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UNIVALENT BIHARMONIC MAPPINGS AND LINEARLY

CONNECTED DOMAINS

Z. ABDULHADI1 AND L. EL HAJJ2,∗

Abstract. A four times continuously differentiable complex-valued function

F = u + iv in a simply connected domain Ω is biharmonic if the laplacian
of F is harmonic. Every biharmonic mapping F in Ω has the representation

F = |z|2G + K, where G and K are harmonic in Ω. This paper investigates

the relationship between the univalence of F and of K using the concept of
linearly connected domains.

1. Introduction

A planar harmonic mapping in a simply connected domain Ω ⊂ C is a complex-
valued harmonic function f(z) defined on Ω, where z = x+ iy. The mapping f has
a canonical decomposition f = h+ g, where h and g are analytic (holomorphic) in
Ω (see [13, 14]). We say that f is locally univalent and sense preserving if and only
if its Jacobian Jf (z) is positive, where Jf (z) is given by

Jf (z) = |fz(z)|2 − |fz(z)|2 = |h′(z)|2 − |g′(z)|2,
(See Lewy [11]).
Clunie and Sheil-Small made the following important observation : f is locally

univalent and orientation -preserving in D if and only if |g′(z)| < |h′(z)| in Ω; or

equivalently if h′(z) 6= 0 and the dilatation ω(z) = g′(z)
h′(z) has the property |ω(z)| < 1.

A four times continuously differentiable complex-valued function F = u + iv in
a simply connected domain Ω is biharmonic if the laplacian of F is harmonic. Note
that 4F is harmonic in Ω, if 4F satisfies Laplace’s equation 4(4F ) = 0, where

4 = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
.

Every harmonic function is biharmonic but not necessarily the converse. More-
over, it is easy to see that every biharmonic mapping F in Ω has the representation

(1.1) F = |z|2G+K,

where G and K are harmonic in Ω and they can be expressed as,

G = g1 + g2,(1.2)

K = k1 + k2,
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where g1, g2, k1 and k2 are analytic in Ω (for details see [2]). Note that the
composition F ◦ φ of a harmonic function F with analytic function φ is harmonic,
while this is not true when F is biharmonic.

Biharmonic mappings arise in a lot of physical situations, particularly in fluid
dynamics and elasticity problems, and have many important applications in engi-
neering and biology. Most important applications of the theory of functions of a
complex variable were obtained in the plane theory of elasticity and in the approxi-
mate theory of plates subject to normal loading. That is, in cases when the solutions
are biharmonic functions or functions associated with them ( see [15, 16 ]). More-
over, biharmonic Mapping are closely related to the theory of Laguerre Minimal
Surfaces (for details see [5, 7, 8, 9, 17, 18]). Investigation of biharmonic mappings
in the context of geometric function theory started only recently (for details see[ 1,
2, 3, 4, 10 ]). For example, in [2], Abdulhadi, AbuMuhanna and Khuri analyze the
univalence of the solutions of the biharmonic equations. Throughout we consider
harmonic and biharmonic functions defined on the unit disk D = {z : |z| < 1}.

Definition 1. A domain Ω ⊂ C is linearly connected if there exists a constant
M < ∞ such that any two points w1, w2 ∈ Ω are joined by a path γ, γ ⊂ Ω, of
length `(γ) ≤M |w1 − w2|.

Such a domain is necessarily a Jordan domain, and for piecewise smoothly bound-
ed domains, linear connectivity is equivalent to the boundary having no inward-
pointing cusps.

In [12], Chuaqui and Hermandez, considered the relationship between the har-
monic mapping f = h+ g and its analytic factor h on linearly connected domains.
They show that if h is an analytic univalent function, then every harmonic map-
ping f = h + g with dilatation |ω| < c is univalent if and only if h(D) is linearly
connected.

In this paper, we scrutinize the relationship between the univalence of the bi-
harmonic function F = |z|2G + K and the univalence of the harmonic function
K.

2. Main results

In our first results, we deduce the univalence of F (z) from the univalence of K(z).
We first consider subclasses, where G,K are assumed to be analytic or antianalytic.

Theorem 1. Let F (z) = |z|2G(z)+K(z) be a biharmonic function in the unit disk
D, where G,K are analytic. If K is univalent and K(D) is a linearly connected
domain with constant M , and if

2|G|+ |G′|
|K ′|

<
1

M
,

then F (z) is univalent.

Proof. Let H(z) = |z|2G(z). We define ϕ = H ◦K−1. Given w ε K(D), we claim
w+ϕ(w) is univalent. Assume w+ϕ(w) is not univalent, then there exists w1 6= w2

such that

ϕ(w2)− ϕ(w1) = w1 − w2.

Let γ be a path in K(D) joining w1, w2 such that l(γ) ≤M |w2 − w1|.
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Then

|ϕ(w2)− ϕ(w1)| ≤
∣∣∣∣∫
γ

ϕwdw + ϕwdw

∣∣∣∣ .
But

ϕw = Hz(K
−1)w +Hz(K−1)w =

Hz

K ′
=
zG+ |z|2G′

K ′
,

ϕw = Hz(K
−1)w +Hz(K−1)w =

Hz

K
′ =

zG

K
′ ,

where z = K−1(w) ∈ D.
Therefore,

|ϕ(w2)− ϕ(w1)| ≤
∫
γ

sup
D

|2G|+ |G′|
|K ′|

|dw| < 1

M
l(γ) < |w2 − w1|

which is a contradiction. Hence F (z) is univalent. �

Remark 1. In the above proof , if K(D) is convex we may take M = 1, and thus

F will be univalent as long as 2|G|+|G′|
|K′| < 1.

The special case M = 1 when K is convex, is an important special case and we
will state it separately as a corollary.

Corollary 1. Let F (z) = |z|2G(z) + K(z) be a biharmonic function in the unit
disk D, where G,K are analytic. If K is univalent and convex with

2|G|+ |G′|
|K ′|

< 1,

then F (z) is univalent.

As a consequence of Theorem 1, we have the following corollary :

Corollary 2. Let F (z) = |z|2G(z)+K(z) be a biharmonic function in the unit disk
D, where G,K are antianalytic. If K is univalent and K(D) is a linearly connected
domain with constant M , and

2|G|+ |Gz|
|Kz|

<
1

M
,

then F (z) is univalent.

Our next result is the general case, where G ,K are harmonic in the unit disk
D :

Theorem 2. Let F (z) = |z|2G(z)+K(z) be a biharmonic function in the unit disk
D, where G,K are harmonic. If K is univalent and K(D) is a linearly connected
domain with constant M , and if

2|G|+ |g′1|(1 + |ωG|)
|k′1|(1− |ωK |)

<
1

M
,

then F (z) is univalent. In the above ωK , ωG denotes the dilations ωK =
k′2
k′1

,

ωG =
g′2
g′1
.
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Proof. Let H(z) = |z|2G(z). We define

ϕ = H ◦K−1.

Given w ε K(D), we claim w + ϕ(w) is univalent.
Assume w + ϕ(w) is not univalent, then there exists w1 6= w2 such that

ϕ(w2)− ϕ(w1) = w1 − w2.

Let γ be a path in K(D) joining w1, w2 such that l(γ) ≤M |w2 − w1|.Then

|ϕ(w2)− ϕ(w1)| ≤
∣∣∣∣∫
γ

ϕwdw + ϕwdw

∣∣∣∣ ≤ ∫
γ

(|ϕw|+ |ϕw|) |dw|.

But
ϕw = Hz(K

−1)w +Hz(K−1)w

ϕw = Hz(K
−1)w +Hz(K−1)w.

Differentiating K−1(K(z)) = z, we show that

(K−1)w =
k′1

|k′1|2 − |k′2|2
, (K−1)w =

−k′2
|k′1|2 − |k′2|2

.

It follows

ϕw = Hz(K
−1)w +Hz(K−1)w

= (zG+ |z|2g′1)
k′1

|k′1|2 − |k′2|2
+ (zG+ |z|2g′2)

−k′2
|k′1|2 − |k′2|2

,

ϕw = Hz(K
−1)w +Hz(K−1)w

= (zG+ |z|2g′1)
−k′2

|k′1|2 − |k′2|2
+ (zG+ |z|2g′2)

k′1
|k′1|2 − |k′2|2

.

Therefore,

|ϕw|+ |ϕw| ≤
2|z||G|(|k′1|+ |k′2|)
|k′1|2 − |k′2|2

+
|z|2(|g′1||k′2|+ |g′2||k′1|)

|k′1|2 − |k′2|2

=
2|z||G|+ |z|2 (|g′1|+ |g′2|)

|k′1| − |k′2|

=
2|z||G|+ |z|2|g′1|(1 + |ωG|)

|k′1|(1− |ωK |)
,

where z = K−1(w) ∈ D. Then we have

|ϕ(w2)− ϕ(w1)| ≤
∫
γ

sup
D

2|G|+ |g′1|(1 + |ωG|)
|k′1|(1− |ωK |)

|dw| < 1

M
l(γ) < |w2 − w1|

which is a contradiction. Hence F (z) is univalent. �

Corollary 3. Let F (z) = |z|2G(z) + K(z) be a biharmonic function in the unit
disk D, where G,K are harmonic. If K is univalent and convex with

2|G|+ |g′1|(1 + |ωG|)
|k′1|(1− |ωK |)

< 1,

then F (z) is univalent.
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The following Corollary follows immediately from Theorem 2, for the case when
G is analytic.

Corollary 4. Let F (z) = |z|2G(z) + K(z) be a biharmonic function in the unit
disk D, where G is analytic, K is harmonic. If K is univalent and K(D)is a
linearly connected domain with constant M , and if

2|G|+ |G′|
|k′1|(1− |ωK |)

<
1

M
,

then F (z) is univalent. In the above ωk denotes the dilation ωK =
k′2
k′1
.

In each of the previous results, it follows under the same conditions that F (D)
will also be linearly connected. We will prove it for the general case and the proof
is along the same lines for the special cases.

Proposition 1. Let F (z) = |z|2G(z) +K(z) be a biharmonic function in the unit
disk D, where G ,K are harmonic. If K is univalent and K(D) is a linearly
connected domain with constant M , and if

2|G|+ |g′1|(1 + |ωg|)
|k′1|(1− |ωk|)

≤ C,

where C < 1
M , then F (D) is linearly connected.

Proof. Given w ∈ Ω = K(D), we let Ψ(w) = w + ϕ(w), where ϕ = H ◦ K−1,
and H = |z|2G. Since K is univalent, we may look at R = F (D), as the image of
Ω = K(D) under the mapping Ψ, and we show Ψ(Ω) is linearly connected. Let
ς1 = Ψ(w1), ς2 = Ψ(w2), w1, w2 ∈ Ω. Since K(D) is a linearly connected domain,
then there exists a curve γ ⊂ Ω satisfying l(γ) ≤M |w2 − w1|.

Let Γ = Ψ(γ). In the proof of Theorem 2, we have showed that

|ϕw|+ |ϕw| ≤
2|G|+ |g′1|(1 + |ωG|)
|k′1|(1− |ωK |)

< C,

it follows

|Ψw|+ |Ψw| ≤ 1 + |ϕw|+ |ϕw| < 1 + C.

Hence we have,

l(Γ) =

∫
Γ

dς ≤
∫
γ

(|Ψw|+ |Ψw|) dw < (1 + C)l(γ) ≤ (1 + C)M |w2 − w1|.

But,

|ς1 − ς2| = |w1 − w2 + ϕ(w1)− ϕ(w2)| ≥ |w1 − w2| − |ϕ(w1)− ϕ(w2)|

≥ |w1 − w2| −
∫
γ

(|ϕw|+ |ϕw|) dw

> |w1 − w2| − Cl(γ) ≥ (1− CM)|w1 − w2|.
Then we get,

l(Γ) ≤ (1 + C)M

1− CM
|ς1 − ς2|

and so R is linearly connected with constant (1+C)M
1−CM . �

In our next result, we deduce the univalence of K from the univalence of F .



6 ABDULHADI AND HAJJ

Theorem 3. Let F (z) = |z|2G(z)+K(z) be a biharmonic function in the unit disk
D. Suppose F is univalent and F (D) is a linearly connected domain with constant
M and satisfies

2|G|+ |Gz|+ |Gz|
||Fz| − |Fz||

<
1

M
,

then K(z) is univalent.

Proof. Let H(z) = |z|2G(z). Aiming for a contradiction assume K(z) is not univa-
lent, then there exists z1 6= z2 , such that K(z1) = K(z2). Hence we get

F (z1)− F (z2) = H(z1)−H(z2).

Given w = F (z)ε F (D), the above equation is equivalent to

w1 − w2 = ϕ(w2)− ϕ(w1),

where
ϕ = H ◦ F−1.

Let γ be a path in F (D) joining w1, w2 such that l(γ) ≤M |w2 − w1|.
Then

|ϕ(w2)− ϕ(w1)| ≤
∣∣∣∣∫
γ

ϕwdw + ϕwdw

∣∣∣∣ ≤ ∫
γ

(|ϕw|+ |ϕw|) |dw|.

But
ϕw = Hz(F

−1)w +Hz(F−1)w

ϕw = Hz(F
−1)w +Hz(F−1)w.

Differentiating F−1(F (z)) = z, we get the following two equations

(F−1)wFz + (F−1)wF z = 1

(F−1)wFz + (F−1)wF z = 0.

Solving the above system we get

(F−1)w =
Fz
JF

, (K−1)w =
−Fz
JF

,

where JF denotes the jacobian Jf = |Fz|2 − |Fz|2.
It follows,

ϕw = Hz(F
−1)w +Hz(F−1)w = Hz

Fz
JF
−Hz

Fz
JF

ϕw = Hz(F
−1)w +Hz(F−1)w = −Hz

Fz
JF

+Hz
Fz
JF

.

Therefore,

|ϕw|+ |ϕw| ≤
|Hz||Fz|+ |Hz||Fz|+ |Hz||Fz|+ |Hz||Fz|

|JF |

=
(|Hz|+ |Hz|)(|Fz|+ |Fz|)

|JF |

=
|Hz|+ |Hz|
||Fz| − |Fz||
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≤ 2|G|+ |Gz|+ |Gz|
||Fz| − |Fz||

.

Hence

|ϕ(w2)− ϕ(w1)| ≤
∫
γ

sup
D

2|G|+ |Gz|+ |Gz|
||Fz| − |Fz||

|dw| < 1

M
l(γ) < |w2 − w1|,

which is a contradiction. Thus K(z) is univalent. �

Corollary 5. Let F (z) = |z|2G(z) + K(z) be a biharmonic function in the unit
disk D, where G ,K are harmonic. If K is univalent and convex with

2|G|+ |g′1|(1 + |ωG|)
|k′1|(1− |ωK |)

< 1,

then K(z) is univalent.
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