (3.31), we get

lim
n→∞

‖xn − xn+1‖ = 0.(3.32)

By (3.30), (3.31) and uniform continuity of T1, we have

‖xn − T1xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1
1 xn+1‖

+‖Tn+1
1 xn+1 − Tn+1

1 xn‖+ ‖Tn+1
1 xn − T1xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1
1 xn+1‖+ ‖xn+1 − xn‖

+µn+1ψ(‖xn+1 − xn‖) + νn+1 + ‖Tn+1
1 xn − T1xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1
1 xn+1‖+ ‖xn+1 − xn‖

+µn+1M‖xn+1 − xn‖+ νn+1 + ‖Tn+1
1 xn − T1xn‖

= (2 + µn+1M)‖xn − xn+1‖+ ‖xn+1 − Tn+1
1 xn+1‖

+‖Tn+1
1 xn − T1xn‖+ νn+1

→ 0 as n→∞.(3.33)

Similarly, we can prove that

‖xn − T2xn‖ = 0 and ‖xn − T3xn‖ = 0.(3.34)

This completes the proof. �

Theorem 3.3. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) is closed. Let {xn} be the iteration scheme defined
by (1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1− δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
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Then {xn} converges strongly to a common fixed point of the mappings T1, T2 and T3 if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Proof. The necessity is obvious. Indeed, if xn → q ∈ F as n→∞, then

d(xn, F ) = inf
q∈F

d(xn, q) ≤ ‖xn − q‖ → 0 (n→∞).

This shows that lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. By Lemma 3.1, we have that limn→∞ d(xn, F )
exists. Further, by assumption lim infn→∞ d(xn, F )
= 0, from (3.4) and Lemma 2.4(ii), we conclude that limn→∞ d(xn, F ) = 0. Next, we show that {xn}
is a Cauchy sequence.

From (3.3), we know that

‖xn+1 − p‖ ≤ (1 + µnQ1)‖xn − p‖+ νnQ2

= (1 + dn)‖xn − p‖+Q2νn,(3.35)

where dn = Q1µn and for some Q1, Q2 > 0. Since
∑∞

n=1 µn <∞, it follows that
∑∞

n=1 dn <∞.

Since 1 + x ≤ ex for all x ≥ 0, therefore from (3.35), we have

‖xn+m − p‖ ≤ (1 + dn+m−1)‖xn+m−1 − p‖+Q2νn+m−1

≤ edn+m−1‖xn+m−1 − p‖+Q2νn+m−1

≤ e[dn+m−1+dn+m−2]‖xn+m−2 − p‖+ edn+m−1Q2νn+m−2

+Q2νn+m−1

≤ e[dn+m−1+dn+m−2]‖xn+m−2 − p‖+ edn+m−1Q2[νn+m−2

+νn+m−1]

...

≤
(
e
∑n+m−1

j=n dj

)
‖xn − p‖+

(
e
∑n+m−1

j=n dj

)
Q2

n+m−1∑
j=n

νj

≤
(
e
∑∞

j=1 dj

)
‖xn − p‖+

(
e
∑∞

j=1 dj

)
Q2

n+m−1∑
j=n

νj

≤ Q3 ‖xn − p‖+Q2Q3

n+m−1∑
j=n

νj(3.36)

for all natural numbers m,n, where Q3 = e
∑∞

j=1 dj <∞.
Now, given ε > 0, since limn→∞ d(xn, F ) = 0 and

∑∞
n=1 νn < ∞, there exists a natural number

n1 > 0 such that for all n ≥ n1, d(xn, F ) < ε
8Q3

and
∑∞

j=1 νj <
ε

4Q2Q3
. So, we get d(xn1

, F ) < ε
4Q3

and
∑∞

j=n1
νj <

ε
4Q2Q3

. This means that there exists a p1 ∈ F such that ‖xn1
− p1‖ ≤ ε

4Q3
. Hence,
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for all integers n ≥ n1 and m ≥ 1, we obtain from (3.36) that

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖xn − p1‖

≤ Q3 ‖xn1
− p1‖+Q2Q3

n+m−1∑
j=n1

νj

+Q3 ‖xn1
− p1‖+Q2Q3

n+m−1∑
j=n1

νj

= 2
(
Q3 ‖xn1

− p1‖+Q2Q3

n+m−1∑
j=n1

νj

)
≤ 2

(
Q3 ‖xn1

− p1‖+Q2Q3

∞∑
j=n1

νj

)
< 2

(
Q3.

ε

4Q3
+Q2Q3.

ε

4Q2Q3

)
= ε.

This proves that {xn} is a Cauchy sequence in C. Thus, the completeness of E implies that {xn} must
be convergent. Assume that limn→∞ xn = z. We will prove that z is a common fixed point of T1, T2
and T3, that is, we will show that z ∈ F = ∩3i=1F (Ti). Since C is closed, therefore z ∈ C. Next, we
show that z ∈ F . Now limn→∞ d(xn, F ) = 0 gives that d(z, F ) = 0. Since F is closed, z ∈ F . Thus, z
is a common fixed point of the mappings T1, T2 and T3. This completes the proof. �

We deduce the following result as corollary from Theorem 3.3 as follows.

Corollary 3.4. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) is closed. Let {xn} be the iteration scheme defined
by (1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1− δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
Then {xn} converges strongly to a point p ∈ F if and only if there exists some subsequence {xnj

}
of {xn} which converges to p ∈ F .

Theorem 3.5. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by
(1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
Then lim infn→∞ d(xn, F ) = lim supn→∞ d(xn, F ) = 0 if {xn} converges to a unique point in F .

Proof. Let p ∈ F . Since {xn} converges to p, limn→∞ d(xn, p) = 0. So, for a given ε > 0, there exists
n1 ∈ N such that

d(xn, p) < ε for all n ≥ n1.
Taking the infimum over p ∈ F (S, T ), we obtain that

d(xn, F ) < ε for all n ≥ n1.

This means that limn→∞ d(xn, F ) = 0. Thus we obtain that

lim inf
n→∞

d(xn, F ) = lim sup
n→∞

d(xn, F ) = 0.

This completes the proof. �

As an application of Theorem 3.3, we establish some strong convergence results as follows.
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Theorem 3.6. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by
(1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
If one of the mappings in {Ti : i = 1, 2, 3} is demicompact, then {xn} converges strongly to a

common fixed point of the mappings T1, T2 and T3.

Proof. Without loss of generality, we can assume that T1 is demicompact. It follows from (3.33) in
Lemma 3.2 that limn→∞ ‖xn − T1xn‖ = 0 and {xn} is bounded, by demicompactness of T1, there
exists a subsequence {xnk

} of {xn} that converges strongly to some q ∈ C as k →∞. From (3.33) in
Lemma 3.2 we have

lim
k→∞

‖xnk
− T1xnk

‖ = ‖q − T1q‖ = 0.

This implies that q ∈ F (T1). Similarly, we can prove that q ∈ F (T2) and q ∈ F (T3). Thus, we obtain
that q ∈ F = ∩3i=1F (Ti). It follows from Lemma 3.1 and Theorem 3.3 that {xn} must converges
strongly to a common fixed point of the mappings T1, T2 and T3. This completes the proof. �

Theorem 3.7. Let E be a real Banach space and C be a nonempty closed convex subset of E. Let
T1, T2, T3 : C → C be three total asymptotically nonexpansive mappings with sequences {µn} and {νn}
as defined in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by
(1.13), where {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1)
and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
If T1, T2 and T3 satisfy condition (B), then {xn} converges strongly to a common fixed point of the

mappings T1, T2 and T3.

Proof. By Lemma 3.2, we know that

lim
n→∞

‖xn − Tixn‖ = 0, for i = 1, 2, 3.(3.37)

From condition (B) and (3.37), we get

f(d(xn, F ) ≤ a1.‖xn − T1xn‖+ a2.‖xn − T2xn‖+ a3.‖xn − T3xn‖ = 0,

that is, f(d(xn, F ) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0,
f(t) > 0 for all t ∈ (0,∞), therefore we obtain

lim
n→∞

d(xn, F ) = 0.

Now all the conditions of Theorem 3.3 are satisfied, therefore by its conclusion {xn} converges strongly
to a common fixed point of the mappings T1, T2 and T3. This completes the proof. �

4. Weak Convergence Theorems

In this section, we prove some weak convergence theorems of iteration scheme (1.13) for three total
asymptotically nonexpansive mappings in a uniformly convex Banach space such that either it satisfies
the Opial property or its dual space has the Kadec-Klee property (KK-property).

Theorem 4.1. Let E be a uniformly convex Banach space satisfying Opial’s condition and C be a
nonempty closed convex subset of E. Let T1, T2, T3 : C → C be three uniformly continuous and total
asymptotically nonexpansive mappings with sequences {µn} and {νn} as defined in proposition 2.8 and
F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by (1.13), where {αn}, {βn} and {γn}
are sequences in [δ, 1−δ] for all n ∈ N and for some δ ∈ (0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
If the mappings I − Ti for all i = 1, 2, 3, where I denotes the identity mapping, are demiclosed at

zero, then {xn} converges weakly to a common fixed point of the mappings T1, T2 and T3.
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Proof. Let q ∈ F , from Lemma 3.1 the sequence {‖xn − q‖} is convergent and hence bounded. Since
E is uniformly convex, every bounded subset of E is weakly compact. Thus there exists a subsequence
{xnk

} ⊂ {xn} such that {xnk
} converges weakly to q∗ ∈ C. From Lemma 3.2, we have

lim
k→∞

‖xnk
− T1xnk

‖ = 0, lim
k→∞

‖xnk
− T2xnk

‖ = 0, lim
k→∞

‖xnk
− T3xnk

‖ = 0.

Since the mappings I − Ti for all i = 1, 2, 3 are demiclosed at zero, therefore Tiq
∗ = q∗ for all

i = 1, 2, 3, which means q∗ ∈ F . Finally, let us prove that {xn} converges weakly to q∗. Suppose on
contrary that there is a subsequence {xnj

} ⊂ {xn} such that {xnj
} converges weakly to p∗ ∈ C and

q∗ 6= p∗. Then by the same method as given above, we can also prove that p∗ ∈ F . From Lemma 3.1
the limits limn→∞ ‖xn − q∗‖ and limn→∞ ‖xn − p∗‖ exist. By virtue of the Opial condition of E, we
obtain

lim
n→∞

‖xn − q∗‖ = lim
nk→∞

‖xnk
− q∗‖

< lim
nk→∞

‖xnk
− p∗‖

= lim
n→∞

‖xn − p∗‖

= lim
nj→∞

‖xnj
− p∗‖

< lim
nj→∞

‖xnj − q∗‖

= lim
n→∞

‖xn − q∗‖

which is a contradiction, so q∗ = p∗. Thus {xn} converges weakly to a common fixed point of the
mappings T1, T2 and T3. This completes the proof. �

Lemma 4.2. Under the conditions of Lemma 3.2 and for any p, q ∈ F , limn→∞ ‖txn + (1− t)p− q‖
exists for all t ∈ [0, 1].

Proof. By Lemma 3.1, limn→∞ ‖xn − z‖ exists for all z ∈ F and therefore {xn} is bounded. Letting

an(t) = ‖txn + (1− t)p− q‖

for all t ∈ [0, 1]. Then limn→∞ an(0) = ‖p − q‖ and limn→∞ an(1) = ‖xn − q‖ exists by Lemma 3.1.
It, therefore, remains to prove the Lemma 4.2 for t ∈ (0, 1). For all x ∈ C, we define the mapping
Wn : C → C by:

Un(x) = (1− γn)x+ γnT
n
3 x

Vn(x) = (1− βn)Un(x) + βnT
n
2 Un(x)

and

Wn(x) = (1− αn)Vn(x) + αnT
n
1 Vn(x)).

Then it follows that zn = Unxn, yn = Vnxn, xn+1 = Wnxn and Wnp = p for all p ∈ F . Now from
(3.1), (3.2) and (3.3) of Lemma 3.1, we see that

‖Un(x)− Un(y)‖ ≤ (1 + µnM)‖x− y‖+ νn

‖Vn(x)− Vn(y)‖ ≤ (1 + µnM)2‖x− y‖+ (2 + µnM)νn

and

‖Wn(x)−Wn(y)‖ ≤ (1 + µnQ1)‖x− y‖+Q2νn

= Kn ‖x− y‖+Q2νn,(4.1)

for some Q1, Q2 > 0 and for all x, y ∈ C, where Kn = 1 + µnQ1 with
∑∞

n=1 νn < ∞ and Kn → 1 as
n→∞. Setting

Hn,m = Wn+m−1Wn+m−2 . . .Wn, m ≥ 1(4.2)
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and

bn,m = ‖Hn,m(txn + (1− t)p)− (tHn,mxn + (1− t)Hn,mq)‖.
From (4.1) and (4.2), we have

‖Hn,m(x)−Hn,m(y)‖ = ‖Wn+m−1Wn+m−2 . . .Wn(x)−Wn+m−1Wn+m−2 . . .Wn(y)‖
≤ Kn+m−1‖Wn+m−2 . . .Wn(x)−Wn+m−2 . . .Wn(y)‖

+Q2νn+m−1

≤ Kn+m−1Kn+m−2‖Wn+m−3 . . .Wn(x)−Wn+m−3 . . .Wn(y)‖
+Q2νn+m−1 +Q2νn+m−2

...

≤
( n+m−1∏

j=n

Kj

)
‖x− y‖+Q2

n+m−1∑
j=n

νj

= Mn‖x− y‖+Q2

n+m−1∑
j=n

νj(4.3)

for all x, y ∈ C, where Mn =
∏n+m−1

j=n Kj and Hn,mxn = xn+m, Hn,mp = p for all p ∈ F . Thus

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ bn,m + ‖Hn,m(txn + (1− t)p)− q‖

≤ bn,m +Mnan(t) +Q2

n+m−1∑
j=n

νj

≤ bn,m +Mnan(t) +Q2

∞∑
j=1

νj .(4.4)

By using [ [5], Theorem 2.3], we have

bn,m ≤ ϕ−1(‖xn − u‖ − ‖Hn,mxn −Hn,mu‖)
≤ ϕ−1(‖xn − u‖ − ‖xn+m − u+ u−Hn,mu‖)
≤ ϕ−1(‖xn − u‖ − (‖xn+m − u‖ − ‖Hn,mu− u‖))

and so the sequence {bn,m} converges uniformly to 0, i.e., bn,m → 0 as n→∞. Since limn→∞Mn = 1,
Q2 > 0 and νj → 0 as j →∞, therefore from (4.4), we have

lim sup
n→∞

an(t) ≤ lim
n,m→∞

bn,m + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is, limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. This
completes the proof. �

Theorem 4.3. Let E be a real uniformly convex Banach space such that its dual E∗ has the Kadec-Klee
property and C be a nonempty closed convex subset of E. Let T1, T2, T3 : C → C be three uniformly
continuous and total asymptotically nonexpansive mappings with sequences {µn} and {νn} as defined
in proposition 2.8 and F = ∩3i=1F (Ti) 6= ∅. Let {xn} be the iteration scheme defined by (1.13), where
{αn}, {βn} and {γn} are sequences in [δ, 1− δ] for all n ∈ N and for some δ ∈ (0, 1) and the following
conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.
If the mappings I − Ti for all i = 1, 2, 3, where I denotes the identity mapping, are demiclosed at

zero, then {xn} converges weakly to a common fixed point of the mappings T1, T2 and T3.

Proof. By Lemma 3.1, {xn} is bounded and since E is reflexive, there exists a subsequence {xnj
} of

{xn} which converges weakly to some p ∈ C. By Lemma 3.2, we have

lim
j→∞

‖xnj
− Tixnj

‖ = 0 for all i = 1, 2, 3.
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Since by hypothesis the mappings I − Ti for all i = 1, 2, 3 are demiclosed at zero, therefore Tip = p for
all i = 1, 2, 3, which means p ∈ F . Now, we show that {xn} converges weakly to p. Suppose {xni

} is
another subsequence of {xn} converges weakly to some q ∈ C. By the same method as above, we have
q ∈ F and p, q ∈ ww(xn). By Lemma 4.2, the limit

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1] and so p = q by Lemma 2.6. Thus, the sequence {xn} converges weakly to p ∈ F .
This completes the proof. �

Example 4.4. Let E be the real line with the usual norm |.|, C = [0,∞). Assume that T1(x) = x,
T2(x) = x

3 and T3(x) = sinx for all x ∈ C. Let φ be the strictly increasing continuous function
such that φ : R+ → R+ with φ(0) = 0. Let {µn}n≥1 and {νn}n≥1 be two nonnegative real sequences
defined by µn = 1

n2 and νn = 1
n3 for all n ≥ 1 with µn → 0 and νn → 0 as n → ∞. Then

T1, T2 and T3 are total asymptotically nonexpansive mappings with common fixed point 0, that is,
F = F (T1) ∩ F (T2) ∩ T3 = {0}.

5. Conclusion

In this paper, we establish some weak and strong convergence theorems for modified SP iteration
scheme for three total asymptotically nonexpansive mappings in the framework of real Banach spaces.
The results presented in this paper extend and generalize several results from the current existing
literature to the case of more general class of mappings, spaces and iteration schemes considered in
this paper.
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