TITCHMARSH'S THEOREM FOR THE CHEREDNIK-OPDAM TRANSFORM IN THE SPACE $L_{\alpha, \beta}^{2}(\mathbb{R})$

S. EL OUADIH* AND R. DAHER

AbStract. In this paper, we prove the generalization of Titchmarshs theorem for the CherednikOpdam transform for functions satisfying the $(\psi, 2)$-Cherednik-Opdam Lipschitz condition in the space $L_{\alpha, \beta}^{2}(\mathbb{R})$.

1. Introduction and Preliminaries

In [3], E. C. Titchmarsh's characterizes the set of functions in $L^{2}(\mathbb{R})$ satisfying the CauchyLipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have

Theorem $1.1[3]$ Let $\delta \in(0,1)$ and assume that $f \in L^{2}(\mathbb{R})$. Then the following are equivalents (i) $\quad\|f(t+h)-f(t)\|=O\left(h^{\delta}\right), \quad$ as $\quad h \rightarrow 0$,
(ii) $\quad \int_{|\lambda| \geq r}|\widehat{f}(\lambda)|^{2} d \lambda=O\left(r^{-2 \delta}\right) \quad$ as $\quad r \rightarrow \infty$, where \widehat{f} stands for the Fourier transform of f.

In this paper, we prove the generalization of Theorem 1.1 for the Cherednik-Opdam transform for functions satisfying the $(\psi, 2)$-Cherednik-Opdam Lipschitz condition in the space $L_{\alpha, \beta}^{2}(\mathbb{R})$. For this purpose, we use the generalized translation operator.

In this section, we develop some results from harmonic analysis related to the differentialdifference operator $T^{(\alpha, \beta)}$. Further details can be found in [1] and [2]. In the following we fix parameters α, β subject to the constraints $\alpha \geq \beta \geq-\frac{1}{2}$ and $\alpha>\frac{-1}{2}$.
Let $\rho=\alpha+\beta+1$ and $\lambda \in \mathbb{C}$. The Opdam hypergeometric functions $G_{\lambda}^{(\alpha, \beta)}$ on \mathbb{R} are eigenfunctions $T^{(\alpha, \beta)} G_{\lambda}^{(\alpha, \beta)}(x)=i \lambda G_{\lambda}^{(\alpha, \beta)}(x)$ of the differential-difference operator

$$
T^{(\alpha, \beta)} f(x)=f^{\prime}(x)+[(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x] \frac{f(x)-f(-x)}{2}-\rho f(-x),
$$

that are normalized such that $G_{\lambda}^{(\alpha, \beta)}(0)=1$. In the notation of Cherednik one would write $T^{(\alpha, \beta)}$ as

$$
T\left(k_{1}+k_{2}\right) f(x)=f^{\prime}(x)+\left\{\frac{2 k_{1}}{1+e^{-2 x}}+\frac{4 k_{2}}{1-e^{-4 x}}\right\}(f(x)-f(-x))-\left(k_{1}+2 k_{2}\right) f(x)
$$

with $\alpha=k_{1}+k_{2}-\frac{1}{2}$ and $\beta=k_{2}-\frac{1}{2}$. Here k_{1} is the multiplicity of a simply positive root and k_{2} the (possibly vanishing) multiplicity of a multiple of this root. By [1] or [2], the eigenfunction

Key words and phrases. Cherednik-Opdam operator; Cherednik-Opdam transform; generalized translation.
$G_{\lambda}^{(\alpha, \beta)}$ is given by

$$
G_{\lambda}^{(\alpha, \beta)}(x)=\varphi_{\lambda}^{\alpha, \beta}(x)-\frac{1}{\rho-i \lambda} \frac{\partial}{\partial x} \varphi_{\lambda}^{\alpha, \beta}(x)=\varphi_{\lambda}^{\alpha, \beta}(x)+\frac{\rho}{4(\alpha+1)} \sinh (2 x) \varphi_{\lambda}^{\alpha+1, \beta+1}(x)
$$

where $\varphi_{\lambda}^{\alpha, \beta}(x)={ }_{2} F_{1}\left(\frac{\rho+i \lambda}{2} ; \frac{\rho-i \lambda}{2} ; \alpha+1 ;-\sinh ^{2} x\right)$ is the classical Jacobi function.
Lemma 1.2. [4] The following inequalities are valids for Jacobi functions $\varphi_{\lambda}^{\alpha, \beta}(x)$
(i) $\left|\varphi_{\lambda}^{\alpha, \beta}(x)\right| \leq 1$.
(ii) $1-\varphi_{\lambda}^{\alpha, \beta}(x) \leq x^{2}\left(\lambda^{2}+\rho^{2}\right)$.
(iii) there is a constant $c>0$ such that

$$
1-\varphi_{\lambda}^{\alpha, \beta}(x) \geq c
$$

for $\lambda x \geq 1$.
Denote $L_{\alpha, \beta}^{2}(\mathbb{R})$, the space of measurable functions f on \mathbb{R} such that

$$
\|f\|_{2, \alpha, \beta}=\left(\int_{\mathbb{R}}|f(x)|^{2} A_{\alpha, \beta}(x) d x\right)^{1 / 2}<+\infty
$$

where

$$
A_{\alpha, \beta}(x)=(\sinh |x|)^{2 \alpha+1}(\cosh |x|)^{2 \beta+1} .
$$

The Cherednik-Opdam transform of $f \in C_{c}(\mathbb{R})$ is defined by

$$
\mathcal{H} f(\lambda)=\int_{\mathbb{R}} f(x) G_{\lambda}^{(\alpha, \beta)}(-x) A_{\alpha, \beta}(x) d x \quad \text { for all } \quad \lambda \in \mathbb{C} .
$$

The inverse transform is given as

$$
\mathcal{H}^{-1} g(x)=\int_{\mathbb{R}} g(\lambda) G_{\lambda}^{(\alpha, \beta)}(x)\left(1-\frac{\rho}{i \lambda}\right) \frac{d \lambda}{8 \pi\left|c_{\alpha, \beta}(\lambda)\right|^{2}},
$$

here

$$
c_{\alpha, \beta}(\lambda)=\frac{2^{\rho-i \lambda} \Gamma(\alpha+1) \Gamma(i \lambda)}{\Gamma\left(\frac{1}{2}(\rho+i \lambda)\right) \Gamma\left(\frac{1}{2}(\alpha-\beta+1+i \lambda)\right)} .
$$

The corresponding Plancherel formula was established in [1], to the effect that

$$
\int_{\mathbb{R}}|f(x)|^{2} A_{\alpha, \beta}(x) d x=\int_{0}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)
$$

where $\check{f}(x):=f(-x)$ and $d \sigma$ is the measure given by

$$
d \sigma(\lambda)=\frac{d \lambda}{16 \pi\left|c_{\alpha, \beta}(\lambda)\right|^{2}}
$$

According to [2] there exists a family of signed measures $\mu_{x, y}^{(\alpha, \beta)}$ such that the product formula

$$
G_{\lambda}^{(\alpha, \beta)}(x) G_{\lambda}^{(\alpha, \beta)}(y)=\int_{\mathbb{R}} G_{\lambda}^{(\alpha, \beta)}(z) d \mu_{x, y}^{(\alpha, \beta)}(z)
$$

holds for all $x, y \in \mathbb{R}$ and $\lambda \in \mathbb{C}$, where

$$
d \mu_{x, y}^{(\alpha, \beta)}(z)= \begin{cases}\mathcal{K}_{\alpha, \beta}(x, y, z) A_{\alpha, \beta}(z) d z & \text { if } x y \neq 0 \\ d \delta_{x}(z) & \text { if } y=0 \\ d \delta_{y}(z) & \text { if } x=0\end{cases}
$$

and

$$
\begin{aligned}
\mathcal{K}_{\alpha, \beta}(x, y, z) & =M_{\alpha, \beta}|\sinh x \cdot \sinh y \cdot \sinh z|^{-2 \alpha} \int_{0}^{\pi} g(x, y, z, \chi)_{+}^{\alpha-\beta-1} \\
& \times\left[1-\sigma_{x, y, z}^{\chi}+\sigma_{x, z, y}^{\chi}+\sigma_{z, y, x}^{\chi}+\frac{\rho}{\beta+\frac{1}{2}} \operatorname{coth} x \cdot \operatorname{coth} y \cdot \operatorname{coth} z(\sin \chi)^{2}\right] \times(\sin \chi)^{2 \beta} d \chi
\end{aligned}
$$

if $x, y, z \in \mathbb{R} \backslash\{0\}$ satisfy the triangular inequality $\| x|-y|\left|<|z|<|x|+|y|\right.$, and $\mathcal{K}_{\alpha, \beta}(x, y, z)=0$ otherwise. Here

$$
\forall x, y, z \in \mathbb{R}, \chi \in[0,1], \sigma_{x, y, z}^{\chi}= \begin{cases}\frac{\cosh x+\cosh y-\cosh z \cos \chi}{\sinh x \sinh y} & \text { if } x y \neq 0 \\ 0 & \text { if } x y=0\end{cases}
$$

and $g(x, y, z, \chi)=1-\cosh ^{2} x-\cosh ^{2} y \cdot \cosh ^{2} z+2 \cosh x \cdot \cosh y \cdot \cosh z \cdot \cos \chi$.
Lemma 1.3. [2] For all $x, y \in \mathbb{R}$, we have
(i) $\mathcal{K}_{\alpha, \beta}(x, y, z)=\mathcal{K}_{\alpha, \beta}(y, x, z)$.
(ii) $\mathcal{K}_{\alpha, \beta}(x, y, z)=\mathcal{K}_{\alpha, \beta}(-x, z, y)$.
(iii) $\mathcal{K}_{\alpha, \beta}(x, y, z)=\mathcal{K}_{\alpha, \beta}(-z, y,-x)$.

The product formula is used to obtain explicit estimates for the generalized translation operators

$$
\tau_{x}^{(\alpha, \beta)} f(y)=\int_{\mathbb{R}} f(z) d \mu_{x, y}^{(\alpha, \beta)}(z)
$$

It is known from [2] that

$$
\begin{equation*}
\mathcal{H} \tau_{x}^{(\alpha, \beta)} f(\lambda)=G_{\lambda}^{(\alpha, \beta)}(x) \mathcal{H} f(\lambda) \tag{1.1}
\end{equation*}
$$

for $f \in C_{c}(\mathbb{R})$.

2. Main Result

In this section we give the main result of this paper. We need first to define ($\psi, 2$)-CherednikOpdam Lipschitz class.
Denote N_{h} by

$$
N_{h}=\tau_{h}^{(\alpha, \beta)}+\tau_{-h}^{(\alpha, \beta)}-2 I,
$$

where I is the unit operator in the space $L_{\alpha, \beta}^{2}(\mathbb{R})$.
Definition 2.1. A function $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$ is said to be in the $(\psi, 2)$-Cherednik-Opdam Lipschitz class, denoted by $\operatorname{Lip}(\psi, 2)$, if

$$
\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}=O(\psi(h)) \quad \text { as } \quad h \rightarrow 0,
$$

where ψ is a continuous increasing function on $[0, \infty), \psi(0)=0, \psi(t s)=\psi(t) \psi(s)$ for all $t, s \in[0, \infty)$ and this function verify

$$
\int_{0}^{1 / h} s \psi\left(s^{-2}\right) d s=O\left(h^{-2} \psi\left(h^{2}\right)\right), \quad h \rightarrow 0
$$

Lemma 2.2. If $f \in C_{c}(\mathbb{R})$, then

$$
\begin{equation*}
\mathcal{H} \check{\tau}_{x}^{(\alpha, \beta)} f(\lambda)=G_{\lambda}^{(\alpha, \beta)}(-x) \mathcal{H} \check{f}(\lambda) \tag{2.1}
\end{equation*}
$$

Proof. For $f \in C_{c}(\mathbb{R})$, we have

$$
\begin{aligned}
\mathcal{H} \check{\tau}_{x}^{(\alpha, \beta)} f(\lambda) & =\int_{\mathbb{R}} \tau_{x}^{(\alpha, \beta)} f(-y) G_{\lambda}^{(\alpha, \beta)}(-y) A_{\alpha, \beta}(y) d y \\
& =\int_{\mathbb{R}} \tau_{x}^{(\alpha, \beta)} f(y) G_{\lambda}^{(\alpha, \beta)}(y) A_{\alpha, \beta}(y) d y \\
& =\int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(z) \mathcal{K}_{\alpha, \beta}(x, y, z) A_{\alpha, \beta}(z) d z\right] G_{\lambda}^{(\alpha, \beta)}(y) A_{\alpha, \beta}(y) d y \\
& =\int_{\mathbb{R}} f(z)\left[\int_{\mathbb{R}} G_{\lambda}^{(\alpha, \beta)}(y) \mathcal{K}_{\alpha, \beta}(x, y, z) A_{\alpha, \beta}(y) d y\right] A_{\alpha, \beta}(z) d z
\end{aligned}
$$

Since $\mathcal{K}_{\alpha, \beta}(x, y, z)=\mathcal{K}_{\alpha, \beta}(-x, z, y)$, it follows from the product formula that

$$
\begin{aligned}
\mathcal{H} \check{\tau}_{x}^{(\alpha, \beta)} f(\lambda) & =G_{\lambda}^{(\alpha, \beta)}(-x) \int_{\mathbb{R}} f(z) G_{\lambda}^{(\alpha, \beta)}(z) A_{\alpha, \beta}(z) d z \\
& =G_{\lambda}^{(\alpha, \beta)}(-x) \int_{\mathbb{R}} f(-z) G_{\lambda}^{(\alpha, \beta)}(-z) A_{\alpha, \beta}(z) d z \\
& =G_{\lambda}^{(\alpha, \beta)}(-x) \mathcal{H} \check{f}(\lambda) .
\end{aligned}
$$

Lemma 2.3. For $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$, then

$$
\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}^{2}=4 \int_{0}^{+\infty}\left|\varphi_{\lambda}^{\alpha, \beta}(h)-1\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)
$$

Proof. From formulas (1) and (2), we have

$$
\mathcal{H}\left(N_{h} f\right)(\lambda)=\left(G_{\lambda}^{(\alpha, \beta)}(h)+G_{\lambda}^{(\alpha, \beta)}(-h)-2\right) \mathcal{H}(f)(\lambda),
$$

and

$$
\mathcal{H}\left(\check{N}_{h} f\right)(\lambda)=\left(G_{\lambda}^{(\alpha, \beta)}(-h)+G_{\lambda}^{(\alpha, \beta)}(h)-2\right) \mathcal{H}(\check{f})(\lambda)
$$

Since

$$
G_{\lambda}^{(\alpha, \beta)}(h)=\varphi_{\lambda}^{\alpha, \beta}(h)+\frac{\rho}{4(\alpha+1)} \sinh (2 h) \varphi_{\lambda}^{\alpha+1, \beta+1}(h)
$$

and $\varphi_{\lambda}^{\alpha, \beta}$ is even, then

$$
\mathcal{H}\left(N_{h} f\right)(\lambda)=2\left(\varphi_{\lambda}^{\alpha, \beta}(h)-1\right) \mathcal{H}(f)(\lambda)
$$

and

$$
\mathcal{H}\left(\check{N}_{h} f\right)(\lambda)=2\left(\varphi_{\lambda}^{\alpha, \beta}(h)-1\right) \mathcal{H}(\check{f})(\lambda)
$$

Now by Plancherel Theorem, we have the result.
Theorem 2.4. Let $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$. Then the following are equivalents
(a) $f \in \operatorname{Lip}(\psi, 2)$,
(b) $\quad \int_{r}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)=O\left(\psi\left(r^{-2}\right)\right)$, as $\quad r \rightarrow \infty$.

Proof. $(a) \Rightarrow(b)$ Let $f \in \operatorname{Lip}(\psi, 2)$. Then we have

$$
\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}=O(\psi(h)) \quad \text { as } \quad h \rightarrow 0 .
$$

From Lemma 2.2, we have

$$
\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}^{2}=4 \int_{0}^{+\infty}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda .
$$

If $\lambda \in\left[\frac{1}{h}, \frac{2}{h}\right]$, then $\lambda h \geq 1$ and (iii) of Lemma 1.2 implies that

$$
1 \leq \frac{1}{c^{2}}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2} .
$$

Then

$$
\begin{aligned}
\int_{\frac{1}{\hbar}}^{\frac{2}{n}}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) & \leq \frac{1}{c^{2}} \int_{\frac{1}{n}}^{\frac{2}{n}}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) \\
& \leq \frac{1}{c^{2}} \int_{0}^{+\infty}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) \\
& \leq \frac{1}{4 c^{2}}\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}^{2} \\
& =O\left(\psi\left(h^{2}\right)\right) .
\end{aligned}
$$

We obtain

$$
\int_{r}^{2 r}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) \leq C \psi\left(r^{-2}\right), \quad r \rightarrow \infty
$$

where C is a positive constant. Now,

$$
\begin{aligned}
\int_{r}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) & =\sum_{i=0}^{\infty} \int_{2^{i} r}^{2^{i+1} r}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) \\
& \leq C \psi\left(r^{-2}\right) \sum_{i=0}^{\infty}\left(\psi\left(2^{-2}\right)\right)^{i} \\
& \leq C C_{\delta} \psi\left(r^{-2}\right)
\end{aligned}
$$

where $C_{\delta}=\left(1-\psi\left(2^{-2}\right)\right)^{-1}$ since $\psi\left(2^{-2}\right)<1$.
Consequently

$$
\int_{r}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)=O\left(\psi\left(r^{-2}\right)\right), \quad \text { as } \quad r \rightarrow \infty
$$

$(b) \Rightarrow(a)$. Suppose now that

$$
\int_{r}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)=O\left(\psi\left(r^{-2}\right)\right), \quad \text { as } \quad r \rightarrow \infty
$$

and write

$$
\left\|N_{h} f(x)\right\|_{2, \alpha, \beta}^{2}=4\left(I_{1}+I_{2}\right)
$$

where

$$
I_{1}=\int_{0}^{\frac{1}{h}}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda
$$

and

$$
I_{2}=\int_{\frac{1}{h}}^{+\infty}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda
$$

Firstly, we use the formula $\left|\varphi_{\lambda}^{\alpha, \beta}(h)\right| \leq 1$ and

$$
I_{2} \leq 4 \int_{\frac{1}{h}}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda)=O\left(\psi\left(h^{2}\right)\right), \quad \text { as } \quad h \rightarrow 0
$$

To estimate I_{1}, we use the inequalities (i) and (ii) of Lemma 1.2

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{1}{h}}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda \\
& \leq 2 \int_{0}^{\frac{1}{h}}\left|1-\varphi_{\lambda}^{\alpha, \beta}(h)\right|\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda \\
& \leq 2 h^{2} \int_{0}^{\frac{1}{h}}\left(\lambda^{2}+\rho^{2}\right)\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda=I_{3}+I_{4}
\end{aligned}
$$

where

$$
I_{3}=2 h^{2} \rho^{2} \int_{0}^{\frac{1}{h}}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda
$$

and

$$
I_{4}=2 h^{2} \int_{0}^{\frac{1}{h}} \lambda^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda
$$

Note that

$$
\begin{aligned}
I_{3} & \leq 2 h^{2} \rho^{2} \int_{0}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda \\
& =2 h^{2} \rho^{2}\|f\|_{2, \alpha, \beta}^{2}=O\left(\psi\left(h^{2}\right)\right), \quad \text { as } \quad h \rightarrow 0
\end{aligned}
$$

For a while, we put

$$
\phi(s)=\int_{s}^{+\infty}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma(\lambda) .
$$

Using integration by parts, we find that

$$
\begin{aligned}
h^{2} \int_{0}^{1 / h} \lambda^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda & =h^{2} \int_{0}^{1 / h}-s^{2} \phi^{\prime}(s) d s \\
& =h^{2}\left(-\frac{1}{h^{2}} \phi\left(\frac{1}{h}\right)+2 \int_{0}^{1 / h} s \phi(s) d s\right) \\
& =-\phi\left(\frac{1}{h}\right)+2 h^{2} \int_{0}^{1 / h} s \phi(s) d s
\end{aligned}
$$

Since $\phi(s)=O\left(\psi\left(s^{-2}\right)\right)$, we have $s \phi(s)=O\left(s \psi\left(s^{-2}\right)\right)$ and

$$
\int_{0}^{1 / h} s \phi(s) d s=O\left(\int_{0}^{1 / h} s \psi\left(s^{-2}\right) d s\right)=O\left(h^{-2} \psi\left(h^{2}\right)\right)
$$

Then

$$
h^{2} \int_{0}^{1 / h} \lambda^{2}\left(|\mathcal{H} f(\lambda)|^{2}+|\mathcal{H} \check{f}(\lambda)|^{2}\right) d \sigma \lambda \leq 2 C_{1} h^{2} h^{-2} \psi\left(h^{2}\right),
$$

where C_{1} is a positive constant.
Finally

$$
I_{4}=O\left(\psi\left(h^{2}\right)\right),
$$

which completes the proof of the theorem.

References

[1] E. M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75C121.
[2] J. P. Anker, F. Ayadi, and M. Sifi, Opdams hypergeometric functions: product formula and convolution structure in dimension 1, Adv. Pure Appl. Math. 3 (2012), no. 1, 11C44.
[3] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals . Claredon, oxford, 1948, Komkniga.Moxow. 2005.
[4] S. S. Platonov, Approximation of functions in L_{2}-metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270.

Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan iI, Casablanca, Morocco

* Corresponding author

