HARMONIC ANALYSIS ASSOCIATED WITH THE GENERALIZED WEINSTEIN OPERATOR

AHMED ABOUELAZ, AZZ-EDINE ACHAK , RADOUAN DAHER AND EL MEHDI LOUALID*

Abstract. In this paper we consider a generalized Weinstein operator $\Delta_{d, \alpha, n}$ on $\left.\mathbb{R}^{d-1} \times\right] 0, \infty[$, which generalizes the Weinstein operator $\Delta_{d, \alpha}$, we define the generalized Weinstein intertwining operator $\mathcal{R}_{\alpha, n}$ which turn out to be transmutation operator between $\Delta_{d, \alpha, n}$ and the Laplacian operator Δ_{d}. We build the dual of the generalized Weinstein intertwining operator ${ }^{t} \mathcal{R}_{\alpha, n}$, another hand we prove the formula related $\mathcal{R}_{\alpha, n}$ and ${ }^{t} \mathcal{R}_{\alpha, n}$. We exploit these transmutation operators to develop a new harmonic analysis corresponding to $\Delta_{d, \alpha, n}$.

1. Introduction

In this paper we consider a generalized Weinstein operator $\Delta_{d, \alpha, n}$ on $\left.\mathbb{R}^{d-1} \times\right] 0, \infty[$, defined by

$$
\begin{equation*}
\Delta_{d, \alpha, n}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d}} \frac{\partial}{\partial x_{d}}-\frac{4 n(\alpha+n)}{x_{d}^{2}}, \quad \alpha>-\frac{1}{2} \tag{1}
\end{equation*}
$$

where $n=0,1, \ldots$. For $n=0$, we regain the Weinstein operator

$$
\begin{equation*}
\Delta_{d, \alpha}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d}} \frac{\partial}{\partial x_{d}}, \quad \alpha>-\frac{1}{2} \tag{2}
\end{equation*}
$$

Through this paper, we provide a new harmonic analysis on $\left.\mathbb{R}^{d-1} \times\right] 0, \infty[$ corresponding to the generalized Weinstein operator $\Delta_{d, \alpha, n}$.
The outline of the content of this paper is as follows.
Section 2 is dedicated to some properties and results concerning the Weinstein transform.
In section 3, we construct a pair of transmutation operators $\mathcal{R}_{\alpha, n}$ and ${ }^{t} \mathcal{R}_{\alpha, n}$, afterwards we exploit these transmutation operators to build a new harmonic analysis on $\left.\mathbb{R}^{d-1} \times\right] 0, \infty[$ corresponding to operator $\Delta_{d, \alpha, n}$.

2. Preliminaries

Throughout this paper, we denote by

- $\left.\mathbb{R}_{+}^{d}=\mathbb{R}^{d-1} \times\right] 0, \infty[$.
- $\left.x=\left(x_{1}, \ldots, x_{d}\right)=\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d-1} \times\right] 0, \infty[$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\left(\lambda^{\prime}, \lambda_{d}\right) \in \mathbb{C}^{d}$.
- $E\left(\mathbb{R}^{d}\right)$ (resp. $D\left(\mathbb{R}^{d}\right)$) the space of \mathcal{C}^{∞} functions on \mathbb{R}^{d}, even with respect to the last variable (resp. with compact support).

[^0]- $S\left(\mathbb{R}^{d}\right)$ the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d} which are even with respect to the last variable.
In this section, we recapitulate some facts about harmonic analysis related to the Weinstein operator $\Delta_{d, \alpha}$. We cite here, as briefly as possible, some properties. For more details we refer to [2, 3, 4].
The Weinstein operator $\Delta_{d, \alpha}$ defined on \mathbb{R}_{+}^{d} by

$$
\begin{equation*}
\Delta_{d, \alpha}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d}} \frac{\partial}{\partial x_{d}}, \quad \alpha>-\frac{1}{2} \tag{3}
\end{equation*}
$$

Then

$$
\Delta_{d, \alpha}=\Delta_{d}+\mathcal{B}_{\alpha}
$$

where Δ_{d} is the Laplacian operator in \mathbb{R}^{d-1} and \mathcal{B}_{α} the Bessel operator with respect to the variable x_{d} defined by

$$
\begin{equation*}
\mathcal{B}_{\alpha}=\frac{\partial^{2}}{\partial x_{d}^{2}}+\frac{2 \alpha+1}{x_{d}} \frac{\partial}{\partial x_{d}}, \quad \alpha>-\frac{1}{2} . \tag{4}
\end{equation*}
$$

The Weinstein kernel is given by

$$
\begin{equation*}
\Psi_{\lambda, \alpha}(x)=e^{-i<x^{\prime}, \lambda^{\prime}>} j_{\alpha}\left(x_{d} \lambda_{d}\right), \quad \text { for all }(x, \lambda) \in \mathbb{R}^{d} \times \mathbb{C}^{d} \tag{5}
\end{equation*}
$$

Here $x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right), \lambda^{\prime}=\left(\lambda_{1}, \ldots ., \lambda_{d-1}\right)$ and j_{α} is the normalized Bessel function of index α defined by

$$
\begin{equation*}
j_{\alpha}(z)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{z}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)} \quad(z \in \mathbb{C}) \tag{6}
\end{equation*}
$$

Proposition 1. $\Psi_{\lambda, \alpha}$ satisfies the differential equation

$$
\Delta_{d, \alpha} \Psi_{\lambda, \alpha}=-\|\lambda\|^{2} \Psi_{\lambda, \alpha}
$$

Definition 1. The Weinstein intertwining operator is the operator \mathcal{R}_{α} defined on $\mathcal{C}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
\mathcal{R}_{\alpha} f(x)=a_{\alpha} x_{d}^{-2 \alpha} \int_{0}^{x_{d}}\left(x_{d}^{2}-t^{2}\right)^{\alpha-\frac{1}{2}} f\left(x^{\prime}, t\right) d t, \quad x_{d}>0 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{\alpha}=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} . \tag{8}
\end{equation*}
$$

Proposition 2. \mathcal{R}_{α} is a topological isomorphism from $E\left(\mathbb{R}^{d}\right)$ onto itself satisfying the following transmutation relation

$$
\begin{equation*}
\Delta_{d, \alpha}\left(\mathcal{R}_{\alpha} f\right)=\mathcal{R}_{\alpha}\left(\Delta_{d} f\right), \quad \text { for all } f \in E\left(\mathbb{R}^{d}\right) \tag{9}
\end{equation*}
$$

where Δ_{d} is the Laplacian on \mathbb{R}^{d}.
Proposition 3. $\Delta_{d, \alpha}$ is self-adjoint, i.e

$$
\int_{\mathbb{R}_{+}^{d}} \Delta_{d, \alpha} f(x) g(x) d \mu_{\alpha}(x)=\int_{\mathbb{R}_{+}^{d}} f(x) \Delta_{d, \alpha} g(x) d \mu_{\alpha}(x)
$$

for all $f \in E\left(\mathbb{R}^{d}\right)$ and $g \in D\left(\mathbb{R}^{d}\right)$.
Definition 2. The dual of the Weinstein intertwining operator \mathcal{R}_{α} is the operator ${ }^{t} \mathcal{R}_{\alpha}$ defined on $D\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{\alpha}(f)(y)=a_{\alpha} \int_{y_{d}}^{\infty}\left(s^{2}-y_{d}^{2}\right)^{\alpha-\frac{1}{2}} f\left(y^{\prime}, s\right) s d s \tag{10}
\end{equation*}
$$

Proposition 4. ${ }^{t} \mathcal{R}_{\alpha}$ is a topological isomorphism from $S\left(\mathbb{R}^{d}\right)$ onto itself satisfying the following transmutation relation

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{\alpha}\left(\Delta_{d, \alpha} f\right)=\Delta_{d}\left({ }^{t} \mathcal{R}_{\alpha} f\right), \quad \text { for all } f \in S\left(\mathbb{R}^{d}\right) \tag{11}
\end{equation*}
$$

where Δ_{d} is the Laplacian on \mathbb{R}^{d}.
It satisfies for $f \in D\left(\mathbb{R}^{d}\right)$ and $g \in E\left(\mathbb{R}^{d}\right)$ the following relation

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}}{ }^{t} \mathcal{R}_{\alpha}(f)(y) g(y) d y=\int_{\mathbb{R}_{+}^{d}} f(y) \mathcal{R}_{\alpha}(g)(y) d \mu_{\alpha}(y) \tag{12}
\end{equation*}
$$

Definition 3. The Weinstein transform $\mathcal{F}_{W, \alpha}$ is defined on $L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$ by

$$
\begin{equation*}
\mathcal{F}_{W, \alpha}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d}} f(x) \Psi_{\lambda, \alpha}(x) d \mu_{\alpha(x)}, \text { for all } \lambda \in \mathbb{R}^{d} \tag{13}
\end{equation*}
$$

Proposition 5. (i) For all $f \in L^{1}\left(\mathbb{R}_{+}^{d}\right)$, the function $\mathcal{F}_{W, \alpha}(f)$ is continuous on \mathbb{R}^{d} and we have

$$
\begin{equation*}
\left\|\mathcal{F}_{W, \alpha}(f)\right\|_{\alpha, \infty} \leq\|f\|_{\alpha, 1} \tag{14}
\end{equation*}
$$

(ii) For all $f \in S\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\mathcal{F}_{W, \alpha}(f)(y)=\mathcal{F}_{0} \circ^{t} \mathcal{R}_{\alpha}(f)(y), \quad \forall y \in \mathbb{R}_{+}^{d} \tag{15}
\end{equation*}
$$

where \mathcal{F}_{0} is the transformation defined by, for all $y \in \mathbb{R}_{+}^{d}$

$$
\begin{equation*}
\mathcal{F}_{0}(f)(y)=\int_{\mathbb{R}_{+}^{d}} f(x) e^{-i<y^{\prime}, x^{\prime}>} \cos \left(x_{d} y_{d}\right) d x, \quad \forall f \in D\left(\mathbb{R}^{d}\right) \tag{16}
\end{equation*}
$$

(iii) For all $f \in S\left(\mathbb{R}^{d}\right)$ and $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathcal{F}_{W, \alpha}\left(\Delta_{d, \alpha} f\right)(\lambda)=-\|\lambda\|^{2} \mathcal{F}_{W, \alpha}(f)(\lambda) \tag{17}
\end{equation*}
$$

Theorem 1. (i) Plancherel formula: For all $f \in S\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}}|f(x)|^{2} d \mu_{\alpha}(x)=C(\alpha) \int_{\mathbb{R}_{+}^{d}}\left|\mathcal{F}_{W, \alpha}(f)(\lambda)\right|^{2} d \mu_{\alpha}(\lambda) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
C(\alpha)=\frac{1}{(2 \pi)^{d-1} 2^{2 \alpha}(\Gamma(\alpha+1))^{2}} \tag{19}
\end{equation*}
$$

(ii) For all $f \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$, if $\mathcal{F}_{W, \alpha}(f) \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$, then

$$
\begin{equation*}
f(y)=C(\alpha) \int_{\mathbb{R}_{+}^{d}} \mathcal{F}_{W, \alpha}(f)(x) \Psi_{\lambda, \alpha}(-x) d \mu_{\alpha}(x) \tag{20}
\end{equation*}
$$

where $C(\alpha)$ is given by (19).
Definition 4. The translation operators $\tau_{\alpha}^{x}, x \in \mathbb{R}_{+}^{d}$, associated with the operator $\Delta_{d, \alpha}$ are defined by

$$
\begin{equation*}
\left.\tau_{\alpha}^{x} f(y)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right.}\right) \int_{0}^{\pi} f\left(x^{\prime}+y^{\prime}, \sqrt{x_{d}^{2}+y_{d}^{2}+2 x_{d} y_{d} \cos \theta}\right)(\sin \theta)^{2 \alpha} d \theta \tag{21}
\end{equation*}
$$

where $f \in C\left(\mathbb{R}_{+}^{d}\right)$.
Proposition 6. For all $f \in L_{\alpha, n}^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty]$, and for all $x \in \mathbb{R}_{+}^{d}$

$$
\tau_{\alpha, n}^{x}\left(\Phi_{\lambda, \alpha, n}(y)\right)=\Phi_{\lambda, \alpha, n}(x) \Phi_{\lambda, \alpha, n}(y)
$$

Proposition 7. The translation operator $\tau_{\alpha}^{x}, x \in \mathbb{R}_{+}^{d}$ satisfies the following properties:
(i) $\forall x \in \mathbb{R}_{+}^{d}$, we have

$$
\begin{equation*}
\Delta_{d, \alpha} \circ \tau_{\alpha}^{x}=\tau_{\alpha}^{x} \circ \Delta_{d, \alpha} \tag{22}
\end{equation*}
$$

(ii) For all f in $E\left(\mathbb{R}^{d}\right)$ and g in $S\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha}^{x} f(y) g(y) d \mu_{\alpha}(y)=\int_{\mathbb{R}_{+}^{d}} f(y) \tau_{\alpha}^{x} g(y) d \mu_{\alpha}(y) \tag{23}
\end{equation*}
$$

(iii) For all f in $L_{\alpha}^{p}\left(\mathbb{R}_{+}^{d}\right), p \in[1, \infty]$, and $x \in \mathbb{R}_{+}^{d}$ we have

$$
\begin{equation*}
\left\|\tau_{\alpha}^{x}\right\|_{p, \alpha} \leq\|f\|_{p, \alpha} \tag{24}
\end{equation*}
$$

(iv) For $f \in S\left(\mathbb{R}^{d}\right)$ and $y \in \mathbb{R}_{+}^{d}$ we have

$$
\begin{equation*}
\mathcal{F}_{W, \alpha}\left(\tau_{\alpha}^{y} f\right)(x)=\Psi_{y, \alpha}(x) \mathcal{F}_{W, \alpha}(f)(x) \tag{25}
\end{equation*}
$$

Definition 5. The generalized convolution product $f *_{W, \alpha} g$ of functions $f, g \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$ is defined by

$$
\begin{equation*}
f *_{W, \alpha} g(x)=\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha}^{x} f\left(-y^{\prime}, y\right) g(y) d \mu_{\alpha}(y) \tag{26}
\end{equation*}
$$

Proposition 8. For all $f, g \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right), f *_{W, \alpha} g$ belongs to $L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$ and

$$
\begin{equation*}
\mathcal{F}_{W, \alpha}\left(f *_{W, \alpha} g\right)=\mathcal{F}_{W, \alpha}(f) \mathcal{F}_{W, \alpha}(g) \tag{27}
\end{equation*}
$$

3. Harmonic analysis associated with the generalized Weinstein operator

Transmutation operators.

- \mathcal{M}_{n} the map defined by $\mathcal{M}_{n} f\left(x^{\prime}, x_{d}\right)=x_{d}^{2 n} f\left(x^{\prime}, x_{d}\right)$.
- $L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d}\right)$ the class of measurable functions f on \mathbb{R}_{+}^{d} for which

$$
\|f\|_{\alpha, n, p}=\left\|\mathcal{M}_{n}^{-1} f\right\|_{\alpha+2 n, p}<\infty
$$

- $E_{n}\left(\mathbb{R}^{d}\right)\left(\right.$ resp. $D_{n}\left(\mathbb{R}^{d}\right)$ and $\left.S_{n}\left(\mathbb{R}^{d}\right)\right)$ stand for the subspace of $E\left(\mathbb{R}^{d}\right)\left(\right.$ resp. $D\left(\mathbb{R}^{d}\right)$ and $\left.S\left(\mathbb{R}^{d}\right)\right)$ consisting of functions f such that

$$
f\left(x^{\prime}, 0\right)=\left(\frac{d^{k} f}{d x_{d}^{k}}\right)\left(x^{\prime}, 0\right)=0, \forall k \in\{1, \ldots 2 n-1\}
$$

Lemma 1. (i) The map

$$
\begin{equation*}
\mathcal{M}_{n}(f)(x)=x_{d}^{2 n} f(x) \tag{28}
\end{equation*}
$$

is an isomorphism

- from $E\left(\mathbb{R}^{d}\right)$ onto $E_{n}\left(\mathbb{R}^{d}\right)$.
- from $S\left(\mathbb{R}^{d}\right)$ onto $S_{n}\left(\mathbb{R}^{d}\right)$.
(ii) For all $f \in E\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\mathcal{B}_{\alpha, n} \circ \mathcal{M}_{n}(f)=\mathcal{M}_{n} \circ \mathcal{B}_{\alpha+2 n}(f), \tag{29}
\end{equation*}
$$

where $\mathcal{B}_{\alpha, n}$ is the generalized Bessel operator given by (4).
(iii) For all $f \in E\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\Delta_{d, \alpha, n} \circ \mathcal{M}_{n}(f)(x)=\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n} \tag{30}
\end{equation*}
$$

where $\Delta_{d, \alpha+2 n}$ is the Weinstein operator of order $\alpha+2 n$ given by (3).
(iv) $\Delta_{d, \alpha, n}$ is self-adjoint, i.e

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}} \Delta_{d, \alpha, n} f(x) g(x) d \mu_{\alpha}(x)=\int_{\mathbb{R}_{+}^{d}} f(x) \Delta_{d, \alpha, n} g(x) d \mu_{\alpha}(x) \tag{31}
\end{equation*}
$$

for all $f \in E\left(\mathbb{R}^{d}\right)$ and $g \in D_{n}\left(\mathbb{R}^{d}\right)$.
Proof. Assertion (i) and (ii) (see [1]).
For assertion (iii) using (1) and (29) we obtain

$$
\begin{aligned}
\Delta_{d, \alpha, n} \circ \mathcal{M}_{n}(f)\left(x^{\prime}, x_{d}\right) & =\left(\Delta_{d}+\mathcal{B}_{\alpha, n}\right) \circ \mathcal{M}_{n}(f)\left(x^{\prime}, x_{d}\right), \\
& =\Delta_{d}\left(\mathcal{M}_{n} f\right)\left(x^{\prime}, x_{d}\right)+\mathcal{B}_{\alpha, n}\left(\mathcal{M}_{n} f\right)\left(x^{\prime}, x_{d}\right), \\
& =\mathcal{M}_{n}\left(\Delta_{d} f\right)\left(x^{\prime}, x_{d}\right)+\mathcal{M}_{n}\left(\mathcal{B}_{\alpha+2 n} f\right)\left(x^{\prime}, x_{d}\right), \\
& =\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n} f\left(x^{\prime}, x_{d}\right) .
\end{aligned}
$$

which give (iii).
If $f \in E\left(\mathbb{R}^{d}\right)$ and $g \in D_{n}\left(\mathbb{R}^{d}\right)$, then by Proposition 3 we get

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d}} \Delta_{d, \alpha, n} f(x) g(x) d \mu_{\alpha}(x) & =\int_{\mathbb{R}_{+}^{d}}\left(\Delta_{d, \alpha} f(x)-\frac{4 n(\alpha+n)}{x_{d}^{2}} f(x)\right) g(x) d \mu_{\alpha}(x), \\
& =\int_{\mathbb{R}_{+}^{d}} \Delta_{d, \alpha} f(x) g(x) d \mu_{\alpha}(x)-\int_{\mathbb{R}_{+}^{d}} \frac{4 n(\alpha+n)}{x_{d}^{2}} f(x) g(x) d \mu_{\alpha}(x), \\
& =\int_{\mathbb{R}_{+}^{d}} f(x) \Delta_{d, \alpha} g(x) d \mu_{\alpha}(x)-\int_{\mathbb{R}_{+}^{d}} \frac{4 n(\alpha+n)}{x_{d}^{2}} f(x) g(x) d \mu_{\alpha}(x), \\
& =\int_{\mathbb{R}_{+}^{d}} f(x)\left(\Delta_{d, \alpha} g(x)-\frac{4 n(\alpha+n)}{x_{d}^{2}} g(x)\right) d \mu_{\alpha}(x), \\
& =\int_{\mathbb{R}_{+}^{d}} f(x) \Delta_{d, \alpha, n} g(x) d \mu_{\alpha}(x) .
\end{aligned}
$$

Definition 6. The generalized Weirstein intertwining operator is the operator $\mathcal{R}_{\alpha, n}$ defined on $E\left(\mathbb{R}^{d+1}\right)$ by

$$
\begin{equation*}
\mathcal{R}_{\alpha, n} f(x)=a_{\alpha+2 n} x_{d}^{-2(\alpha+n)} \int_{0}^{x_{d}}\left(x_{d}^{2}-t^{2}\right)^{\alpha+2 n-\frac{1}{2}} f\left(x^{\prime}, t\right) d t, \quad x_{d}>0 \tag{32}
\end{equation*}
$$

where $a_{\alpha+2 n}$ is given by 8 .
Remark 1. by (7) and (32) we have

$$
\begin{equation*}
\mathcal{R}_{\alpha, n}=\mathcal{M}_{n} \circ \mathcal{R}_{\alpha+2 n} . \tag{33}
\end{equation*}
$$

Proposition 9. $\mathcal{R}_{\alpha, n}$ is a topological isomorphism from $E(\mathbb{R})$ onto $E_{n}(\mathbb{R})$ satisfying the following transmutation relation

$$
\begin{equation*}
\Delta_{d, \alpha, n}\left(\mathcal{R}_{\alpha, n} f\right)=\mathcal{R}_{\alpha, n}\left(\Delta_{d} f\right), \quad \text { forall } f \in E\left(\mathbb{R}^{d+1}\right) \tag{34}
\end{equation*}
$$

where Δ_{d} is the Laplacian on \mathbb{R}^{d}.
Proof. Using (9), (30) and (33) we obtain

$$
\begin{aligned}
\Delta_{d, \alpha, n}\left(\mathcal{R}_{\alpha, n} f\right) & =\Delta_{d, \alpha, n}\left(\mathcal{M}_{n} \circ \mathcal{R}_{\alpha+2 n}\right)(f), \\
& =\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n}\left(\mathcal{R}_{\alpha+2 n} f\right) \\
& =\mathcal{M}_{n}\left(\mathcal{R}_{\alpha+2 n} \circ \Delta_{d}\right)(f) \\
& =\mathcal{R}_{\alpha, n}\left(\Delta_{d} f\right) .
\end{aligned}
$$

Definition 7. The dual of the generalized Weinstein intertwining operator $\mathcal{R}_{\alpha, n}$ is the operator ${ }^{t} \mathcal{R}_{\alpha, n}$ defined on $D_{n}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{\alpha, n}(f)(y)=a_{\alpha+2 n} \int_{y_{d}}^{\infty}\left(s^{2}-y_{d}^{2}\right)^{\alpha+2 n-\frac{1}{2}} f\left(y^{\prime}, s\right) s^{1-2 n} d s \tag{35}
\end{equation*}
$$

Remark 2. From (10) and (35) we have

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{\alpha, n}={ }^{t} \mathcal{R}_{\alpha+2 n} \circ \mathcal{M}_{n}^{-1} \tag{36}
\end{equation*}
$$

Proposition 10. ${ }^{t} \mathcal{R}_{\alpha, n}$ is a topological isomorphism from $S_{n}\left(\mathbb{R}^{d+1}\right)$ onto $S\left(\mathbb{R}^{d+1}\right)$ satisfying the following transmutation relation

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{\alpha, n}\left(\Delta_{d, \alpha, n} f\right)=\Delta_{d}\left({ }^{t} \mathcal{R}_{\alpha, n} f\right), \quad \text { for all } f \in S_{n}\left(\mathbb{R}^{d+1}\right) \tag{37}
\end{equation*}
$$

where Δ_{d} is the Laplacian on \mathbb{R}^{d}.
Proof. An easily combination of (11), (30) and (37) shows that

$$
\begin{aligned}
{ }^{t} \mathcal{R}_{\alpha, n}\left(\Delta_{d, \alpha, n} f\right) & ={ }^{t} \mathcal{R}_{\alpha+2 n} \circ \mathcal{M}_{n}^{-1}\left(\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}\right)(f), \\
& ={ }^{t} \mathcal{R}_{\alpha+2 n}\left(\Delta_{d, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}\right)(f), \\
& =\Delta_{d}\left(\mathcal{R}_{\alpha+2 n} \circ \mathcal{M}_{n}^{-1}\right)(f) \\
& =\Delta_{d}\left({ }^{t} \mathcal{R}_{\alpha, n} f\right)
\end{aligned}
$$

Proposition 11. For all $f \in D_{n}\left(\mathbb{R}^{d}\right)$ and $g \in E\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}}{ }^{t} \mathcal{R}_{\alpha, n}(f)(y) g(y) d y=\int_{\mathbb{R}_{+}^{d}} f(y) \mathcal{R}_{\alpha, n}(g)(y) d \mu_{\alpha}(y) \tag{38}
\end{equation*}
$$

Proof. Using (12), (33) and (37)

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d}}{ }^{t} \mathcal{R}_{\alpha, n}(f)(x) g(x) d x & =\int_{\mathbb{R}_{+}^{d}}{ }^{t} \mathcal{R}_{\alpha+2 n} \circ \mathcal{M}_{n}^{-1} f(x) g(x) d x \\
& =\int_{\mathbb{R}_{+}^{d}} \mathcal{M}_{n}^{-1} f(x)^{t} \mathcal{R}_{\alpha+2 n}(g)(x) d \mu_{\alpha+2 n}(x) \\
& =\int_{\mathbb{R}_{+}^{d}} f(x) \mathcal{M}_{n}\left(\mathcal{R}_{\alpha+2 n}(g)\right)(x) d \mu_{\alpha}(x) \\
& =\int_{\mathbb{R}_{+}^{d}} f(y) \mathcal{R}_{\alpha, n}(g)(y) d \mu_{\alpha}(y)
\end{aligned}
$$

Generalized Weinstein transform.

Throughout this section assume $\alpha>-\frac{1}{2}$ and n a non-negative integer.
For all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, put

$$
\begin{equation*}
\Phi_{\lambda, \alpha, n}(x)=x_{d}^{2 n} \Psi_{\lambda, \alpha+2 n}(x) \tag{39}
\end{equation*}
$$

where $\Psi_{\lambda, \alpha+2 n}(x)$ is the Weinstein kernel of index $\alpha+2 n$ is given by (5).
Proposition 12. $\Phi_{\lambda, \alpha, n}$ satisfies the differential equation

$$
\begin{equation*}
\Delta_{d, \alpha, n} \Phi_{\lambda, \alpha, n}=-\|\lambda\|^{2} \Phi_{\lambda, \alpha, n} \tag{40}
\end{equation*}
$$

Proof. From Proposition 1 and (39) we obtain

$$
\begin{aligned}
\Delta_{d, \alpha, n} \Phi_{\lambda, \alpha, n} & =\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n} \mathcal{M}_{n}^{-1} \Phi_{\lambda, \alpha, n} \\
& =\mathcal{M}_{n} \circ \Delta_{d, \alpha+2 n} \Psi_{\lambda, \alpha+2 n} \\
& =-\|\lambda\|^{2} \mathcal{M}_{n} \Psi_{\lambda, \alpha+2 n} \\
& =-\|\lambda\|^{2} \Phi_{\lambda, \alpha, n}
\end{aligned}
$$

Definition 8. The generalized Weinstein transform is defined on $L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d}\right)$ by, for all $\lambda \in \mathbb{R}^{d}$

$$
\begin{equation*}
\mathcal{F}_{W, \alpha, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d}} f(x) \Phi_{\lambda, \alpha, n}(x) d \mu_{\alpha}(x) \tag{41}
\end{equation*}
$$

Remark 3. By (5), (13) and (41), we have

$$
\begin{equation*}
\mathcal{F}_{W, \alpha, n}=\mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1} \tag{42}
\end{equation*}
$$

Theorem 2. (i) Inverse formula: Let $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d}\right)$, if $\mathcal{F}_{W, \alpha, n} \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$ then

$$
\begin{equation*}
f(x)=C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}} \mathcal{F}_{W, \alpha, n} f(\lambda) \Phi_{\lambda, \alpha, n}(x) d \mu_{\alpha+2 n}(\lambda) . \tag{43}
\end{equation*}
$$

(ii) Plancherel formula:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}}|f(x)|^{2} d \mu_{\alpha}(x)=C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}}\left|\mathcal{F}_{W, \alpha, n} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \tag{44}
\end{equation*}
$$

where $C(\alpha+2 n)$ is given by (19).
Proof. By (20), (39) and (42) we obtain

$$
\begin{aligned}
C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}} \mathcal{F}_{W, \alpha, n} f(\lambda) & \Phi_{\lambda, \alpha, n}(x) d \mu_{\alpha+2 n}(\lambda)=C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}} \mathcal{F}_{W, \alpha, n} f(\lambda) x_{d}^{2 n} \Psi_{\lambda, \alpha+2 n}(x) d \mu_{\alpha+2 n}(\lambda) \\
& =x_{d}^{2 n} C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}} \mathcal{F}_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} f\right)(\lambda) \Psi_{\lambda, \alpha+2 n}(x) d \mu_{\alpha+2 n}(\lambda) \\
& =x_{d}^{2 n} \mathcal{M}_{n}^{-1} f(x) \\
& =f(x)
\end{aligned}
$$

which proves (i).
For (ii) an easily combination of (18), (39) and (42) shows that

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d}}|f(x)|^{2} d \mu_{\alpha}(x) & =\int_{\mathbb{R}_{+}^{d}}\left|\mathcal{M}_{n}^{-1} f(x)\right|^{2} d \mu_{\alpha+2 n}(x) \\
& =C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}}\left|\mathcal{F}_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} f(\lambda)\right)\right|^{2} d \mu_{\alpha+2 n}(\lambda), \\
& =C(\alpha+2 n) \int_{\mathbb{R}_{+}^{d}}\left|\mathcal{F}_{W, \alpha, n} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
\end{aligned}
$$

Proposition 13. (i) For all $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d}\right)$, we have

$$
\left\|\mathcal{F}_{W, \alpha, n}(f)\right\|_{\alpha, \infty} \leq\|f\|_{\alpha, n, 1}
$$

(ii) For all $f \in S_{n}\left(\mathbb{R}^{d}\right)$ we have

$$
\mathcal{F}_{W, \alpha, n}(f)(y)=\mathcal{F}_{0} \circ^{t} \mathcal{R}_{\alpha, n}(f)(y), \quad \forall y \in \mathbb{R}_{+}^{d},
$$

where \mathcal{F}_{0} is the transformation defined by ().
(iii) For all $f \in S_{n}\left(\mathbb{R}^{d}\right)$ and $m \in \mathbb{N}$, we have

$$
\mathcal{F}_{W, \alpha, n}\left(\Delta_{d, \alpha} f\right)(\lambda)=-\|\lambda\|^{2} \mathcal{F}_{W, \alpha, n}(f)(\lambda) .
$$

Proof. From (14) and (42) we have

$$
\begin{aligned}
\left\|\mathcal{F}_{W, \alpha, n}(f)\right\|_{\alpha, n, \infty} & =\left\|\mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}(f)\right\|_{\alpha, n, \infty} \\
& \leq\left\|\mathcal{M}_{n}^{-1} f\right\|_{\alpha+2 n, 1} \\
& \leq\|f\|_{\alpha, n, 1}
\end{aligned}
$$

which proves assertion (i).
By (15), (36) and (42) we obtain

$$
\begin{aligned}
\mathcal{F}_{W, \alpha, n}(f) & =\mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}(f) \\
& =\mathcal{F}_{0} \circ{ }^{t} \mathcal{R}_{\alpha+2 n} \circ \mathcal{M}_{n}^{-1}(f) \\
& =\mathcal{F}_{0} \circ{ }^{t} \mathcal{R}_{\alpha, n}(f),
\end{aligned}
$$

which proves assertion (ii).
Due to (16), (33) and (42) we have

$$
\begin{aligned}
\mathcal{F}_{W, \alpha, n}\left(\Delta_{d, \alpha, n} f\right)(\lambda) & =\mathcal{F}_{d, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}\left(\Delta_{d, \alpha, n} f\right)(\lambda) \\
& =\mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}\left(\Delta_{d, \alpha, n} f\right)(\lambda) \\
& =\mathcal{F}_{W, \alpha+2 n}\left(\Delta_{d, \alpha+2 n} \mathcal{M}_{n}^{-1} f\right)(\lambda) \\
& =-\|\lambda\|^{2} \mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1}(f)(\lambda) \\
& =-\|\lambda\|^{2} \mathcal{F}_{W, \alpha, n}(f)(\lambda) .
\end{aligned}
$$

Generalized convolution product.

Definition 9. The generalized translation operators $\tau_{\alpha, n}^{x}, x \in \mathbb{R}^{d}$ associated with $\Delta_{d, \alpha, n}$ are defined on \mathbb{R}_{+}^{d} by

$$
\begin{equation*}
\tau_{\alpha, n}^{x} f=x_{d}^{2 n} \mathcal{M}_{n} \tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f \tag{45}
\end{equation*}
$$

where $\tau_{\alpha+2 n}^{x}$ are the Weinstein translation operators of order $\alpha+2 n$ given by (21).
Definition 10. The generalized convolution product of two functions $f \in E\left(\mathbb{R}^{d}\right)$ and $g \in D\left(\mathbb{R}^{d}\right)$ is defined by:

$$
\begin{equation*}
f *_{W, \alpha, n} g(x)=\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha, n}^{x} f(y) g(y) d \mu_{\alpha}(y) ; \quad \forall x \in \mathbb{R}_{+}^{d} . \tag{46}
\end{equation*}
$$

Proposition 14. Let f and g in $D_{n}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{equation*}
f *_{W, \alpha, n} g=\mathcal{M}_{n}\left(\mathcal{M}_{n}^{-1} f *_{W, \alpha+2 n} \mathcal{M}_{n}^{-1} g\right) . \tag{47}
\end{equation*}
$$

Proof. Using (23) and (45) we get

$$
\begin{aligned}
f *{ }_{W, \alpha, n} g(x) & =\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha, n}^{x} f(y) g(y) d \mu_{\alpha}(y) \\
& =\int_{\mathbb{R}_{+}^{d}} x_{d}^{2 n} \mathcal{M}_{n} \tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f(y) g(y) d \mu_{\alpha}(y) \\
& =x_{d}^{2 n} \int_{\mathbb{R}_{+}^{d}} \tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f(y) \mathcal{M}_{n}^{-1} g(y) d \mu_{\alpha+2 n}(y) \\
& =\mathcal{M}_{n}\left(\mathcal{M}_{n}^{-1} f *_{W, \alpha+2 n} \mathcal{M}_{n}^{-1} g\right)(x)
\end{aligned}
$$

Proposition 15. (i) For all $f \in L_{\alpha, n}^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty]$, and for all $x \in \mathbb{R}_{+}^{d}$

$$
\begin{equation*}
\left\|\tau_{\alpha, n}^{x} f\right\|_{p, \alpha, n} \leq x_{d}^{2 n}\|f\|_{p, \alpha, n} \tag{48}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\tau_{\alpha, n}^{x}\left(\Phi_{\lambda, \alpha, n}(y)\right)=\Phi_{\lambda, \alpha, n}(x) \Phi_{\lambda, \alpha, n}(y) \tag{49}
\end{equation*}
$$

Proof. From (24) and (45) we have

$$
\begin{aligned}
\left\|\tau_{\alpha, n}^{x} f\right\|_{p, \alpha, n} & =x_{d}^{2}\left\|\mathcal{M}_{n} \tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f\right\|_{p, \alpha, n} \\
& =x_{d}^{2}\left\|\tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f\right\|_{p, \alpha+2 n} \\
& \leq x_{d}^{2}\left\|\tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f\right\|_{p, \alpha+2 n} \\
& \leq x_{d}^{2}\left\|\mathcal{M}_{n}^{-1} f\right\|_{p, \alpha+2 n} \\
& =x_{d}^{2 n}\|f\|_{p, \alpha, n}
\end{aligned}
$$

which give (i).
From (39), (45) and Proposition 6 we get

$$
\begin{aligned}
\tau_{\alpha, n}^{x} \Phi_{\lambda, \alpha, n}(y) & =x_{d}^{2 n} \mathcal{M}_{n} \circ \tau_{\alpha+2 n}^{x} \circ \mathcal{M}_{n}^{-1} \Phi_{\lambda, \alpha, n}(y) \\
& =x_{d}^{2 n} \mathcal{M}_{n} \circ \tau_{\alpha+2 n}^{x} \Psi_{\lambda, \alpha, n}(y) \\
& =x_{d}^{2 n} y_{d}^{2 n} \tau_{\alpha+2 n}^{x} \Psi_{\lambda, \alpha, n}(y) \\
& =x_{d}^{2 n} y_{d}^{2 n} \Psi_{\lambda, \alpha, n}(x) \Psi_{\lambda, \alpha, n}(y) \\
& =\Phi_{\lambda, \alpha, n}(x) \Phi_{\lambda, \alpha, n}(y)
\end{aligned}
$$

which prove (ii).
Theorem 3. (i) For $f \in S\left(\mathbb{R}^{d}\right)$ and $y \in \mathbb{R}_{+}^{d}$

$$
\begin{equation*}
\mathcal{F}_{W, \alpha, n}\left(\tau_{\alpha, n}^{x} f\right)(\lambda)=\Phi_{\lambda, \alpha, n}(x) \mathcal{F}_{W, \alpha, n}(f(\lambda)), \quad \lambda \in \mathbb{R}_{+}^{d} \tag{50}
\end{equation*}
$$

(ii) For all $f \in E\left(\mathbb{R}^{d}\right)$ and $g \in S\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha, n}^{x} f(y) g(y) d \mu_{\alpha}(y)=\int_{\mathbb{R}_{+}^{d}} f(y) \tau_{\alpha, n}^{x} g(y) d \mu_{\alpha}(y) \tag{51}
\end{equation*}
$$

(iii) For all $f, g \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right), f *_{W, \alpha, n} g \in L_{\alpha}^{1}\left(\mathbb{R}_{+}^{d}\right)$, and

$$
\begin{equation*}
\mathcal{F}_{W, \alpha, n}\left(f *_{W, \alpha, n} g\right)=\mathcal{F}_{W, \alpha, n}(f) \mathcal{F}_{W, \alpha, n}(g) \tag{52}
\end{equation*}
$$

Proof. An easily combination of (25), (39), (42) and (45) shows that

$$
\begin{aligned}
\mathcal{F}_{W, \alpha, n}\left(\tau_{\alpha, n}^{x} f\right)(\lambda) & =x_{d}^{2 n} \mathcal{F}_{W, \alpha+2 n}\left(\tau_{\alpha+2 n}^{x} \mathcal{M}_{n}^{-1} f\right)(\lambda) \\
& =x_{d}^{2 n} \Psi_{\lambda, \alpha+2 n}(x) \mathcal{F}_{W, \alpha+2 n} \mathcal{M}_{n}^{-1}(f)(\lambda) \\
& =\Phi_{\lambda, \alpha, n}(x) \mathcal{F}_{W, \alpha, n}(f(\lambda))
\end{aligned}
$$

which prove (i).
For assertion (ii) using (23) and (45) we obtain

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d}} \tau_{\alpha, n}^{x} f(y) g(y) d \mu_{\alpha}(y) & =x_{d}^{2} \int_{\mathbb{R}_{+}^{d}} \tau_{\alpha+2 n}^{x}\left(\mathcal{M}_{n}^{-1} f(y)\right)\left(\mathcal{M}_{n}^{-1} g(y)\right) d \mu_{\alpha+2 n}(y) \\
& =x_{d}^{2} \int_{\mathbb{R}_{+}^{d}}\left(\mathcal{M}_{n}^{-1} f(y)\right) \tau_{\alpha+2 n}^{x}\left(\mathcal{M}_{n}^{-1} g(y)\right) d \mu_{\alpha+2 n}(y) \\
& =\int_{\mathbb{R}_{+}^{d}} f(y) \tau_{\alpha, n}^{x} g(y) d \mu_{\alpha}(y)
\end{aligned}
$$

which prove (ii).
For the last assertion using (47) we get

$$
f *_{W, \alpha, n} g=\mathcal{M}_{n}\left[\left(\mathcal{M}_{n}^{-1} f\right) *_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} g\right)\right]
$$

using (27) and (42) we get

$$
\begin{aligned}
\mathcal{F}_{W, \alpha, n}\left(f *_{W, \alpha, n} g\right) & =\mathcal{F}_{W, \alpha, n} \circ \mathcal{M}_{n}\left[\left(\mathcal{M}_{n}^{-1} f\right) *_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} g\right)\right] \\
& =\mathcal{F}_{W, \alpha+2 n} \circ \mathcal{M}_{n}^{-1} \circ \mathcal{M}_{n}\left[\left(\mathcal{M}_{n}^{-1} f\right) *_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} g\right)\right] \\
& =\mathcal{F}_{W, \alpha+2 n}\left[\left(\mathcal{M}_{n}^{-1} f\right) *_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} g\right)\right] \\
& =\mathcal{F}_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} f\right) \mathcal{F}_{W, \alpha+2 n}\left(\mathcal{M}_{n}^{-1} g\right) \\
& =\mathcal{F}_{W, \alpha, n}(f) \mathcal{F}_{W, \alpha, n}(g)
\end{aligned}
$$

References

[1] R. F. Al Subaie and M. A. Mourou, Transmutation Operators Associated with a Bessel Type Operator on The Half Line and Certain of Their Applications, Tamsui Oxford Journal of Information and Mathematical Sciences, 29(2013), 329-349.
[2] Hassen Ben Mohamed, Nèji Bettaibi, Sidi Hamidou Jah, Sobolev Type Spaces Asociated with the Weinstein Operator, Int. Journal of Math. Analysis, 5(2011), , 1353-1373.
[3] Hatem Mejjaoli, Ahsaa, Makren Salhi, Uncertainty Principles for the Weinstein transform, Czechoslovak Mathematical Journal, 61(2011), 941-974.
[4] Youssef Othmani and Khalifa Trimèche, Real Paley-Wiener Theorems Associated with the Weinstein Operator, Mediterr. J. Math. 3(2006), 105-118.

Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca 20100, Morocco

[^1]
[^0]: 2010 Mathematics Subject Classification. 42A38, 44A35, 34B30.
 Key words and phrases. generalized Weinstein operator; generalized Weinstein transform; generalized convolution; generalized translation operators; harmonic analysis.

[^1]: * Corresponding author

