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ITERATIVE SOLUTIONS OF NONLINEAR INTEGRAL

EQUATIONS OF HAMMERSTEIN TYPE

ABEBE R. TUFA, H. ZEGEYE∗ AND M. THUTO

Abstract. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz

monotone mappings with Lipschtiz constants L1 and L2, respectively. Suppose
that the Hammerstein type equation u + KFu = 0 has a solution in H. It

is our purpose in this paper to construct a new explicit iterative sequence

and prove strong convergence of the sequence to a solution of the generalized
Hammerstein type equation. The results obtained in this paper improve and

extend known results in the literature.

1. Introduction

Let H be a real Hilbert space. A mapping A : D(A) ⊂ H → H is said to be
L−Lipschitz if there exists L ≥ 0 such that

||Ax−Ay|| ≤ L||x− y||, for all x, y ∈ D(A).(1.1)

A is called nonexpansive mapping if L = 1 and it is called contraction mapping if
L < 1. It is easy to observe that the class of Lipschitz mappings includes the class
of nonexpansive and hence the class of contraction mappings.

A mapping A : D(A) ⊂ H → H is said to be γ− inverse strongly monotone if there
exists a positive real number γ such that

〈x− y,Ax−Ay〉 ≥ γ||Ax−Ay||2, for all x, y ∈ D(A).(1.2)

If A is γ−inverse strongly monotone, then it is Lipschitz continuous with Lipschitz
constant 1

γ . A is said to be α-strongly monotone if for each x, y ∈ D(A) there exists

α > 0 such that

〈x− y,Ax−Ay〉 ≥ α||x− y||2.(1.3)

A mapping A : D(A) ⊂ H → H is called monotone if for each x, y ∈ D(A), the
following inequality holds:

〈x− y,Ax−Ay〉 ≥ 0.(1.4)

Evidently the set of γ-inverse strongly monotone and the set of α-strongly mono-
tone mappings are included in the set of monotone mappings.
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A monotone mapping A : H → H is said to be maximal monotone if R(I + λA),
the range of (I + λA), is H for every λ > 0, where I is the identity mapping on
H. This is equivalent to saying that, a monotone mapping A is said to be maximal
monotone if it is not properly contained in any other monotone mapping.

For a maximal monotone mapping A and r > 0, a mapping Jr : R(I+rA)→ D(A)
given by Jr = (I + rA)−1 is called the resolvent of A. It is well known that the
resolvent operator, Jr, is single valued and nonexpansive mapping.

The class of monotone mappings is one of the most important classes of mappings
among nonlinear mappings. Interests in monotone mappings stems mainly from
the fact that many physically significant problems (see e.g [20]) can be modelled
by initial value problems of the form:

x′(t) +Ax(t) = 0, x(0) = x0,(1.5)

where A is a monotone mapping in an Hilbert space H. Such evolution equation
can be found in the heat, wave and Schrödinger equations. If x(t) is independent
of t, the equation (1.5) reduces to

Au = 0,(1.6)

whose solutions correspond to the equilibrium points of the system (1.5). A variety
of problems, for example, convex optimization, linear programming, and elliptic
differential equations can be formulated as finding a zero of maximal monotone
mappings. Consequently, many research efforts (see, e.g., Zarantonello [16], Minty
[11], Kacurovskii [9] and Vainberg and Kacurovskii [14]) have been devoted to
methods of finding appropriate solutions, if it exists, of equation (1.6) and then

u+Au = 0.(1.7)

One important generalization of equation (1.7) is the so-called equation of Ham-
merstein type (see e.g., [8]), where a nonlinear integral equation of Hammerstein
type is one of the form:

(1.8) u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = h(x),

where dy is a σ-finite measure on the measure space Ω, the real kernel k is defined
on Ω×Ω, f is a real-valued function defined on Ω×R and is, in general, nonlinear
and h is a given function on Ω. If we now define a mapping K by

Kv(x) :=

∫
Ω

k(x, y)v(y)dy; x ∈ Ω,

and the so-called superposition or Nemytskii mapping by Fu(y) := f(y, u(y)) then,
the integral equation (1.8) can be put in operator theoretic form as follows:

(1.9) u+KFu = 0,

where, without loss of generality, we have taken h ≡ 0. Given h in the function s-
pace H, the integral equation then asks for some u in H such that (I+KF )(u) = h.
We note that if K and F are monotone, then A := I +KF need not be necessarily
monotone.
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Equations of Hammerstein type play a crucial role in the theory that arise in differ-
ential equations, for instance, elliptic boundary value problems whose linear parts
possess Greens functions can, as a rule, be transformed into the form (1.9) (see e.g.,
[12], Chapter IV).

Several existence and uniqueness theorems have been proved for equations of Ham-
merstein type (see e.g., [1, 2, 3, 4, 7]). In general, equations of Hammerstein type
(1.9) are nonlinear and there is no known standard method to find solutions for
them. Consequently, methods of approximating solutions of such equations are of
interest.

In 2004, Chidume and Zegeye [6] used an auxiliary operator (in their proof), defined
in a real Hilbert space in terms of K and F that is monotone whenever K and F
are, and constructed an iterative procedure that converges strongly to the solution
of Equation (1.9). In fact, they proved the following theorem.

Theorem 1.1. ([6]) Let H be a real Hilbert space. Let F : D(F ) ⊂ H → H,K :
D(K) ⊂ H → H be bounded monotone mappings with R(F ) ⊆ D(K) where D(F )
and D(K) are closed convex subsets of H satisfying certain condition. Suppose the
equation 0 = u+KFu has a solution in D(F ). Let {λn} and {θn} be real sequences
in (0, 1] satisfying the following conditions:

(i) lim
n→∞

θn = 0, (ii)
∑∞
n=1 λnθn = ∞, lim

n→∞

λn
θn

= 0, (iii) lim
n→∞

( θn−1

θn
− 1
)

λnθn
= 0.

Let sequences {un} ⊆ D(F ) and {vn} ⊆ D(K) be generated from u0 ∈ D(F ) and
v0 ∈ D(K), respectively by{

un+1 = PD(F )

(
un − λn(Fun − vn + θn(un − w1))

)
,

vn+1 = PD(K)

(
vn − λn(Kvn + un + θn(vn − w2))

)(1.10)

where w1 ∈ D(F ) and w2 ∈ D(K) are arbitrary but fixed. Then, there exists d > 0
such that if λn ≤ d and λn

θn
≤ d2 for all n ≥ 0, the sequences {un} and {vn} con-

verge strongly to u∗ and v∗, respectively in H, where u∗ is a solution of the equation
0 = u+KFu and v∗ = Fu∗.

In 2012, Chidume and Djitte [5] introduced an iterative scheme and proved the
following Theorem.

Theorem 1.2. ([5]) Let H be a real Hilbert space. Let F,K : H → H be a bounded,
monotone mapping and satisfy the range condition. Let {un} and {vn} be sequences
in H defined iteratively from arbitrary u1, v1 ∈ H by{

un+1 = un − λn(Fun − vn)− λnθn(un − u1), n ≥ 1
vn+1 = vn − λn(Kvn + un)− λnθn(vn − v1), n ≥ 1

(1.11)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions.

(i) lim
n→∞

θn = 0, (ii)
∑∞
n=1 λnθn =∞, λn = o(θn), (iii) lim

n→∞

( θn−1

θn
− 1
)

λnθn
= 0.

Suppose that u+KFu = 0 has a solution in H. Then, there exists a constant d0 > 0
such that if λn ≤ d0θn, for all n ≥ n0 for some n0 ≥ 1, then the sequence {un}
converges to u∗, a solution of u+KFu = 0.
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More recently, Zegeye and Malonza [17] introduced a method which contains an
auxiliary operator, defined in an Hilbert space in terms of K and F which, under
certain conditions, is monotone whenever K and F are, and whose zeros are solu-
tions of equation (1.9). They proved the following Theorem.

Theorem 1.3. ([17]) Let H be a real Hilbert space. Let F : H → H and K : H →
H be continuous and bounded monotone operators. Let E := H × H with norm
||z||2E = ||u||2H + ||v||2H , for z = (u, v) ∈ E and let a map T : E → E defined by
Tz = T (u, v) := (Fu− v, u+Kv) be γ−inverse strongly monotone. Let a sequence
{xn} be generated by:  x0 = w ∈ E chosen arbitrarily,

wn = xn − γnTxn,
xn+1 = αnw + βnxn + λnwn,

(1.12)

where αn, βn, γn, λn ∈ (0, 1) satisfy αn + βn + λn = 1 and limn→∞ αn = 0,∑∞
n=1 αn = ∞; 0 < β ≤ βn, λn, for all n ≥ 0 and 0 < a0 ≤ γn ≤ γ, for some

a0, β ∈ R. Then the sequence {xn} converges strongly to x∗ = [u∗, v∗] ∈ E, where
u∗ is a solution of the equation 0 = u+KFu and v∗ = Fu∗.

We observe that in Theorem 1.1 and Theorem 1.2, the convergence of the Schemes
to the solution of the equation u+KFu = 0 is granted by the existence of a constant
which is not clear how it is calculated. In Theorem 1.3, the auxiliary operator T is
used in the iteration scheme and the condition imposed on T , which is γ−inverse
strongly monotone, is strong. These lead us to the following question.

Question: Is it possible to construct an iterative scheme which converges strongly
to a solution of Hammerstein type equation (1.9) which does not require the exis-
tence of a constant and does not involve an auxiliary operator?

It is our purpose in this paper to construct a new explicit iterative sequence and
prove strong convergence of the sequence to a solution of the generalized Hammer-
stein type equation (1.9). Our theorems provide an affirmative answer to the above
question in Hilbert spaces. The results obtained in this paper improve and extend
the results in this direction.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of
H. It is well known that for every point x ∈ H, there exists a unique nearest point
in C, denoted by PCx, i.e,

||x− PCx|| ≤ ||x− y|| for all y ∈ C.(2.1)

The mapping PC is called the metric projection of H onto C and characterized by
the following property (see, e.g., [13]):

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0, for all x ∈ H, y ∈ C.(2.2)

In the sequel we shall make use of the following lemmas.
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Lemma 2.1. [13] Let H be a real Hilbert space and A : H → H be a monotone
mapping. Then, A is maximal monotone if and only if R(I + rA) = H for some
r > 0.

Lemma 2.2. [20] Let H be a real Hilbert space. If A : H → H is monotone and
continuous, then A is maximal monotone.

Lemma 2.3. [18] Let H be a real Hilbert space. Then for all xi ∈ H and αi ∈ [0, 1]
for i = 0, 1, 2, 3, ..., n such that α0 + α1 + α2 + ... + αn = 1 the following equality
holds:

||α0x0 + α1x1 + ...+ αnxn||2 =

n∑
i=1

αi||xi||2 −
∑

1≤i,j≤n

αiαj ||xi − xj ||2.

Lemma 2.4. Let H be a real Hilbert space. Then, for any given x, y ∈ H, the
following inequality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉.

Lemma 2.5. [15] Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions:

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.6. [19] Let H be a real Hilbert space and let A : H → H be a continuous
monotone mapping. Then, N(A) = {x ∈ H : Ax = 0} is closed and convex.

Lemma 2.7. [10] Let {an} be sequences of real numbers such that there exists a
subsequence {ni} of {n} such that ani < ani+1, for all i ∈ N. Then, there exists a
nondecreasing sequence {mk} ⊂ N such that mk →∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.8. [6] Let H be a real Hilbert space. Let E = H ×H with norm
||z||2E = ||u||2H + ||v||2H for z = (u, v) ∈ E. Then, E is a real Hilbert space and for
w1 = (u1, v1), w2 = (u2, v2) ∈ E, we have that 〈w1, w2〉 = 〈u1, u2〉+ 〈v1, v2〉.

Lemma 2.9. [6] Let C and D be nonempty subsets of a real Hilbert space H. Let
F : C → H, K : D → H be monotone mappings. Let E = H × H with norm
||z||2E = ||u||2H + ||v||2H for z = (u, v) ∈ E. Define a mapping T : C × D → E by
Tz = T (u, v) := (Fu− v,Kv + u). Then, T is monotone mapping.

3. Main Result

We first prove the following lemma which will be used in the sequel.

Lemma 3.1. Let C and D be nonempty subsets of a real Hilbert space H. Let
F : C → H, K : D → H be monotone mappings. Let E = H × H with norm
||z||2E = ||u||2H + ||v||2H for z = (u, v) ∈ E. Define a mapping T : C × D → E by
Tz = T (u, v) := (Fu− v,Kv + u). Then we have the following.
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(a) If F and K are Lipschitz, then T is Lipschitz.
(b) If F and K are maximal monotone, then T is maximal monotone.

Proof. Since F and K are monotone, by Lemma 2.9, T is monotone mapping.

(a) Let z1 = (u1, v1), z2 = (u2, v2) ∈ C × D and let L1 and L2 be Lipschitz
constants of F and K, respectively. Then, we have

||Tz1 − Tz2||2 = ||(Fu1 − v1,Kv1 + u1)− (Fu2 − v2,Kv2 + u2)||2

= ||Fu1 − Fu2 − (v1 − v2)||2 + ||Kv1 −Kv2 + (u1 − u2)||2

≤ ||Fu1 − Fu2||2 + 2||Fu1 − Fu2||||v1 − v2||+ ||v1 − v2||2

+||Kv1 −Kv2||2 + 2||Kv1 −Kv2||||u1 − u2||+ ||u1 − u2||2

≤ ||Fu1 − Fu2||2 + ||Fu1 − Fu2||2 + ||v1 − v2||2 + ||v1 − v2||2

+||Kv1 −Kv2||2 + ||Kv1 −Kv2||2 + ||u1 − u2||2 + ||u1 − u2||2

≤ 2||Fu1 − Fu2||2 + 2||v1 − v2||2 + 2||Kv1 −Kv2||2 + 2||u1 − u2||2

≤ 2L2
1||u1 − u2||2 + 2||v1 − v2||2 + 2L2

2||v1 − v2||2 + 2||u1 − u2||2

≤ 2(L2
1 + 1)||u1 − u2||2 + 2(L2

2 + 1)||v1 − v2||2

≤ L2(||u1 − u2||2 + ||v1 − v2||2),

where L =
√

2 max{
√
L2

1 + 1,
√
L2

2 + 1}. Thus ||Tz1 − Tz2|| ≤ L||z1 − z2||
and hence T is Lipschitz mapping.

(b) Let 0 < r < 1. Then, since F and K are maximal monotone we have
that R(I + rF ) = H and R(I + rK) = H. Moreover, the resolvent JFr =
(I + rF )−1 of F and JKr = (I + rK)−1 of K are nonexpansive. Now, let
h = (h1, h2) ∈ E. Define G := E → E by Gw = (JFr (h1 +rv), JKr (h2−ru))
for all w = (u, v) ∈ E. By the nonexpansiveness of JFr and JKr , we have
||Gw1 −Gw2|| ≤ r||w1 −w2|| , for all w1, w2 ∈ E. Thus, G is a contraction
mapping. Then, by the Banach contraction principle, G has a unique fixed
point say w∗ = (u∗, v∗) ∈ E. That is, Gw∗ = w∗, where u∗ = JFr (h1 + rv∗)
and v∗ = JKr (h2 − ru∗). Thus, for every h = (h1, h2) ∈ E, there exists
w∗ = (u∗, v∗) ∈ E such that (I + rT )(w∗) = h. Hence, R(I + rT ) = E.
Therefore, by Lemma 2.1, T is maximal monotone.

�

Now, consider the sequences {un}, {vn} ⊂ H and let u′n = F (un − γn(Fun −
vn)), v′n = K(vn − γn(Kvn + un)). Then through out the rest of the paper, we use
the following notations.

i) tn = un − γn
[
u′n − vn + γn(Kvn + un)

]
,

ii) sn = vn − γn
[
v′n + un − γn(Fun − vn)

]
.

We now prove the following theorem.

Theorem 3.2. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz
monotone mappings with Lipschtiz constants L1 and L2, respectively. Suppose that
the equation 0 = u + KFu has a solution in H. Let ū, v̄ ∈ H and the sequences
{un}, {vn} ⊂ H be generated from arbitrary u0, v0 ∈ H by{

un+1 = αnū+ (1− αn)(anun + (1− an)tn),
vn+1 = αnv̄ + (1− αn)(anvn + (1− an)sn),

(3.1)
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where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2 max{

√
L2

1 + 1,
√
L2

2 + 1}, {an} ⊂ (0, r] ⊂
(0, 1) and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim

n→∞
αn = 0 and

∑
αn =∞.

Then, the sequences {un} and {vn} converge strongly to u∗ and v∗ respectively, in
H, where u∗ is the solution of 0 = u+KFu and v∗ = Fu∗.

Proof. F and K are maximal monotone by Lemma 2.2. Now, let E := H × H
be endowed with the norm ||z||2E = ||u||2H + ||v||2H , for z = (u, v) ∈ E. Define
T : E → E by T (z) = T (u, v) := (Fu − v,Kv + u). Then, by Lemma 3.1, T is
Lipschtiz and maximal monotone mapping. we also observe that u∗ is the solution
of 0 = u + KFu if and only if z∗ = (u∗, v∗) is a solution of 0 = Tz for v∗ = Fu∗.
Thus, N(T ) = {z ∈ E : Tz = 0} 6= ∅. Now, for initial point z0 = (u0, v0) ∈ E,
define the sequence {zn} by

{
xn = zn − γnTzn,
zn+1 = αnw + (1− αn)[anzn + (1− an)(zn − γnTxn)],

(3.2)

where w = (ū, v̄). Observe that we have zn = [un, vn], where {un} and {vn} are
sequences in (3.1). Let yn = zn−γnTxn and p ∈ N(T ). Then, by the monotonicity
of T, we have

||yn − p||2 = ||zn − γnTxn − p||2 − ||zn − γnTxn − yn||2

= ||zn − p||2 − ||zn − yn||2 + 2γn〈Txn, p− yn〉
= ||zn − p||2 − ||zn − yn||2 + 2γn

(
〈Txn − Tp, p− xn〉

+〈Tp, p− xn〉+ 〈Txn, xn − yn〉
)

≤ ||zn − p||2 − ||zn − yn||2 + 2γn〈Txn, xn − yn〉
= ||zn − p||2 − ||zn − xn||2 − 2〈zn − xn, xn − yn〉
−||xn − yn||2 + 2γn〈Txn, xn − yn〉

= ||zn − p||2 − ||zn − xn||2 − ||xn − yn||2

+2〈zn − γnTxn − xn, yn − xn〉.(3.3)

But since xn = zn − γnTzn and T is Lipschitzian we obtain

〈zn − γnTxn − xn, yn − xn〉
= 〈zn − γnTzn − xn, yn − xn〉+ 〈γnTzn − γnTxn, yn − xn〉
≤ 〈γnTzn − γnTxn, yn − xn〉 ≤ γnL||zn − xn||||yn − xn||.(3.4)

Thus, from (3.3) and (3.4) we have that

||yn − p||2 ≤ ||zn − p||2 − ||zn − xn||2 − ||xn − yn||2 + 2Lγn||zn − xn||||yn − xn||
≤ ||zn − p||2 − ||zn − xn||2 − ||xn − yn||2

+γnL(||zn − xn||2 + ||xn − yn||2)

≤ ||zn − p||2 + (γnL− 1)||zn − xn||2 + (γnL− 1)||xn − yn||2.(3.5)
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Thus, from (3.2), Lemma 2.3, and (3.5) we have the following:

||zn+1 − p||2 = ||αnw + (1− αn)[anzn + (1− an)yn]− p||2

≤ αn||w − p||2 + (1− αn)||an(zn − p) + (1− an)(yn − p)||2

≤ αn||w − p||2 + (1− αn)
[
an||zn − p||2 + (1− an)||yn − p||2

]
≤ αn||w − p||2 + (1− αn)an||zn − p||2 + (1− αn)(1− an)

[
||zn − p||2

+(γnL− 1)||zn − xn||2 + (γnL− 1)||xn − yn||2
]
.

= αn||w − p||2 + (1− αn)||zn − p||2 + (1− αn)(1− an)(3.6)

×(γnL− 1)
[
||zn − xn||2 + ||xn − yn||2

]
Now, since from the hypotheses, we have γn <

1
L for all n ≥ 1, the inequality (3.6)

implies that

||zn+1 − p||2 ≤ αn||w − p||2 + (1− αn)||zn − p||2.(3.7)

Therefore, by induction we get that

||zn+1 − p||2 ≤ max{||z0 − p||2, ||w − p||2},∀n ≥ 0,

which implies that {zn}, {xn}, and {yn} are bounded.

Let z∗ = PN(T )w. Then, using (3.2), Lemma 2.4, Lemma 2.3, (3.5), (3.6) and the

fact that γn <
1
L , we obtain the following:

||zn+1 − z∗||2 = ||αn(w − z∗) + (1− αn)
[
anzn + (1− an)yn − z∗

]
||2

≤ (1− αn)||anzn + (1− an)yn − z∗||2

+2αn〈w − z∗, zn+1 − z∗〉
≤ (1− αn)an||zn − z∗||2 + (1− αn)(1− an)||yn − z∗||2

+2αn〈w − z∗, zn+1 − z∗〉

≤ (1− αn)
(
an||zn − z∗||2 + (1− an)[||zn − z∗||2 + (γnL− 1)(||zn − xn||2

+||xn − yn||2)]
)

+ 2αn〈w − z∗, zn+1 − z∗〉

= (1− αn)||zn − z∗||2 + (1− αn)(1− an)(γnL− 1)(||zn − xn||2(3.8)

+||xn − yn||2) + 2αn〈w − z∗, zn+1 − z∗〉
≤ (1− αn)||zn − z∗||2 + 2αn〈w − z∗, zn+1 − z∗〉
≤ (1− αn)||zn − z∗||2 + 2αn〈w − z∗, zn − z∗〉+ 2αn||zn+1 − zn||||w − z∗||.(3.9)

Now, we consider two cases.

Case 1. Suppose that there exists n0 ∈ N such that {||zn − z∗||} is decreasing for
all n ≥ n0. Then, we get that, {||zn − z∗||)} is convergent. Thus, from (3.8), the
fact that γn < b < 1

L for all n ≥ 0 and αn → 0 as n→∞, we have that

yn − xn → 0, zn − xn → 0 as n→∞.(3.10)

Moreover, from (3.2), (3.10) and letting n→∞, we get

zn+1 − zn = αn(w − zn) + (1− αn)(1− an)(yn − zn)→ 0.(3.11)

Furthermore, since {zn} is bounded subset of H, which is reflexive, we can choose
a subsequence {znj

} of {zn} such that znj
⇀ ẑ and lim sup

n→∞
〈w − z∗, zn − z∗〉 =
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lim
j→∞
〈w−z∗, znj

−z∗〉. This together with (3.10) implies that ynj
⇀ ẑ and xnj

⇀ ẑ.

Now, we show that ẑ ∈ N(T ). But, since T is Lipschitz continuous, we have

||Tynj
− Txnj

|| → 0 as j →∞.

Let (s, t) ∈ G(T ). Then, we have t−Ts = 0 and hence we get 〈s−z, t−Ts〉 = 0, for
all z ∈ E. On the other hand, since ynj = znj −γnjTxnj , we have 〈znj −γnjTxnj −
ynj

, ynj
− s〉 = 0, and hence, 〈s− ynj

, (ynj
− znj

)/γnj
+ Txnj

〉 = 0. Thus, we get

〈s− ynj
, t〉 = 〈s− ynj

, T s〉 = 〈s− ynj
, T s〉 − 〈s− ynj

, (ynj
− znj

)/γnj
+ Txnj

〉
= 〈s− ynj

, T s− Tynj
〉+ 〈s− ynj

, T ynj
− Txnj

〉
−〈s− ynj

, (ynj
− znj

)/γnj
〉

≥ 〈s− ynj
, T ynj

− Txnj
〉 − 〈s− ynj

, (ynj
− znj

)/γnj
〉.

This implies that 〈s − ẑ, t〉 ≥ 0, as j → ∞. Then, maximality of T gives that
ẑ ∈ N(T ). Thus, from (2.2), we immediately obtain that

lim sup
n→∞

〈w − z∗, zn − z∗〉 = lim
j→∞
〈w − z∗, znj

− z∗〉

= 〈w − z∗, ẑ − z∗〉 ≤ 0.(3.12)

Hence, it follows from (3.9), (3.11), (3.12) and Lemma 2.5 that ||zn − z∗|| → 0 as
n→∞. Consequently, zn → z∗ = (u∗, v∗) = PN(T )w.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

||zni − z∗|| < ||zni+1 − z∗||,
for all i ∈ N. Then, by Lemma 2.7, there exist a nondecreasing sequence {mk} ⊂ N
such that mk →∞, and

||zmk
− z∗|| ≤ ||zmk+1 − z∗|| and ||zk − z∗|| ≤ ||zmk+1 − z∗||,(3.13)

for all k ∈ N. Now, from (3.8), the fact that γn <
1
L for all n ≥ 0 and αn → 0 as

n → ∞, we get that ymk
− xmk

→ 0, zmk
− xmk

→ 0 as k → ∞. Thus, following
the method in Case 1, we obtain

lim sup
k→∞

〈w − z∗, zmk
− z∗〉 ≤ 0.(3.14)

Now, replacing zn by zmk
in (3.9), we have that

||zmk+1 − z∗||2 ≤ (1− αmk
||zmk

− z∗||2 + 2αmk
〈w − z∗, zmk

− z∗〉,
+2αmk

||zmk+1 − zmk
||.||w − z∗||,(3.15)

and hence (3.13) and (3.15) imply that

αmk
||zmk

− x∗||2 ≤ 2αmk
〈w − z∗, zmk

− z∗〉+ 2αmk
||zmk+1 − zmk

||.||w − z∗||.
But the fact that αmk

> 0 implies that

||zmk
− z∗||2 ≤ 2〈w − z∗, zmk

− z∗〉+ 2||zmk+1 − zmk
||.||w − z∗||.

Thus, using (3.14) and (3.11) we get that ||zmk
−z∗|| → 0 as k →∞. This together

with (3.15) implies that ||zmk+1−z∗|| → 0 as k →∞. But ||zk−z∗|| ≤ ||zmk+1−z∗||
for all k ∈ N gives that xk → z∗. Therefore, from the above two cases, we can
conclude that {zn} converges strongly to a point z∗ = (u∗, v∗) = PN(T )w, where u∗

is the solution of 0 = u+KFu and v∗ = Fu∗. The proof is complete.
�
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If, in Theorem 3.2, we assume that F is γ1-inverse strongly monotone and K is
γ2-inverse strongly monotone, then both F and K are Lipschitz with Lipschitz con-
stant L′ = max{ 1

γ1
, 1
γ2
} and hence we get the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let F : H → H be γ1-inverse
strongly monotone and K : H → H be γ2-inverse strongly monotone mappings.
Suppose that the equation 0 = u+KFu has a solution in H. Let ū, v̄ ∈ H and the
sequences {un},{vn} ⊂ H be generated from arbitrary u0 and v0 in H by{

un+1 = αnū+ (1− αn)(anun + (1− an)tn),
vn+1 = αnv̄ + (1− αn)[anvn + (1− an)sn),

(3.16)

where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2((L′)2 + 1), {an} ⊂ (0, r] ⊂ (0, 1) and

{αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0 and
∑
αn = ∞. Then,

the sequences {un} and {vn} converge strongly to u∗ and v∗ respectively, where u∗

is the solution of the equation 0 = u+KFu and v∗ = Fu∗.

If, in Theorem 3.2, we assume that F is Lipschitz α1-strongly monotone with Lips-
chitz constant L1 and K is Lipschitz α2-strongly monotone with Lipschitz constant
L2, then one can show that F is α1

L2
1
-inverse strongly monotone and K is α2

L2
2
-inverse

strongly monotone and hence we get the following corollary.

Corollary 3.4. Let H be a real Hilbert space. Let F : H → H be Lipschitz α1-
strongly monotone and K : H → H be Lipschitz α2-strongly monotone mappings.
Suppose that the equation 0 = u+KFu has a solution in H. Let ū, v̄ ∈ H and the
sequences {un},{vn} ⊂ H be generated from arbitrary u0 and v0 in H by{

un+1 = αnū+ (1− αn)(anun + (1− an)tn),
vn+1 = αnv̄ + (1− αn)[anvn + (1− an)sn),

(3.17)

where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2((L′′)2 + 1) and L′′ = max{L

2
1

α1
,
L2

2

α2
}, {an} ⊂

(0, r] ⊂ (0, 1) and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0 and∑
αn = ∞. Then, the sequences {un} and {vn} converge strongly to u∗ and v∗

respectively, where u∗ is the solution of the equation 0 = u+KFu and v∗ = Fu∗.

If, in Theorem 3.2, we assume that F = I, an identity mapping on H, then F is
Lipschitz monotone with Lipschitz constant L1 = 1 and the sequences {tn} and
{sn} reduce to:

i) t′n = (1− γn)un + (1− γn)γnvn − γ2
nKvn,

ii) s′n = (1− γ2
n)vn + (γn − 1)γnun − γnv′n,

where v′n = K(vn − γn(Kvn + un)) and hence we get the following corollary.

Corollary 3.5. Let H be a real Hilbert space. Let K : H → H be Lipschitz
monotone mapping with Lipschtiz constant L2. Suppose that the equation 0 =
u + Ku has a solution in H. Let ū, v̄ ∈ H and the sequences {un},{vn} ⊂ H be
generated from arbitrary u0 and v0 in H by{

un+1 = αnū+ (1− αn)(anun + (1− an)t′n),
vn+1 = αnv̄ + (1− αn)[anvn + (1− an)s′n),

(3.18)
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where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2 max{

√
2,
√
L2

2 + 1}, {an} ⊂ (0, r] ⊂ (0, 1)
and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim

n→∞
αn = 0 and

∑
αn = ∞.

Then, the sequences {un} and {vn} both converge strongly to u∗, where u∗ is the
solution of the equation 0 = u+Ku.

If, in Theorem 3.2, we assume that K = I, an identity mapping on H, then K is
Lipschitz monotone with Lipschitz constant L2 = 1 and the sequences {tn} and
{sn} reduce to:

i) t′′n = (1− γ2
n)un + (1− γn)γnvn − γnu′n,

ii) s′′n = (1− γn)vn + (γn − 1)γnun + γ2
nFun,

where u′n = F (un − γn(Fun − vn)) and hence we get the following corollary.

Corollary 3.6. Let H be a real Hilbert space. Let F : H → H be Lipschitz
monotone mapping with Lipschtiz constant L1. Suppose that the equation 0 = u+Fu
has a solution in H. Let ū, v̄ ∈ H and the sequences {un}, {vn} ⊂ H be generated
from arbitrary u0 and v0 in H by{

un+1 = αnū+ (1− αn)(anun + (1− an)t′′n),
vn+1 = αnv̄ + (1− αn)[anvn + (1− an)s′′n),

(3.19)

where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2 max{

√
2,
√
L2

1 + 1}, {an} ⊂ (0, r] ⊂ (0, 1)
and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim

n→∞
αn = 0 and

∑
αn = ∞.

Then, the sequences {un} and {vn} converge strongly to u∗ and −u∗, respectively,
where u∗ is the solution of the equation 0 = u+Ku.

We note that the method of proof of Theorem 3.2 provides the following theorem
for approximating the unique minimum norm point of solution of the Hammerstein
type equation.

Theorem 3.7. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz
monotone mappings with Lipschtiz constants L1 and L2, respectively. Suppose that
the equation 0 = u + KFu has a solution in H. Let the sequences {un},{vn} ⊂ H
be generated from arbitrary u0 and v0 in H by{

un+1 = (1− αn)(anun + (1− an)tn),
vn+1 = (1− αn)(anvn + (1− an)sn),

(3.20)

where γn ⊂ [a, b] ⊂ (0, 1
L ), for L :=

√
2 max{

√
L2

1 + 1,
√
L2

2 + 1}, {an} ⊂ (0, r] ⊂
(0, 1) and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim

n→∞
αn = 0 and

∑
αn =∞.

Then, the sequence {zn} = {(un, vn)} converges strongly to the unique minimum
norm point z∗ = (u∗, v∗) in H × H, where u∗ is a solution of 0 = u + KFu and
v∗ = Fu∗.

Remark 3.8. Theorem 3.2 improves Theorem 3.4 of Chidume and Zegeye [6] and
Theorem 3.1 of Chidume and Djitte [5] in the sense that the convergence of our
scheme does not require the existence of a constant number.

Remark 3.9. Theorem 3.2 extends Theorem 3.4 of Zegeye and Malonza [17] in
the sense that our scheme, which does not involve the auxiliary mapping, provides
strong convergence to a solution of Hammerstein type equation for a more general
class of monotone mappings. Our theorems provide an affirmative answer to the
above question in Hilbert spaces.
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4. Numerical example

Now, we give an example of Lipschitz monotone mappings satisfying conditions of
Theorem 3.2 and some numerical experiment result to explain the conclusion of the
theorem.

Let H = R with absolute value norm. Let F,K : R→ R be defined by

Fx = 3x and Kx = 2x− 14.(4.1)

Clearly, F and K are Lipschitz maximal monotone mappings with constants 3 and
2, respectively. Furthermore, we observe that u∗ = 2 is the solution of u+KFu = 0.

Now if we take, αn = 1
n+100 , γn = 1

n+200 + 0.01, an = 1
n+100 + 0.01, and w =

(ū, v̄) = (1, 0), we observe that the conditions of Theorem 3.2 are satisfied and
Scheme (3.1) reduces to{

un+1 = αnū+ (1− αn)(anun + (1− an)tn),
vn+1 = αnv̄ + (1− αn)(anvn + (1− an)sn),

(4.2)

where tn = (1− 3γn + 8γ2
n)un + (1− 5γn)γnvn + 14γ2

n,
and sn = (3γ2

n − 2γn + 1)vn + (5γn − 1)γnun − 28γ2
n + 14γn.

Thus, for (u0, v0) = (1, 3), (un, vn) converges strongly to (u∗, v∗) = (2, 6) =
PN(T )(w), where 2 is the solution of u + KFu = 0 and 6 = F (2). See the fol-
lowing Table and Figure.

n 1 101 1001 2001 3001 4001 5001 6001 7001 7901

un 1.0000 1.5552 1.9025 1.9470 1.9636 1.9723 1.9776 1.9812 1.9838 1.9856

vn 3.0000 5.0504 5.7888 5.8853 5.9213 5.9400 5.9516 5.9594 5.9650 5.9689
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