(δ, γ)-JACOBI-DUNKL LIPSCHITZ FUNCTIONS IN THE SPACE $L^{2}\left(\mathbb{R}, A_{\alpha, \beta}(x) d x\right)$

R. DAHER, S. EL OUADIH*

Abstract

Using a generalized Jacobi-Dunkl translation, we obtain an ana\log of Theorem 5.2 in Younis paper [7] for the Jacobi-Dunkl transform for functions satisfying the (δ, γ)-Jacobi-Dunkl Lipschitz condition in the space $L^{2}\left(\mathbb{R}, A_{\alpha, \beta}(x) d x\right), \alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$.

1. Introduction and Preliminaries

Younis ([7], Theorem 5.2) characterized the set of functions in $L^{2}(\mathbb{R})$ satisfying the Dini-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have the following statement.
Theorem 1.1. [7] Let $f \in L^{2}(\mathbb{R})$. Then the following are equivalents:
(a) $\quad\|f(x+h)-f(x)\|=O\left(\frac{h^{\eta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad$ as $\quad h \rightarrow 0,0<\eta<1, \gamma>0$
(b) $\quad \int_{|\lambda| \geq r}|\widehat{f}(\lambda)|^{2} d \lambda=O\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\right), \quad$ as $\quad r \rightarrow \infty$,
where \widehat{f} stand for the Fourier transform of f.
In this paper, we obtain an analog of Theorem 1.1 for the Jacobi-Dunkl transform on the real line. For this purpose, we use a generalized Jacobi-Dunkl translation operator.
In this section, we recapitulate from $[1,2,3,5]$ some results related to the harmonic analysis associated with Jacobi-Dunkl operator $\Lambda_{\alpha, \beta}$.
The Jacobi-Dunkl function with parameters $(\alpha, \beta), \alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$, defined by the formula

$$
\forall x \in \mathbb{R}, \psi_{\lambda}^{\alpha, \beta}(x)= \begin{cases}\varphi_{\mu}^{\alpha, \beta}(x)-\frac{i}{\lambda} \frac{d}{d x} \varphi_{\mu}^{\alpha, \beta}(x) & \text { if } \lambda \in \mathbb{C} \backslash\{0\} \\ 1 & \text { if } \lambda=0\end{cases}
$$

with $\lambda^{2}=\mu^{2}+\rho^{2}, \rho=\alpha+\beta+1$ and $\varphi_{\mu}^{\alpha, \beta}$ is the Jacobi function given by

$$
\varphi_{\mu}^{\alpha, \beta}(x)=F\left(\frac{\rho+i \mu}{2}, \frac{\rho-i \mu}{2}, \alpha+1,-(\sinh (x))^{2}\right)
$$

[^0]F is the Gausse hypergeometric function (see $[1,6]$).
$\psi_{\lambda}^{\alpha, \beta}$ is the unique C^{∞}-solution on \mathbb{R} of the differential-difference equation

$$
\left\{\begin{array}{l}
\Lambda_{\alpha, \beta} \mathcal{U}=i \lambda \mathcal{U} \quad, \lambda \in \mathbb{C} \\
\mathcal{U}(0)=1,
\end{array}\right.
$$

where $\Lambda_{\alpha, \beta}$ is the Jacobi-Dunkl operator given by

$$
\left.\Lambda_{\alpha, \beta} \mathcal{U}(x)=\frac{d \mathcal{U}(x)}{d x}+[(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x] \times \frac{\mathcal{U}(x)-\mathcal{U}(-x)}{2}\right]
$$

The operator $\Lambda_{\alpha, \beta}$ is a particular case of the operator D given by

$$
D \mathcal{U}(x)=\frac{d \mathcal{U}(x)}{d x}+\frac{A^{\prime}(x)}{A(x)} \times\left(\frac{\mathcal{U}(x)-\mathcal{U}(-x)}{2}\right)
$$

where $A(x)=|x|^{2 \alpha+1} B(x)$ and B a function of class C^{∞} on \mathbb{R}, even and positive. The operator $\Lambda_{\alpha, \beta}$ corresponds to the function

$$
A(x)=A_{\alpha, \beta}(x)=2^{\rho}(\sinh |x|)^{2 \alpha+1}(\cosh |x|)^{2 \beta+1}
$$

Using the relation

$$
\frac{d}{d x} \varphi_{\mu}^{\alpha, \beta}(x)=-\frac{\mu^{2}+\rho^{2}}{4(\alpha+1)} \sinh (2 x) \varphi_{\mu}^{\alpha+1, \beta+1}(x)
$$

the function $\psi_{\lambda}^{\alpha, \beta}$ can be written in the form above (see [2])

$$
\psi_{\lambda}^{\alpha, \beta}(x)=\varphi_{\mu}^{\alpha, \beta}(x)+i \frac{\lambda}{4(\alpha+1)} \sinh (2 x) \varphi_{\mu}^{\alpha+1, \beta+1}(x), \quad x \in \mathbb{R}
$$

Denote $L_{\alpha, \beta}^{2}(\mathbb{R})=L_{\alpha, \beta}^{2}\left(\mathbb{R}, A_{\alpha, \beta}(x) d x\right)$ the space of measurable functions f on \mathbb{R} such that

$$
\|f\|_{L_{\alpha, \beta}^{2}(\mathbb{R})}=\left(\int_{\mathbb{R}}|f(x)|^{2} A_{\alpha, \beta}(x) d x\right)^{1 / 2}<+\infty
$$

Using the eigenfunctions $\psi_{\lambda}^{\alpha, \beta}$ of the operator $\Lambda_{\alpha, \beta}$ called the Jacobi-Dunkl kernels , we define the Jacobi-Dunkl transform of a function $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$ by

$$
\mathcal{F}_{\alpha, \beta} f(\lambda)=\int_{\mathbb{R}} f(x) \psi_{\lambda}^{\alpha, \beta}(x) A_{\alpha, \beta}(x) d x, \quad \lambda \in \mathbb{R}
$$

and the inversion formula

$$
f(x)=\int_{\mathbb{R}} \mathcal{F}_{\alpha, \beta} f(\lambda) \psi_{-\lambda}^{\alpha, \beta}(x) d \sigma(\lambda)
$$

where

$$
d \sigma(\lambda)=\frac{|\lambda|}{8 \pi \sqrt{\lambda^{2}-\rho^{2}}\left|C_{\alpha, \beta}\left(\sqrt{\lambda^{2}-\rho^{2}}\right)\right|} \mathbb{I}_{\mathbb{R} \backslash]-\rho, \rho[}(\lambda) d \lambda .
$$

Here,

$$
C_{\alpha, \beta}(\mu)=\frac{2^{\rho-i \mu} \Gamma(\alpha+1) \Gamma(i \mu)}{\Gamma\left(\frac{1}{2}(\rho+i \mu)\right) \Gamma\left(\frac{1}{2}(\alpha-\beta+1+i \mu)\right)}, \quad \mu \in \mathbb{C} \backslash(i \mathbb{N})
$$

and $\mathbb{I}_{\mathbb{R} \backslash]-\rho, \rho[}$ is the characteristic function of $\left.\mathbb{R} \backslash\right]-\rho, \rho[$.
The Jacobi-Dunkl transform is a unitary isomorphism from $L_{\alpha, \beta}^{2}(\mathbb{R})$ onto $L^{2}(\mathbb{R}, d \sigma(\lambda))$, i.e.

$$
\begin{equation*}
\|f\|:=\|f\|_{L_{\alpha, \beta}^{2}(\mathbb{R})}=\left\|\mathcal{F}_{\alpha, \beta}(f)\right\|_{L^{2}(\mathbb{R}, d \sigma(\lambda))} \tag{1}
\end{equation*}
$$

The operator of Jacobi-Dunkl translation is defined by

$$
T_{x} f(y)=\int_{\mathbb{R}} f(z) d \nu_{x, y}^{\alpha, \beta}(z), \quad \forall x, y \in \mathbb{R}
$$

where $\nu_{x, y}^{\alpha, \beta}(z), x, y \in \mathbb{R}$ are the signed measures given by

$$
d \nu_{x, y}^{\alpha, \beta}(z)= \begin{cases}K_{\alpha, \beta}(x, y, z) A_{\alpha, \beta}(z) d z & \text { if } x, y \in \mathbb{R}^{*} \\ \delta_{x} & \text { if } y=0 \\ \delta_{y} & \text { if } x=0\end{cases}
$$

Here, δ_{x} is the Dirac measure at x. And,

$$
\begin{aligned}
& K_{\alpha, \beta}(x, y, z)=M_{\alpha, \beta}(\sinh (|x|) \sinh (|y|) \sinh (|z|))^{-2 \alpha} \mathbb{I}_{I_{x, y}} \times \int_{0}^{\pi} \rho_{\theta}(x, y, z) \\
& \times\left(g_{\theta}(x, y, z)\right)_{+}^{\alpha-\beta-1} \sin ^{2 \beta} \theta d \theta \\
& I_{x, y}=[-|x|-|y|,-||x|-|y||] \cup[| | x|-|y||,|x|+|y|] \\
& \rho_{\theta}(x, y, z)=1-\sigma_{x, y, z}^{\theta}+\sigma_{z, x, y}^{\theta}+\sigma_{z, y, x}^{\theta} \\
& \forall z \in \mathbb{R}, \theta \in[0, \pi], \sigma_{x, y, z}^{\theta}= \begin{cases}\frac{\cosh (x)+\cosh (y)-\cosh (z) \cos (\theta)}{\sinh (x) \sinh (y)} & \text {,if } x y \neq 0 \\
0 & \text {,if } x y=0\end{cases} \\
& g_{\theta}(x, y, z)=1-\cosh ^{2}(x)-\cosh ^{2}(y)-\cosh ^{2}(z)+2 \cosh (x) \cosh (y) \cosh (z) \cos \theta \\
& t_{+}= \begin{cases}t & \text {,if } t>0 \\
0 & \text {,if } t \leq 0\end{cases}
\end{aligned}
$$

and,

$$
M_{\alpha, \beta}= \begin{cases}\frac{2^{-2 \rho} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha-\beta) \Gamma\left(\beta+\frac{1}{2}\right)} & \text {,if } \alpha>\beta \\ 0 & \text {,if } \alpha=\beta\end{cases}
$$

In [2], we have

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(T_{h} f\right)(\lambda)=\psi_{\lambda}^{\alpha, \beta}(h) \mathcal{F}_{\alpha, \beta}(f)(\lambda) ; \quad \lambda, h \in \mathbb{R} \tag{2}
\end{equation*}
$$

For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind defined by:

$$
j_{\alpha}(x)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{x}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)} .
$$

Moreover, we see that

$$
\lim _{x \rightarrow 0} \frac{j_{\alpha}(x)-1}{x^{2}} \neq 0
$$

by consequence, there exists $C_{1}>0$ and $\varepsilon>0$ satisfying

$$
\begin{equation*}
|x| \leq \varepsilon \Rightarrow\left|j_{\alpha}(x)-1\right| \geq C_{1}|x|^{2} \tag{3}
\end{equation*}
$$

Lemma 1.2. (See[8],Lemma 3.1,Lemma 3.2) The following inequalities are valid for Jacobi functions $\varphi_{\mu}^{\alpha, \beta}(x)$
(c) $\left|\varphi_{\mu}^{\alpha, \beta}(x)\right| \leq 1$,
(d) $\left|1-\varphi_{\mu}^{\alpha, \beta}(x)\right| \leq x^{2}\left(\mu^{2}+\rho^{2}\right)$.

Lemma 1.3. (See[4],Lemma 9) Let $\alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$. Then for $|\nu| \leq \rho$, there exists a positive constant C_{2} such that

$$
\left|1-\varphi_{\mu+i \nu}^{\alpha, \beta}(x)\right| \geq C_{2}\left|1-j_{\alpha}(\mu x)\right|
$$

2. Main Results

In this section we give the main results of this paper. We need first to define (η, γ)-Jacobi-Dunkl Lipschitz class.

Definition 2.1. Let $0<\eta<1$ and $\gamma>0$. A function $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$ is said to be in the (η, γ)-Jacobi-Dunkl Lipschitz class, denoted by $\operatorname{Lip}(\eta, \gamma, 2)$, if

$$
\left\|T_{h} f(x)+T_{-h} f(x)-2 f(x)\right\|=O\left(\frac{h^{\eta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad \text { as } \quad h \rightarrow 0
$$

Lemma 2.2. For $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$, then

$$
\left\|T_{h} f(x)+T_{-h} f(x)-2 f(x)\right\|^{2}=4 \int_{\mathbb{R}}\left|\varphi_{\mu}^{\alpha, \beta}(h)-1\right|^{2}\left|\mathcal{F}_{\alpha, \beta} f(\lambda)\right|^{2} d \sigma(\lambda)
$$

Proof. We us formula (2), we conclude that

$$
\mathcal{F}_{\alpha, \beta}\left(T_{h} f+T_{-h} f-2 f\right)(\lambda)=\left(\psi_{\lambda}^{\alpha, \beta}(h)+\psi_{\lambda}^{\alpha, \beta}(-h)-2\right) \mathcal{F}_{\alpha, \beta}(f)(\lambda)
$$

Since

$$
\begin{aligned}
\psi_{\lambda}^{\alpha, \beta}(h) & =\varphi_{\mu}^{\alpha, \beta}(h)+i \frac{\lambda}{4(\alpha+1)} \sinh (2 h) \varphi_{\mu}^{\alpha+1, \beta+1}(h), \\
\psi_{\lambda}^{\alpha, \beta}(-h) & =\varphi_{\mu}^{\alpha, \beta}(-h)-i \frac{\lambda}{4(\alpha+1)} \sinh (2 h) \varphi_{\mu}^{\alpha+1, \beta+1}(-h),
\end{aligned}
$$

and $\varphi_{\mu}^{\alpha, \beta}$ is even (see [2]), then

$$
\mathcal{F}_{\alpha, \beta}\left(T_{h} f+T_{-h} f-2 f\right)(\lambda)=2\left(\varphi_{\mu}^{\alpha, \beta}(h)-1\right) \mathcal{F}_{\alpha, \beta}(f)(\lambda) .
$$

By Parseval's identity (formula (1)), we have the result.
Theorem 2.3. Let $0<\eta<1, \gamma>0$ and $f \in L_{\alpha, \beta}^{2}(\mathbb{R})$. Then the following conditions are equivalents
(i) $\quad f \in \operatorname{Lip}(\eta, \gamma, 2)$
(ii) $\quad \int_{|\lambda| \geq r}\left|\mathcal{F}_{\alpha, \beta} f(\lambda)\right|^{2} d \sigma(\lambda)=O\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\right), \quad$ as $\quad r \rightarrow \infty$.

Proof. $(i) \Rightarrow(i i)$. Assume that $f \in \operatorname{Lip}(\eta, \gamma, 2)$. Then we have

$$
\left\|T_{h} f(x)+T_{-h} f(x)-2 f(x)\right\|=O\left(\frac{h^{\eta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad \text { as } \quad h \rightarrow 0
$$

From Lemma 2.2, we have

$$
\left\|T_{h} f(x)+T_{-h} f(x)-2 f(x)\right\|^{2}=4 \int_{\mathbb{R}}\left|\varphi_{\mu}^{\alpha, \beta}(h)-1\right|^{2}\left|\mathcal{F}_{\alpha, \beta} f(\lambda)\right|^{2} d \sigma(\lambda)
$$

By (3) and Lemma 1.3, we get

$$
\int_{\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \geq C_{1}^{2} C_{2}^{2} \int_{\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}}|\mu h|^{4}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)
$$

From $\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}$ we have

$$
\begin{aligned}
\left(\frac{\varepsilon}{2 h}\right)^{2} & -\rho^{2} \leq \mu^{2} \leq\left(\frac{\varepsilon}{h}\right)^{2}-\rho^{2} \\
& \Rightarrow \mu^{2} h^{2} \geq \frac{\varepsilon^{2}}{4}-\rho^{2} h^{2} .
\end{aligned}
$$

Take $h \leq \frac{\varepsilon}{3 \rho}$, then we have $\mu^{2} h^{2} \geq C_{3}=C_{3}(\varepsilon)$.
So,
$\int_{\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \geq C_{1}^{2} C_{2}^{2} C_{3}^{2} \int_{\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)$.
There exists then a positive constant C_{4} such that

$$
\begin{aligned}
\int_{\frac{\varepsilon}{2 h} \leq|\lambda| \leq \frac{\varepsilon}{h}}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) & \leq C_{4} \int_{\mathbb{R}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
& =O\left(\frac{h^{2 \eta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) .
\end{aligned}
$$

We obtain

$$
\int_{r \leq|\lambda| \leq 2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \leq C \frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}
$$

where C is a positive constant. Now,

$$
\begin{aligned}
\int_{|\lambda| \geq r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) & =\sum_{i=0}^{\infty} \int_{2^{i} r \leq|\lambda| \leq 2^{i+1} r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
& \leq C\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}+\frac{(2 r)^{-2 \eta}}{(\log 2 r)^{2 \gamma}}+\frac{(4 r)^{-2 \eta}}{(\log 4 r)^{2 \gamma}}+\cdots\right) \\
& \leq C \frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\left(1+2^{-2 \eta}+\left(2^{-2 \eta}\right)^{2}+\left(2^{-2 \eta}\right)^{3}+\cdots\right) \\
& \leq K_{\eta} \frac{r^{-2 \eta}}{(\log r)^{2 \gamma}},
\end{aligned}
$$

where $K_{\eta}=C\left(1-2^{-2 \eta}\right)^{-1}$ since $2^{-2 \eta}<1$.
Consequently

$$
\int_{|\lambda| \geq r}\left|\mathcal{F}_{\alpha, \beta} f(\lambda)\right|^{2} d \sigma(\lambda)=O\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\right), \quad \text { as } \quad r \rightarrow \infty
$$

$(i i) \Rightarrow(i)$. Suppose now that

$$
\int_{|\lambda| \geq r}\left|\mathcal{F}_{\alpha, \beta} f(\lambda)\right|^{2} d \lambda=O\left(\frac{r^{-2 \eta}}{(\log r)^{2 \gamma}}\right), \quad \text { as } \quad r \rightarrow \infty
$$

and write

$$
\int_{\mathbb{R}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)=I_{1}+I_{2}
$$

where

$$
\begin{aligned}
I_{1} & =\int_{|\lambda|<\frac{1}{h}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
I_{2} & =\int_{|\lambda| \geq \frac{1}{h}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)
\end{aligned}
$$

Firstly, we use the formula $\left|\varphi_{\mu}^{\alpha, \beta}(h)\right| \leq 1$ and

$$
\begin{equation*}
I_{2} \leq 4 \int_{|\lambda| \geq \frac{1}{h}}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)=O\left(\frac{h^{2 \eta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) \tag{4}
\end{equation*}
$$

Set

$$
\phi(\lambda)=\int_{\lambda}^{\infty}\left|\mathcal{F}_{\alpha, \beta}(f)(x)\right|^{2} d \sigma(x)
$$

An integration by parts gives

$$
\begin{aligned}
\int_{0}^{x} \lambda^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) & =\int_{0}^{x}-\lambda^{2} \phi^{\prime}(\lambda) d \lambda \\
& =-x^{2} \phi(x)+2 \int_{0}^{x} \lambda \phi(\lambda) d \lambda \\
& \leq 2 \int_{0}^{x} \lambda^{1-2 \delta}(\log \lambda)^{-2 \gamma} d \lambda \\
& =O\left(x^{2-2 \delta}(\log x)^{-2 \gamma}\right)
\end{aligned}
$$

We use the formula (d) of Lemma 1.2

$$
\begin{aligned}
I_{1} & \leq \int_{|\lambda|<\frac{1}{h}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
& \leq \int_{|\lambda|<\frac{1}{h}}\left(\mu^{2}+\rho^{2}\right) h^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
& \leq h^{2} \int_{|\lambda|<\frac{1}{h}} \lambda^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda) \\
& =O\left(h^{2} h^{-2+2 \eta}\left(\log \frac{1}{h}\right)^{-2 \gamma}\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
I_{1}=O\left(\frac{h^{2 \eta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) \tag{5}
\end{equation*}
$$

Finally, we conclude from (4) and (5) that

$$
\int_{\mathbb{R}}\left|1-\varphi_{\mu}^{\alpha, \beta}(h)\right|^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma(\lambda)=O\left(\frac{h^{2 \eta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) .
$$

And this ends the proof.

References

[1] Ben Mohamed. H and Mejjaoli. H, Distributional Jacobi-Dunkl transform and applications, Afr.Diaspora J.Math 1(2004), 24-46.
[2] Ben Mohamed. H, The Jacobi-Dunkl transform on \mathbb{R} and the convolution product on new space of distributions, Ramanujan J.21(2010), 145-175..
[3] Ben Salem. N and Ahmed Salem. A , Convolution structure associated with the Jacobi-Dunkl operator on \mathbb{R}, Ramanuy J.12(3) (2006), 359-378.
[4] Bray. W. O and Pinsky. M. A, Growth properties of Fourier transforms via module of continuity, Journal of Functional Analysis.255(288), 2256-2285.
[5] Chouchane. F, Mili. M and Trimche. K, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on \mathbb{R}, J.Anal. Appl.1(4)(2003), 387-412.
[6] Koornwinder. T. H, Jacobi functions and analysis on noncompact semi-simple Lie groups.in: Askey.RA, Koornwinder. T. H and Schempp.W(eds) Special Functions: Group theatrical aspects and applications.D.Reidel, Dordrecht (1984).
[7] Younis . M. S, Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci. (1986), 9 (2), 301C312. doi:10.1155/S0161171286000376
[8] Platonov. S, Approximation of functions in L_{2}-metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270.

Departement of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco

* Corresponding author

[^0]: 2010 Mathematics Subject Classification. 65R10.
 Key words and phrases. Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized JacobiDunkl translation.

