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ps-ro FUZZY OPEN(CLOSED) FUNCTIONS AND ps-ro FUZZY

SEMI-HOMEOMORPHISM

PANKAJ CHETTRI∗, SUBODH GURUNG AND KHUSBOO KATWAL

Abstract. The aim of this paper is to introduce and characterize some new

class of functions in a fuzzy topological space termed as ps-ro fuzzy open(closed)

functions, ps-ro fuzzy pre semiopen functions and ps-ro fuzzy semi-homeomorphism.
The interrelation among these concepts and also their relations with the paral-

lel existing concepts are established. It is also shown with the help of examples

that these newly introduced concepts are independent of the well known ex-
isting allied concepts.

1. Introduction and Preliminaries

The concept of fuzzy open (closed) functions were introduced by C.L. Chang [1]
and their characterizations were studied by S.R. Malghan and S.S. Benchalli [9].
In [4], a new idea of fuzzy topology termed as pseudo regular open fuzzy topology
(in short, ps-ro fuzzy topology) was introduced. The members of this topology are
named as ps-ro open fuzzy sets and their complement as ps-ro closed fuzzy sets.
Interms of above fuzzy sets, a new class of functions called ps-ro fuzzy continu-
ous functions were introduced and explored in [5], [6]. In [2], a notion of ps-ro
semiopen(closed)fuzzy sets, ps-ro fuzzy semiopen functions and ps-ro fuzzy semi-
continuous functions were introduced. Also, in [3], a new idea of ps-ro fuzzy irres-
olute function was initiated and studied. The concept of fuzzy pre semiopen and
fuzzy semi-homeomorphism were introduced by Yalvac [10]. In this paper, a new
class of functions called ps-ro fuzzy open(closed) functions are defined and their
different characterizations are studied. Interestingly, it is shown that the concept
of ps-ro fuzzy open (closed) functions are independent of the well known concept of
fuzzy open (closed) functions. Also, introducing a new class of functions called ps-ro
fuzzy pre semiopen function and ps-ro fuzzy semi-homeomorphism, their different
properties and interrelations with the existing allied concepts has been established.

To make this paper self content, we state a few known definitions and results
here that we require subsequently.
Let X be a non-empty set and I be the closed interval [0, 1]. A fuzzy set µ on X is
a function on X into I. If f is a fuction from X into a set Y and A, B are fuzzy sets
on X and Y respectively, then 1− A (called complement of A), f(A) and f−1(B)
are fuzzy sets on X, Y and X respectively, defined by (1−A)(x) = 1−A(x)∀x ∈ X,
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f(A)(y) =

{
supz∈f−1(y)A(z), whenf−1(y) 6= ∅
0, otherwise

and f−1(B)(x) = B(f(x)) [11].

A collection τ ⊆ IX is called a fuzzy topology on X if (i) 0, 1 ∈ τ (ii) ∀ µ1, µ2, ..., µn ∈
τ ⇒ ∧n

i=1
µi ∈ τ (iii) µα ∈ τ , ∀ α ∈ Λ (where Λ is an index set) ⇒ ∨µα ∈ τ . Then,

(X, τ) is called a fts [1]. Let f be a function from a set X into a set Y . Then the
following holds:
(i) f−1(1−B) = 1− f−1(B), for any fuzzy set B on Y .
(ii) A1 ≤ A2 ⇒ f(A1) ≤ f(A2), for any fuzzy sets A1 and A2 on X. Also,
B1 ≤ B2 ⇒ f−1(B1) ≤ f−1(B2), for any fuzzy sets B1 and B2 on Y .
(iii) ff−1(B) ≤ B, for any fuzzy set B on Y and the equality holds if f is onto. Also,
f−1f(A) ≥ A, for any fuzzy set A on X, equality holds if f is one-to-one [1]. For a
fuzzy set µ in X, the set µα = {x ∈ X : µ(x) > α} is called the strong α-level set of
X. In a fts (X, τ), the family iα(τ) = {µα : µ ∈ τ} for all α ∈ I1 = [0, 1) forms a
topology on X called strong α-level topology on X [8], [7]. A fuzzy open(closed) set
µ on a fts (X, τ) is said to be pseudo regular open(closed) fuzzy set if the strong α-
level set µα is regular open(closed) in (X, iα(τ)),∀α ∈ I1. The family of all pseudo
regular open fuzzy sets form a fuzzy topology on X called ps-ro fuzzy topology on
X,members of which are called ps-ro open fuzzy sets and their complements as ps-ro
closed fuzzy sets on (X, τ) [4]. A function f from fts (X, τ1) to fts (Y, τ2) is pseudo
fuzzy ro continuous (in short, ps-ro fuzzy continuous) if f−1(U) is ps-ro open fuzzy
set on X for each pseudo regular open fuzzy set U on Y [5]. Equivalently, f is ps-ro
fuzzy continuous if f−1(A) is ps-ro open fuzzy set on X for each ps-ro open fuzzy
set A on Y [6]. A fuzzy set A on a fts (X, τ) is said to be ps-ro semiopen fuzzy set
if there exist a ps-ro open fuzzy set U such that U ≤ A ≤ ps-cl(U), where ps-cl(U)
is ps-closure of U and the complement of A is called ps-ro semiclosed fuzzy set [2].
The fuzzy operators termed as fuzzy ps-closure(interior), ps-semiclosure(interior)
are denoted by ps-cl(ps-int) and ps-scl(ps-sint) respectively. ps-int(ps-sint) of a
fuzzy subset A the union of all ps-ro open (ps-ro semiopen) fuzzy set onX contained
in A and ps-cl(ps-scl) of a fuzzy subset A the intersection of all ps-ro closed (ps-ro
semiclosed) fuzzy set on X containing A [5], [6], [2]. A function f from a fts (X, τ1)
to another fts (Y, τ2) is called ps-ro fuzzy semiopen function [2] if f(A) is ps-ro
semiopen fuzzy set on Y for each ps-ro open fuzzy set A on X. The function f is
called ps-ro fuzzy irresolute [3] if f−1(U) is ps-ro semiopen fuzzy set on X for each
ps-ro semiopen fuzzy set U on Y . If a function f be bijective, then f is ps-ro fuzzy
irresolute function iff for every fuzzy set A of X, ps-sint(f(A)) ≤ (ps-sint(A))[3].
For a function f : X → Y , the following are equivalent:
(a)f is ps-ro fuzzy continuous.
(b) Inverse image of each ps-ro open fuzzy sets on Y under f is ps-ro open on X.
(c)For all fuzzy set A on X, f(ps-cl(A)) ≤ ps-cl(f(A)).
(d) For all fuzzy set B on Y , ps-cl(f−1(B)) ≤ f−1(ps-cl(B)) [6].

2. ps-ro fuzzy open and closed functions

Definition 2.1. Let (X, τ1) and (Y, τ2) be two fts. A function f : (X, τ1)→ (Y, τ2)
is said to be ps-ro fuzzy open(closed) if f(A) is ps-ro open(closed) fuzzy set on Y
for each ps-ro open(closed) fuzzy set A on X.

Theorem 2.1. If f is ps-ro continuous and ps-ro fuzzy open and A be any ps-ro
semiopen fuzzy set on X then f(A) is ps-ro semiopen fuzzy set on Y .
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Proof: Let A be any ps-ro semiopen fuzzy set on X, there exist ps-ro open fuzzy
set U on X such that U ≤ A ≤ ps-cl(U). So, f(U) ≤ f(A) ≤ f(ps-cl(U)) ≤ ps-
cl(f(U)) and f(U) is ps-ro open fuzzy set. Hence, f(A) is ps-ro semiopen fuzzy set
on Y .

Example 2.1. Let X = {a, b, c} and Y = {x, y, z}. Let A and B be two fuzzy
sets on X defined by A(a) = 0.1, A(b) = 0.2, A(c) = 0.2 and B(x) = 0.3 ∀x ∈
X. Let C,D and E be fuzzy set on Y defined by C(t) = 0.3 ∀t ∈ Y , D(x) =
0.3, D(y) = 0.3, D(z) = 0.4 and E(t) = 0.4 ∀t ∈ Y . Clearly, τ1 = {0, 1, A,B}
and τ2 = {0, 1, C,D,E} are fuzzy topologies on X and Y respectively. Clearly, for
0.1 ≤ α < 0.2, A is not pseudo regular open fuzzy set on (X, τ1). Therefore, ps-ro
fuzzy topology on X is {0, 1, B}. Again, D is not pseudo regular open fuzzy set
for 0.3 ≤ α < 0.4 on (Y, τ2). So, ps-ro fuzzy topology on Y is {0, 1, C,E}. Define
a function f from (X, τ1) to (Y, τ2) by f(a) = x, f(b) = y and f(c) = y. B is ps-ro
open fuzzy set on Y and f(B)(t) = 0.3 = C(t) ∀ t ∈ Y . Therefore, f(B) is ps-ro
open fuzzy set on Y . Also, F (0) = 0, f(1) = 1. Hence, f is ps-ro fuzzy open.
Now, f(A)(x) = 0.1, f(A)(y) = 0.2, f(A)(z) = 0. Clearly, f(A) is not open fuzzy
set on Y . Hence, f is not fuzzy open function. Again, here f is ps-ro fuzzy closed
as f(1 − B)(t) = 0.7 = (1 − C)(t), ∀t ∈ Y is ps-ro closed fuzzy set on Y but f
is not fuzzy closed function since f(1 − A)(t) = 0.9, 0.8 and 0 for t = x, y and z
respectively, is not fuzzy closed set on Y .

Remark 2.1. Let f be fuzzy open (closed) from a fts (X, τ1) to a fts (Y, τ2)
and A be a open (closed) fuzzy set on X. Then, f(A) is fuzzy open (closed) on
Y which is not necessarily ps-ro open (closed) fuzzy set on Y , for an example in
Example( 2.1), A is fuzzy open but not ps-ro fuzzy opnen on X. Hence, a fuzzy
open (closed) function may not be ps-ro fuzzy open (closed). In the view of this
and Example ( 2.1) we conclude that ps-ro fuzzy open (closed) functions and fuzzy
open (closed) functions do not imply each other.

Theorem 2.2. Let f be a function from a fts (X, τ1) to a fts (Y, τ2). Then the
following statements are equivalent:
(a)f is ps-ro fuzzy open.
(b)f(ps-int(A)) ≤ ps-int(f(A)), for each fuzzy set A on X.
(c)f−1(ps-cl(B)) ≤ ps-cl(f−1(B)), for each fuzzy set B on Y .
(d)ps-int(f−1(B)) ≤ f−1(ps-int(B)), for each fuzzy set B on Y .
Proof: (a) ⇒ (b) Let f be ps-ro fuzzy open function. Let A be any fuzzy set on
X. f(ps-int(A)) is ps-ro open fuzzy set on Y . Now, f(ps-int(A)) = ps-int(f(ps-
int(A))) ≤ ps-int(f(A)).
(b) ⇒ (a) Let A be a ps-ro open fuzzy set on X. Then A = ps-int(A). So,
f(A) = f(ps-int(A)) ≤ ps-int(f(A)) ≤ f(A). So, f(A) = ps-int(f(A)), proving
f(A) is ps-ro open fuzzy set on Y . Thus, f is ps-ro fuzzy open.
(b)⇒ (c) Let B be any fuzzy sets on Y . Let A = f−1(1−B) be a fuzzy set on X. We
have f(ps-int(A)) ≤ ps-int(f(A)) ≤ ps-int(1 − B). Hence, ps-int(f−1(1 − B)) ≤
f−1(ps-int(1 − B)). Then, f−1(ps-cl(B)) = 1 − f−1(ps-int(1 − B)) ≤ 1 − ps-
int(f−1(1−B)) = ps-cl(1− f−1(1−B)) = ps-cl(f−1(B)). So, f−1(ps-cl(B)) ≤ ps-
cl(f−1(B))
(c) ⇒ (d) Let B be any fuzzy set on Y and C = 1 − B. Then, C is also fuzzy
set on Y . We have f−1(ps-cl(C)) ≤ ps-cl(f−1(C)). So, ps-int(f−1(B)) = 1 − ps-
cl(f−1(C)) ≤ 1 − f−1(ps-cl(C)) = f−1(1 − ps-cl(C)) = f−1(ps-int(1 − C)) =
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f−1(ps-int(B)). Hence, ps-int(f−1(B)) ≤ f−1(ps-int(B)).
(d) ⇒ (b) Let A be any fuzzy set on X and let B = f(A). Then we have ps-
int(A) ≤ ps-int(f−1f(A)) = ps-int(f−1(B)) ≤ f−1(ps-int(B)). So, f(ps-int(A)) ≤
f(f−1(ps-int(B))) ≤ ps-int(B) = ps-int(f(A)). Hence, f(ps-int(A)) ≤ ps-int(f(A)).

Corollary 2.1. If f : (X, τ1) → (Y, τ2) is a ps-ro fuzzy open and ps-ro fuzzy
continuous then f−1(ps-cl(B)) = ps-cl(f−1(B)), for each fuzzy set B on Y .
Proof: Straightforward and hence omitted.

Theorem 2.3. Let f be a function from a fts (X, τ1) to a fts (Y, τ2). Then f
is ps-ro fuzzy closed (open) iff for each fuzzy set A on Y and for any ps-ro open
(closed) fuzzy set B on X such that f−1(A) ≤ B, there is a ps-ro open(closed)
fuzzy set C on Y such that A ≤ C and f−1(C) ≤ B.
Proof: Let f be ps-ro fuzzy closed(open). Let A be any fuzzy set on Y and
let B be a ps-ro open(closed) fuzzy set on X such that f−1(A) ≤ B. Let C =
1 − f(1 − B). Then C is a ps-ro open(closed) fuzzy set on X, since f is ps-ro
fuzzy closed(open) and 1 − B is ps-ro closed(open) fuzzy set on X, f(1 − B) is
ps-ro closed(open) fuzzy set on Y . Hence, 1−B ≤ 1− f−1(A) = f−1(1− A). So,
f(1 − B) ≤ f(f−1(1 − A)) ≤ 1 − A. Hence, A ≤ 1 − f(1 − B) = C. Further,
f−1(C) = f−1(1− f(1−B)) = 1− f−1(f(1−B)) ≤ 1− (1−B) = B. Conversely,
let f satisfies the given condition. Let B be a ps-ro closed(open) fuzzy set on X.
Then, A = 1 − B is ps-ro open(closed) fuzzy set on X. So, f−1(1 − f(B)) =
1− f−1(f(B)) ≤ 1−B = A. By hypothesis, there is a ps-ro open(closed) fuzzy set
C on Y such that 1− f(B) ≤ C and f−1(C) ≤ A = 1−B. Hence, 1− C ≤ f(B).
Also, B ≤ 1 − f−1(C) = f−1(1 − C). So, f(B) ≤ f(f−1(1 − C)) ≤ 1 − C. Thus,
we have f(B) = 1 − C, which is a ps-ro closed(open) fuzzy set on Y . Hence, f is
ps-ro fuzzy closed(open).

Theorem 2.4. Let f be a function from a fts (X, τ1) to a fts (Y, τ2). Then f is
ps-ro fuzzy closed iff for each fuzzy set A on X, ps-cl(f(A)) ≤ f(ps-cl(A)).
Proof: Let f be ps-ro fuzzy closed and A be any fuzzy set on X. Since ps-cl(A)
is ps-ro closed fuzzy set on X and f is ps-ro fuzzy closed, f(ps-cl(A)) is ps-ro
closed fuzzy set on Y . As, A ≤ ps-cl(A), f(A) ≤ f(ps-cl(A)). So, ps-cl(f(A)) ≤ ps-
cl(f(ps-cl(A))) = f(ps-cl(A)). Conversely, let A be any ps-ro closed fuzzy set on
X. Then f(A) = f(ps-cl(A)) ≥ ps-cl(f(A)). As, f(A) ≤ ps-cl(f(A)), f(A) = ps-
cl(f(A)), i.e. f(A) is ps-ro closed fuzzy set on Y . Hence, f is ps-ro fuzzy closed.

Theorem 2.5. For a bijective function f from a fts (X, τ1) to a fts (Y, τ2), the
following are equivalent.
(a)f−1 : Y → X is ps-ro fuzzy continuous.
(b) f is ps-ro fuzzy open.
(c) f is ps-ro fuzzy closed.
Proof: (a) ⇒ (b) Let f−1 be ps-ro fuzzy continuous. Let U be a ps-ro open fuzzy
set on X. Since, f−1 is ps-ro fuzzy continuous, (f−1)−1(U) = f(U) is ps-ro open
fuzzy set on Y . Hence, f is ps-ro fuzzy open.
(b)⇒ (c) Let f be bijective and ps-ro fuzzy open. Let V be a ps-ro closed fuzzy set
on X. Then, 1− V = A is ps-ro open fuzzy set on X. Since f is ps-ro fuzzy open
and bijective, f(A) = f(1−V ) = 1−f(V ) is ps-ro open fuzzy set on Y . Therefore,
f(V ) is ps-ro closed fuzzy set on Y . Hence, f is ps-ro fuzzy closed.
(c)⇒ (a) Let f be ps-ro fuzzy closed and bijective. Let V be a ps-ro closed fuzzy
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set on X. Then f(V ) is ps-ro closed fuzzy set on Y . But f(V ) = (f−1)−1(V ) and
hence f−1 is ps-ro fuzzy continuous.

3. ps-ro fuzzy semi-homeomorphism

Definition 3.1. Let (X, τ1) and (Y, τ2) be two fts and f : (X, τ1)→ (Y, τ2). Then
f is said to be
(i) ps-ro fuzzy pre semiopen function if f(A) is ps-ro semiopen fuzzy set on Y , for
each ps-ro semiopen fuzzy set A on X.
(ii) ps-ro fuzzy homeomorphism if f is bijective, ps-ro fuzzy continuous and ps-ro
fuzzy open function.
(iii) ps-ro fuzzy semi-homeomorphism if f is bijective, ps-ro fuzzy pre semiopen
and ps-ro fuzzy irresolute.

Theorem 3.1. Let (X, τ1) and (Y, τ2) be two fts. If f : (X, τ1)→ (Y, τ2) is ps-ro
fuzzy continuous and ps-ro fuzzy open, then f is ps-ro fuzzy irresolute.
Proof: Let f be ps-ro fuzzy continuous and ps-ro fuzzy open function. Let U be
a ps-ro semiopen fuzzy set on Y . Then ∃ ps-ro open fuzzy set V on Y such that
V ≤ U ≤ ps-cl(V ). Now, f−1(V ) is ps-ro open fuzzy on X. Hence, f−1(V ) ≤
f−1(U) ≤ f−1(ps-cl(V )). f is ps-ro fuzzy open and V is fuzzy set on Y , f−1(ps-
cl(V )) ≤ ps-cl(f−1(V )). So, f−1(V ) ≤ f−1(U) ≤ ps-cl(f−1(V )). Thus, f−1(U) is
ps-ro semiopen fuzzy set on X and hence f is ps-ro fuzzy irresolute.

Theorem 3.2. Let (X, τ1) and (Y, τ2) be two fts. If f : (X, τ1)→ (Y, τ2) is ps-ro
fuzzy continuous and ps-ro fuzzy open, then f is ps-ro fuzzy pre semiopen.
Proof: Let f be ps-ro fuzzy continuous and ps-ro fuzzy open function. Let A be
a ps-ro semiopen fuzzy set on X. Then ∃ ps-ro open fuzzy set V on X such that
V ≤ A ≤ ps-cl(V ). Now, since f is ps-ro fuzzy continuous and V is a fuzzy set on
X, f(ps-cl(V )) ≤ ps-cl(f(V )). Hence f(V ) ≤ f(A) ≤ f(ps-cl(V )) ≤ ps-cl(f(V )).
Also, f(V ) is ps-ro open fuzzy set on Y . So, f(A) is ps-ro semiopen fuzzy set on
Y . Thus, f is ps-ro fuzzy pre semiopen function.

Remark 3.1. From Theorem( 3.1) and ( 3.2) it follows that ps-ro fuzzy homeo-
morphism implies ps-ro fuzzy semi-homeomorphism. However, the converse is not
true follows from the example below:

Example 3.1. Let X = {a, b, c} and Y = {x, y, z}. Let A and B be two fuzzy
sets on X defined by A(a) = 0.2, A(b) = 0.2, A(c) = 0.3 and B(x) = 0.2 ∀x ∈ X.
Let C,D and E be fuzzy set on Y defined by C(x) = 0.2, C(y) = 0.3, C(z) =
0.3, D(x) = 0.4, D(y) = 0.4, D(z) = 0.5 and E(t) = 0.3 ∀t ∈ Y . Clearly,
τ1 = {0, 1, A,B} and τ2 = {0, 1, C,D,E} are fuzzy topologies on X and Y re-
spectively. In the corresponding topological space (X, iα(τ1)), ∀α ∈ I1 = [0, 1),

the open sets are φ,X,Aα and Bα, where Aα =


X, for α < 0.2

{c}, for 0.2 ≤ α < 0.3

φ, for α ≥ 0.3

and

Bα =

{
X, for α < 0.2

φ, for α ≥ 0.2

For 0.2 ≤ α < 0.3, the closed sets on (X, iα(τ1)) are φ,X and X − {c}. Therefore,
int(cl(Aα)) = X. So, Aα is not regular open on (X, iα(τ1)) for 0.2 ≤ α < 0.3.
Thus, A is not pseudo regular open fuzzy set on (X, τ1). Clearly, Bα is regular
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open on (X, iα(τ1)), ∀α ∈ I1. Hence B is pseudo regular open fuzzy set on (X, τ1).
Therefore, ps-ro fuzzy topology on X is {0, 1, B}. Similarly, it can be seen that
C and D are not pseudo regular open fuzzy set on (Y, τ2) and thus, ps-ro fuzzy
topology on Y is {0, 1, E}. Define a function f from the fts (X, τ1) to the fts
(Y, τ2) by f(a) = x, f(b) = y and f(c) = y. Then, f−1(0) = 0, f−1(1) = 1 and
f−1(E)(t) = 0.3 ∀t ∈ X. Since f−1(E) is not ps-ro open fuzzy set on X, f is not
ps-ro fuzzy continuous. Now, ps-cl(E) = 1 − E where, (1 − E)(t) = 0.7 ∀t ∈ Y .
So, E ≤ D ≤ ps-cl(E). Thus, D is ps-ro semiopen fuzzy set on Y . We have,
f−1(D)(t) = 0.4 ∀t ∈ X and ps-cl(B) = 1−B where, (1−B)(t) = 0.8 ∀t ∈ X. So,
B ≤ f−1(D) ≤ ps-cl(B). So, f−1(D) is ps-ro semiopen fuzzy set on X. Again, E
is ps-ro open and hence ps-ro semiopen fuzzy set on Y . f−1(E) is ps-ro semiopen
fuzzy set on X, as B ≤ f−1(E) ≤ ps-cl(B). Hence, f−1(U) is ps-ro semiopen
fuzzy set on X, for every ps-ro semiopen fuzzy set U on Y . Thus, f is ps-ro fuzzy
irresolute function.

Theorem 3.3. Let (X, τ1), (Y, τ2) and (Z, τ3) be three fts and f : (X, τ1)→ (Y, τ2),
g : (Y, τ2)→ (Z, τ3). Then the following statements are valid:
(a) If f and g are ps-ro fuzzy pre semiopen functions then g ◦ f is so.
(b) If f is ps-ro fuzzy semiopen function and g is ps-ro fuzzy pre semiopen function
then g ◦ f is a ps-ro fuzzy semiopen function.
Proof:(a) Let U be ps-ro semiopen fuzzy set on X. Since, f and g are ps-ro fuzzy
pre semiopen functions, f(U) and hence g(f(U)) are ps-ro semiopen fuzzy sets on
Y and Z respectively. Hence, (g ◦ f)(U) = g(f(U)) is ps-ro semiopen fuzzy set on
Z for each ps-ro semiopen fuzzy set U on X. Thus, g ◦ f is ps-ro fuzzy semiopen
function.
(b) Let U be a ps-ro open fuzzy set on X. Since, f and g are both ps-ro fuzzy
semiopen functions, g(f(U)) is ps-ro semiopen fuzzy set on Z. Thus, g ◦ f is ps-ro
fuzzy semiopen function.

Theorem 3.4. Let a function f from a fts (X, τ1) to a fts (Y, τ2) be bijective. f
is ps-ro fuzzy semi-homeomorphism iff f and f−1 are both ps-ro fuzzy irresolute
functions and ps-ro fuzzy pre semiopen functions.
Proof: Let f be ps-ro fuzzy semi-homeomorphism. Now, since f is bijective, f−1

exist. Let f−1 = g. As, f is ps-ro fuzzy irresolute, for each ps-ro semiopen fuzzy
set A on Y , f−1(A) is ps-ro semiopen fuzzy set on X. But, f−1 = g, so, g(A) is
ps-ro semiopen fuzzy set on X, for each ps-ro semiopen fuzzy set A on Y . Thus,
g is ps-ro fuzzy pre semiopen. Again, f is ps-ro fuzzy pre semiopen. Therefore,
for each ps-ro semiopen fuzzy set B on X, f(B) is ps-ro semiopen fuzzy set on Y .
But, f−1 = g, so, f = g−1 and g−1(B) is ps-ro semiopen fuzzy set on Y , for each
ps-ro semiopen fuzzy set B on X. Hence, g is ps-ro fuzzy irresolute. Conversely,
straightforward.

Theorem 3.5. A bijective function f from a fts (X, τ1) to a fts (Y, τ2) is ps-
ro fuzzy semi-homeomorphism iff for each fuzzy set A on X, f(ps-scl(A)) = ps-
scl(f(A)).
Proof: Let f be ps-ro fuzzy semi-homeomorphism. Then, f is ps-ro fuzzy irresolute.
So, for each fuzzy set A on X, f(ps-scl(A)) ≤ ps-scl(f(A)). Again, since f is
ps-ro fuzzy semi-homeomorphism, f−1 is ps-ro fuzzy irresolute. As, ps-scl(A)
is ps-ro semiclosed fuzzy set on X, (f−1)−1(ps-scl(A)) = f(ps-scl(A)) is ps-ro
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semiclosed fuzzy set on Y . Now, A ≤ ps-scl(A). So, f(A) ≤ f(ps-scl(A)), ps-
scl(f(A)) ≤ f(ps-scl(A)). Hence, f(ps-scl(A)) = ps-scl(f(A)). Conversely, let f
be bijective and f(ps-scl(A)) = ps-scl(f(A)), for each fuzzy set A on X. Then,
clearly f(ps-scl(A)) ≤ ps-scl(f(A)). Hence, f is ps-ro fuzzy irresolute function.
Let A be any ps-ro semiclosed fuzzy set on X. Then B = 1−A is ps-ro semiopen
fuzzy set on X. Now, A = ps-scl(A). So, f(A) = f(ps-scl(A)) = ps-scl(f(A)).
1 − f(A) = 1 − ps-scl(f(A)) So, f(1 − A) = ps-sint(1 − f(A))(as f is bijective,
f(1 − A) = 1 − f(A)). f(B) = ps-sint(f(1 − A)) = ps-sint(f(B)). This implies
that f(B) is ps-ro semiopen fuzzy set on Y . Hence, f is ps-ro fuzzy pre semiopen
function. Therefore, f is ps-ro fuzzy semi-homeomorphism.

Corollary 3.1. Let f : (X, τ1) → (Y, τ2) be bijective. f is a ps-ro fuzzy semi-
homeomorphism iff for each fuzzy set B on Y , f−1(ps-scl(B)) = ps-scl(f−1(B)).
Proof: Since, f is a ps-ro fuzzy semi-homeomorphism, f−1 is also so.

Theorem 3.6. Let a function f from a fts (X, τ1) to a fts (Y, τ2) be bijective. f is
ps-ro fuzzy semi-homeomorphism iff for each fuzzy set A on X, f(ps-sint(A)) = ps-
sint(f(A)).
Proof: Let f be ps-ro fuzzy semi-homeomorphism. Then, f is bijective and
both f and f−1 are ps-ro fuzzy irresolute. So, for each fuzzy set A on X, ps-
sint(f(A)) ≤ f(ps-sint(A)). ps-sint(A) being ps-ro semiopen fuzzy set on X,
(f−1)−1(ps-sint(A)) = f(ps-sint(A)) is ps-ro semiopen fuzzy set on Y . Now,
ps-sint(A) ≤ A, f(ps-sint(A)) ≤ f(A). So, f(ps-sint(A)) ≤ ps-sint(f(A)). Hence,
f(ps-sint(A)) = ps-sint(f(A)). Conversely, let f be bijective and f(ps-sint(A)) =
ps-sint(f(A)), for each fuzzy set A on X. Then, clearly ps-sint(f(A)) ≤ f(ps-
sint(A)). Also, f is bijective. Hence, f is ps-ro fuzzy irresolute function. Now, let
B be a ps-ro semiopen fuzzy set on X. Then, by given condition we have f(ps-
sint(B)) = ps-sint(f(B)). So, f(B) = ps-sint(f(B)). This implies that f(B) is
ps-ro semiopen fuzzy set on Y . Hence, f is ps-ro fuzzy pre semiopen function.
Therefore, f is ps-ro fuzzy semi-homeomorphism.

Corollary 3.2. Let f : (X, τ1) → (Y, τ2) be bijective. f is a ps-ro fuzzy semi-
homeomorphism iff for each fuzzy set B on Y , f−1(ps-sint(B)) = ps-sint(f−1(B)).
Proof: Since, f is a ps-ro fuzzy semi-homeomorphism, f−1 is also so.
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