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ON THE INTEGRAL REPRESENTATION OF STRICTLY

CONTINUOUS SET-VALUED MAPS

ANATÉ K. LAKMON∗ AND KENNY K. SIGGINI

Abstract. Let T be a completely regular topological space and C(T ) be the

space of bounded, continuous real-valued functions on T . C(T ) is endowed
with the strict topology (the topology generated by seminorms determined by

continuous functions vanishing at infinity). R. Giles ([13], p. 472, Theorem

4.6) proved in 1971 that the dual of C(T ) can be identified with the space of
regular Borel measures on T . We prove this result for positive, additive set-

valued maps with values in the space of convex weakly compact non-empty
subsets of a Banach space and we deduce from this result the theorem of R.

Giles ([13], theorem 4.6, p.473).

1. Introduction

The strict topology β was for the first time introduced by R. C. Buck ([1], [2]) on
the space C(T ) of all bounded continuous functions on a locally compact space T .
He has proved among others that the dual space of (C(T ), β) is the space of all finite
signed regular Borel measures on T . After a large number of papers have appeared
in the literature concerned with extending the results contained in Buck’s paper
[1]( see e.g. [4], [5], [6], [7], [8], [12],[14], [15], [17], [18], [19], [22], [25] and [27]).
R. Giles has generalized this notion of the strict topology introduced by Buck for
completely regular space T and has proved Buck’s results, particulary the theorem
2 in [1] for an arbitrary (not necessarily Hausdorff) completely regular space T .
In this paper we generalize Giles’s result ([13], theorem 4.6, p.473) to additive,
positive, positively homogeneous and strictly continuous set-valued maps defined
on C+(T ) with values in the space cc(E) of all convex weakly compact non-empty
subsets of a Banach space E. We deduce from this result the theorem of R. Giles.

2. Notations and definitions

Let T be a completely regular topological space and let B(T ) be the Borel σ-
algebra of T and let C(T ) be the space of bounded continuous real-valued functions
on T . Let C0(T ) be the subspace of C(T ) consisting of functions f vanishing at
infinity i.e. for any ε > 0 there is a compact set Kε ⊂ T such that |f(x)| < ε for
x ∈ T\Kε. We denote by C+(T ) the subspace of C(T ) consisting of non-negative
functions and by 1A the characteristic function of each A ⊂ T . For all f ∈ C(T ), we
put f+ = sup(f, 0), f− = sup(−f, 0) and ||f ||∞ = sup{|f(t)|; t ∈ T}. We denote
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by R the set of real numbers. Let E be a Banach space, E′ its dual and cc(E) be the
space of all non-empty, convex weakly compact subsets of E; we denote by ‖.‖ the
norm on E and E′. If X and Y are subsets of E we shall denote by X+Y the family
of all elements of the form x+y with x ∈ X and y ∈ Y . The support function of X is
the function δ∗(.|X) from E′ to [−∞; +∞] defined by δ∗(y|X) = sup{y(x), x ∈ X}.
We endow cc(E) with a Hausdorff distance, denoted by δ. For all K ∈ cc(E) and for
all K ′ ∈ cc(E), δ(K,K ′) = sup{|δ∗(y|K)− δ∗(y|K ′)|; y ∈ E′, ‖y‖ ≤ 1}. Recall that
(cc(E), δ) is a complete metric space ([16], theorem 9, p.185) and ([21], theorem 15,
p.2-2).

Definition 2.1. (1) let m : B(T ) → R be a positive countable additive measure.
We say that m is:

(i) inner regular if for all A ∈ B(T ) and ε > 0, there exists a compact Kε subset
of T such that Kε ⊂ A and m(A\Kε) < ε.

(ii) outer regular if for all A ∈ B(T ) and for all ε > 0, there exists an open subset
Oε of T such that Oε ⊃ A and m(Oε\A) < ε.

(iii) regular if it is inner regular and outer regular.

(2) A signed measure µ : B(T )→ R is regular if and only if its total variation v(µ)
is regular. Note that v(µ) : B(T ) → R+ (A 7→ v(µ)(A) = sup{

∑
i

|µ(Ai)|; (Ai)

finite partition of A,Ai ∈ B(T )}).

Definition 2.2. A map M : B(T ) → cc(E) is a set-valued measure if M(A ∪
B) = M(A) + M(B) for every pair of disjoint sets A,B in B(T ),M(∅) = {0} and

M(
+∞⋃
n=1

An) =
+∞∑
n=1

M(An) for every sequence (An) of mutually disjoint elements of

B(T ); which amounts to saying that for all y ∈ E′ the map δ∗(y|M(.)) : B(T ) →
R(A 7→ δ∗(y|M(A))) is a countably additive measure ([21], corollary p. 2-25).
We say that a set-valued measure M is:

(i) positive if for all A ∈ B(T ), 0 ∈M(A)
(ii) regular if for all y ∈ E′, the measure δ∗(y|M(.)) is regular.

Let ϕ ∈ C0(T ), let K be a compact subset of T . We denote by pϕ and pK
the semi-norms on C(T ) defined by pϕ(f) = sup{|f(t)ϕ(t)|; t ∈ T} and pK(f) =
sup{|f(t)|; t ∈ K} for every f ∈ C(T ).

Definition 2.3. The topology determined by the set of semi-norms {pϕ; ϕ ∈
C0(T )} (resp. {pK ; K belongs to the family of compact subsets ofT}) is called the
strict (resp. the compact convergence) topology. We say that a map defined on
C(T ) is strictly continuous if it is continuous for this topology.

Definition 2.4. A map L : C+(T )→ cc(E) is:

(i) additive set-valued map if for all f, g ∈ C+(T )L(f + g) = L(f) + L(g)
(ii) positively homogeneous if for f ∈ C+(T ) and for λ ≥ 0 L(λf) = λL(f).

(iii) positive if for every f ∈ C+(T ), 0 ∈ L(f).

Definition 2.5. ([24], p. 04)
Let m be a bounded linear functional on C(T ), and let B(0, 1) be the unit ball
of C(T ). We say that m is tight if its restriction to B(0, 1) is continuous for the
topology of compact convergence.
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3. Main result

Lemma 3.1. Let m be a bounded linear functional on C(T ). If m is tight then
for all ε > 0 there is a compact subset Kε of T such that for all f ∈ C(T ) and
|f | ≤ 1T\Kε

, we have |m(f)| < ε.

Proof. Assume that m is tight. Then for every ε > 0 there is a compact subset Kε of
T and there is η > 0 such that for all f ∈ B(0, 1) and pKε

(f) = sup{|f(t)|; t ∈ Kε} <
η. We have |m(f)| < ε. In particular for all f ∈ B(0, 1) such that |f | ≤ 1T\Kε

, one
has |m(f)| < ε. �

Lemma 3.2. Let M : B(T ) −→ cc(E) be a positive, regular set-valued measure.
Then the real-valued measure δ∗(y|M(.)) are uniformly tight with respect to y ∈
E′, ‖y‖ ≤ 1 ie for every A ∈ B(T ) and for every ε > 0 there is a compact subset
Kε of T such that Kε ⊂ A and sup{δ∗(y|M(A\Kε)); y ∈ E′, ‖y‖ ≤ 1} ≤ ε.

Proof. Let us consider the set {δ∗(y|M(.)), y ∈ E′, ‖y‖ ≤ 1} of countably additive
real-valued measures. It is uniformly countable additive (see [9], theorem 10, p.
88–89; [28], lemma 3.1, p. 275). According to ([10], p. 443, Theorem 10.7) there is
a sequence (cn) of real numbers and there is a sequence (δ∗(yn|M(.))), |yn| ≤ 1 of

measures such that µ(A) =
+∞∑
n=1

cnδ
∗(yn|M(A)) exists for each A ∈ B(T ) and such

that the series
∑
|cn|δ∗(yn|M(A)) is uniformly convergent for A ∈ B(T ); moreover

the countable additive measure ν : B(T ) → R(A 7→ ν(A) =
+∞∑
n=1
|cn|δ∗(yn|M(A)))

verifies the following relation: lim
ν(A)→0

[sup{δ∗(y|M(A)); y ∈ E′, ‖y‖ ≤ 1}] = 0

(*). We deduce from the uniform convergence of the series
∑
|cn|δ∗(yn|M(A))

for A ∈ B(T ), that ν is regular. Indeed, given ε > 0 choose n0 ∈ N such that

sup
A∈B(T )

∣∣∣∣ν(A)−
n0∑
k=1

|ck|δ∗(yk|M(A))

∣∣∣∣ < ε/2.

For A ∈ B(T ), choose a compact subset K of T such that K ⊂ A and for every
k ∈ {1, 2, ..., n0} δ∗(yk|M(A\K)) ≤ ε

2(n0+1)r0
with r0 = sup{|ck|; k ∈ {1, 2, ..., n0}}

then
n0∑
k=1

|ck|δ∗(yk|M(A\K)) ≤ ε/2, therefore ν(A\K) ≤ ε.

The relation (*) and the inner regularity of ν show that for each ε > 0 and
each A ∈ B(T ) there exists a compact subset K of T such that K ⊂ A and
sup{δ∗(y|M(A\K)); y ∈ E′, ‖y‖ ≤ 1} ≤ ε. �

Let M be a positive set-valued measure defined on B(T ). For the construction
of the integral

∫
fM , with f ∈ C+(T ) we refer to ([23], p. 17).

Lemma 3.3. Let M : B(T )→ cc(E) be a positive regular set-valued measure. Then
the set-valued map L : C+(T ) → cc(E)(f 7→ L(f) =

∫
fM) is additive, positively

homogeneous, positive and strictly continuous.

Proof. We only prove the strict continuity. The other properties follow from the
construction of the integral

∫
fM, f ∈ C+(T ). For each n ∈ N∗ there exists a

compact subset Kn of T such that sup{δ∗(y|M(T\Kn)); y ∈ E′, ‖y‖ ≤ 1} ≤ 2−2n

(Lemma 3.2). We then have a sequence (Kn) of compact subsets of T that we may
assume monotone increasing. We repeat here the proof of R. Giles ([13], p. 471,
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Lemma 4.2). Consider ϕ =
+∞∑
n=1

2−n1Kn , we have 2−n−1 ≤ ϕ(x) ≤ 2−n for all x ∈

Kn+1\Kn. The function 1/ϕ is measurable and is δ∗(y|M(.)) - integrable for each
y ∈ E′, ‖y‖ ≤ 1. We have

∫
1/ϕδ∗(y|M(.)) =

∫
∪+∞

n=1(Kn+1\Kn)
1/ϕ δ∗(y|M(.)) =

+∞∑
n=1

∫
Kn+1\Kn

1/ϕ δ∗(y|M(.))

≤
+∞∑
n=1

2n+1 [δ∗(y|M(Kn+1))− δ∗(y|M(Kn))] ≤
+∞∑
n=1

2n+1.2−2n = 2. Let ε > 0 and

let ψn ∈ C0 such that ψn(x) = 2−n for x ∈ Kn and 0 ≤ ψn ≤ 2−n1T . Put

ψ =
+∞∑
n=1

ψn. Then ψ ∈ C0 and ϕ ≤ ψ. For all f ∈ {g ∈ C+(T ), p2ψ/ε(g) < 1}

we have f < ε/2ϕ and
∫
fδ∗(y|M(.)) < ε for all y ∈ E′ with ‖y‖ ≤ 1. Since

δ∗(y|
∫
fM) =

∫
fδ∗(y|M(.)), one has δ(

∫
fM, {0}) < ε. Therefore the map f →∫

fM is strictly continuous at 0. The equality δ∗(y|
∫
fM) =

∫
fδ∗(y|M(.)) for

each f ∈ C+(T ) and each y ∈ E′ enable us to prove the continuity on C+(T ). �

Definition 3.4. A map S : E′ → R is said to be sublinear if for every y ∈ E′ and
y′ ∈ E′ and for every λ ≥ 0 one has S(y + y′) ≤ S(y) + S(y′) and S(λy) = λS(y).

The lemme below is a particular case of L. Hörmander’s result ([16], Theorem
5, p. 182). We give here an alternative proof.

Lemma 3.5. Let E be a Banach space, and let E′ its dual space endowed with
the Mackey topology τ(E′, E). Let S : E′ → R be a sublinear map. Then S is
continuous if and only if there is C ∈ cc(E) such that S = δ∗(.|C).

Proof. Assume that S is continuous. Let ∇S = {l : E′ → R; linear and l ≤ S}. By
the Hahn-Banach theorem ([11], theorem 10, p. 62), S(y) = sup{l(y);
l ∈ ∇S} for each y ∈ E′. Let l ∈ ∇S; then l is continuous for the Mackey topology
τ(E′, E). Therefore l determines an element xl ∈ E that verifies l(y) = y(xl) for
each y ∈ E′. Let ∇ES = {xl; l ∈ ∇S}. Since ∇S is equicontinuous there is a
neighborhood V of 0 in E′ such that ∇ES ⊂ V ◦, where V ◦ is the polar of V in E.
By the Alaoglu-Bourbaki’s theorem ([20], p. 248), one has V ◦ ∈ cc(E). Since ∇ES
is convex , its closure is one of elements of cc(E) we want. The converse is obvious.
Note that if S is non-negative then 0 ∈ ∇ES. �

Theorem 3.6. Let T be a completely regular topological space and let C+(T ) be the
space of bounded continuous non-negative functions defined on T endowed with the
strict topology. Let E be a Banach space and cc(E) be the space of convex weakly
compact non-empty subsets of E endowed with the Hausdorff distance.
Let L : C+(T )→ cc(E) be a positive, additive, positively homogeneous and strictly
continuous set-valued map. Then there is a unique positive regular set-valued mea-
sure M defined on B(T ) to cc(E) such that L(f) =

∫
fM for all f ∈ C+(T ).

Conversely for all positive regular set-valued measure M : B(T ) → cc(E), the set-
valued map θ : C+(T ) → cc(E) (f 7→ θ(f) =

∫
fM) is positive, additive, positively

homogeneous and strictly continuous.

Proof. Let y ∈ E′. The map δ∗(y|L(.)) : C+(T )→ R (f 7→ δ∗(y|L(f))) is additive,
positively homogeneous and continuous. Then it can be extended to a continuous
linear functional on C(T ). This extension is unique. It is denoted by δ∗(y|L̄(.)).
Let f ∈ C(T ), one has f = f+ − f− and δ∗(y|L̄(.)) is defined by δ∗(y|L̄(.))(f) =
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δ∗(y|L(f+)) − δ∗(y|L(f−)). Since δ∗(y|L̄(.)) is strictly continuous it is tight ([26],
p. 41). By the lemma 3.1 and ([3], Proposition 5, p.58) there exists a unique
regular positive Borel measure µy on T that verifies δ∗(y|L̄(f)) =

∫
fµy for all

f ∈ C(T ). Let 0 an open subset of T and let SO the map defined on E′ to R by
SO(y) = µy(O) for each y ∈ E′. We have µy(O) = sup{

∫
fµy; f ∈ C+(T ), f ≤

1O} = sup{δ∗(y|L(f)); f ∈ C+(T ), f ≤ 1O}, therefore SO is a sublinear map. Let
now A ∈ B(T ). We denote by SA the map defined on E′ to R by SA(y) = µy(A) for
each y ∈ E′. Since the measure µy is regular we have SA(y) = inf{µy(O);O ⊂ T,O
open and O ⊃ A} = inf{SO(y);O ⊂ T,O open and O ⊃ A}. Let y, y′ ∈ E′ and
let ε > 0, there exists two open subsets Oε and O′ε of T containing A and such
that SA(y) ≥ µy(Oε)− ε/2, SA(y′) ≥ µy′(O′ε)− ε/2. We have µy(Oε) + µy′(O

′
ε) ≤

SA(y)+SA(y′)+ε, then µy(Oε∩O′ε)+µy′(Oε∩O′ε) ≤ SA(y)+SA(y′)+ε, therefore
µy+y′(Oε ∩ O′ε) ≤ SA(y) + SA(y′) + ε. We have µy+y′(A) ≤ µy+y′(Oε ∩ O′ε) ≤
SA(y) + SA(y′) + ε. It follows from this SA(y + y′) ≤ SA(y) + SA(y′). It is
obvious that for all λ ≥ 0 and for all y ∈ E′, SA(λy) = λSA(y). So SA is a non-
negative sublinear map. Let us prove now that SA is continuous for the Mackey

topology τ(E′, E). We have SA(y) ≤ µy(T ) = δ∗(y|L(1T )). Let L̃(1T ) be the closed

absolutely convex cover of L(1T ), one has L̃(1T ) ∈ cc(E) and SA(y) ≤ δ∗
(
y|L̃(1T )

)
for each y ∈ E′ and A ∈ B(T ). We deduce that SA is continuous for the Mackey
topology for each A ∈ B(T ). By the lemma 3.5 there is CA ∈ cc(E) such that
SA(y) = δ∗(y|CA) for all y ∈ E′. Let M : B(T ) → cc(E) (A 7→ M(A) = CA).
We have δ∗(y|M(A)) = µy(A) for all y ∈ E′, hence the map δ∗(y|M(.)) : B(T ) →
R (A 7→ δ∗(y|M(A))) is a positive regular countably additive measure. Then M
is a regular set-valued measure. Since SA is non-negative then M is positive. Let
f ∈ C+(T ) and let y ∈ E′,

∫
fδ∗(y|M(.)) =

∫
fµy = δ∗(y|L(f)). It follows that

L(f) =
∫
fM for all f ∈ C+(T ) because

∫
fδ∗(y|M(.)) = δ∗(y|

∫
fM). Let us prove

that M is unique. Assume that there exist two regular positive set-valued measures
M and M ′ which verify

∫
fM = L(f) =

∫
fM ′. Let 0 be an open subset of T and

let y ∈ E′. According to the inner regularity of δ∗(y|M(.)) and ([3] Lemme 1 p.
55) we have δ∗(y|M(O)) = sup{δ∗(y|L(f)); f ∈ C+(T ), f ≤ 1O} = δ∗(y|M ′(O)).
Moreover the outer regularity of δ∗(y|M(.)) shows that δ∗(y|M(A)) = δ∗(y|M ′(A))
for all A ∈ B(T ) and y ∈ E′, hence M(A) = M ′(A) for all A ∈ B(T ). The second
assertion of the theorem is justified by the lemma 3.3. �

The following corollary is the result of R. Giles.

Corollary 3.7. ([13], Theorem 4.6 ) For any completely regular space T the dual
of C(T ) under the strict topology is the space of all bounded signed Borel regular
measures on T .

Proof. Let L be a strictly continuous linear functional on C(T ); L is bounded.
Therefore L is the difference of two non-negative linear functional. We may assume
that L is non-negative. Let K0 be an element of cc(E) that contains 0 and that
is subset of the unit ball of E. Consider the map L′ : C+(T ) → cc(E) defined by
L′(f) = L(f)K0 = {L(f)k; k ∈ K0} for all f ∈ C+(T ). The map L′ is positive,
positively homogeneous and strictly continuous. Let us prove that L′ is additive.
The inclusion L′(f + g) ⊂ L′(f) + L′(g) for all f, g ∈ C+(T ) is trivial. Let u ∈ K0

and each let v ∈ K0, L(f)u + L(g)v = L(f + g)
[

L(f)
L(f+g)u+ L(g)

L(f+g)v
]
. Since K0 is

convex and L positive, L(f)
L(f+g)u + L(g)

L(f+g)v ∈ K0. Then L′(f) + L′(g) ⊂ L′(f + g).
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By the Theorem 3.6, there is a unique positive regular set-valued measure
M : B(T ) → cc(E) that satisfies the condition

∫
fM = L′(f) for all f ∈ C+(T ).

Let y0 ∈ E′ such that δ∗(y0|L′(.)) = L. Since δ∗(y0|
∫
fM) =

∫
fδ∗(y0|M(.)) for

all f ∈ C+(T ) we then have
∫
fδ∗(y0|M(.)) = L(f) for all f ∈ C+(T ) and therefore∫

fδ∗(y0|M(.)) = L(f) for all f ∈ C(T ). The uniqueness of δ∗(y0|M(.)) follows
from the regularity of M . Taking the lemma 3.3 (for the scalar measures) into
account we conclude that there is a bijection between the dual space of (C(T ), β)
and the space of all bounded signed regular Borel measures on T . �
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