International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 2 (2015), 123-129 http://www.etamaths.com

(δ, γ) -JACOBI-DUNKL LIPSCHITZ FUNCTIONS IN THE SPACE $L^2(\mathbb{R}, A_{\alpha,\beta}(x)dx)$

R. DAHER, S. EL OUADIH*

ABSTRACT. Using a generalized Jacobi-Dunkl translation, we obtain an analog of Theorem 5.2 in Younis paper [7] for the Jacobi-Dunkl transform for functions satisfying the (δ, γ) -Jacobi-Dunkl Lipschitz condition in the space $L^2(\mathbb{R}, A_{\alpha,\beta}(x)dx), \alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}.$

1. Introduction and Preliminaries

Younis ([7], Theorem 5.2) characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Dini-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have the following statement. **Theorem 1.1.** [7] Let $f \in L^2(\mathbb{R})$. Then the following are equivalents:

$$\begin{aligned} \text{(a)} \quad & \|f(x+h) - f(x)\| = O\left(\frac{h^{\eta}}{(\log \frac{1}{h})^{\gamma}}\right), \quad \text{as} \quad h \to 0, 0 < \eta < 1, \gamma > 0 \\ \text{(b)} \quad & \int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad \text{as} \quad r \to \infty, \end{aligned}$$

where \widehat{f} stand for the Fourier transform of f.

In this paper, we obtain an analog of Theorem 1.1 for the Jacobi-Dunkl transform on the real line. For this purpose, we use a generalized Jacobi-Dunkl translation operator.

In this section , we recapitulate from [1,2,3,5] some results related to the harmonic analysis associated with Jacobi-Dunkl operator $\Lambda_{\alpha,\beta}$.

The Jacobi-Dunkl function with parameters $(\alpha, \beta), \alpha \ge \beta \ge \frac{-1}{2}, \alpha \ne \frac{-1}{2}$, defined by the formula

$$\forall x \in \mathbb{R}, \psi_{\lambda}^{\alpha,\beta}(x) = \begin{cases} \varphi_{\mu}^{\alpha,\beta}(x) - \frac{i}{\lambda} \frac{d}{dx} \varphi_{\mu}^{\alpha,\beta}(x) & \text{if } \lambda \in \mathbb{C} \backslash \{0\} \\ \\ 1 & \text{if } \lambda = 0, \end{cases}$$

with $\lambda^2 = \mu^2 + \rho^2$, $\rho = \alpha + \beta + 1$ and $\varphi_{\mu}^{\alpha,\beta}$ is the Jacobi function given by

$$\varphi_{\mu}^{\alpha,\beta}(x) = F\left(\frac{\rho + i\mu}{2}, \frac{\rho - i\mu}{2}, \alpha + 1, -(\sinh(x))^2\right),$$

²⁰¹⁰ Mathematics Subject Classification. 65R10.

Key words and phrases. Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized Jacobi-Dunkl translation.

 $[\]odot 2015$ Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

F is the Gausse hypergeometric function (see [1,6]).

 $\psi^{\alpha,\beta}_\lambda$ is the unique $C^\infty\text{-solution}$ on $\mathbb R$ of the differential-difference equation

$$\begin{cases} \Lambda_{\alpha,\beta}\mathcal{U} = i\lambda\mathcal{U} \quad ,\lambda \in \mathbb{C} \\ \mathcal{U}(0) = 1, \end{cases}$$

where $\Lambda_{\alpha,\beta}$ is the Jacobi-Dunkl operator given by

$$\Lambda_{\alpha,\beta}\mathcal{U}(x) = \frac{d\mathcal{U}(x)}{dx} + \left[(2\alpha + 1)\coth x + (2\beta + 1)\tanh x\right] \times \frac{\mathcal{U}(x) - \mathcal{U}(-x)}{2}\right].$$

The operator $\Lambda_{\alpha,\beta}$ is a particular case of the operator D given by

$$D\mathcal{U}(x) = \frac{d\mathcal{U}(x)}{dx} + \frac{A'(x)}{A(x)} \times \left(\frac{\mathcal{U}(x) - \mathcal{U}(-x)}{2}\right)$$

where $A(x) = |x|^{2\alpha+1}B(x)$ and B a function of class C^{∞} on \mathbb{R} , even and positive. The operator $\Lambda_{\alpha,\beta}$ corresponds to the function

$$A(x) = A_{\alpha,\beta}(x) = 2^{\rho} (\sinh|x|)^{2\alpha+1} (\cosh|x|)^{2\beta+1}$$

Using the relation

$$\frac{d}{dx}\varphi_{\mu}^{\alpha,\beta}(x) = -\frac{\mu^2 + \rho^2}{4(\alpha+1)}\sinh(2x)\varphi_{\mu}^{\alpha+1,\beta+1}(x),$$

the function $\psi_{\lambda}^{\alpha,\beta}$ can be written in the form above (see [2])

$$\psi_{\lambda}^{\alpha,\beta}(x) = \varphi_{\mu}^{\alpha,\beta}(x) + i \frac{\lambda}{4(\alpha+1)} \sinh(2x) \varphi_{\mu}^{\alpha+1,\beta+1}(x), \quad x \in \mathbb{R}.$$

Denote $L^2_{\alpha,\beta}(\mathbb{R}) = L^2_{\alpha,\beta}(\mathbb{R}, A_{\alpha,\beta}(x)dx)$ the space of measurable functions f on \mathbb{R} such that

$$\|f\|_{L^2_{\alpha,\beta}(\mathbb{R})} = \left(\int_{\mathbb{R}} |f(x)|^2 A_{\alpha,\beta}(x) dx\right)^{1/2} < +\infty$$

Using the eigenfunctions $\psi_{\lambda}^{\alpha,\beta}$ of the operator $\Lambda_{\alpha,\beta}$ called the Jacobi-Dunkl kernels, we define the Jacobi-Dunkl transform of a function $f \in L^2_{\alpha,\beta}(\mathbb{R})$ by

$$\mathcal{F}_{\alpha,\beta}f(\lambda) = \int_{\mathbb{R}} f(x)\psi_{\lambda}^{\alpha,\beta}(x)A_{\alpha,\beta}(x)dx, \quad \lambda \in \mathbb{R},$$

and the inversion formula

$$f(x) = \int_{\mathbb{R}} \mathcal{F}_{\alpha,\beta} f(\lambda) \psi_{-\lambda}^{\alpha,\beta}(x) d\sigma(\lambda),$$

where

$$d\sigma(\lambda) = \frac{|\lambda|}{8\pi\sqrt{\lambda^2 - \rho^2}|C_{\alpha,\beta}(\sqrt{\lambda^2 - \rho^2})|} \mathbb{I}_{\mathbb{R}\setminus]-\rho,\rho[}(\lambda)d\lambda$$

Here,

$$C_{\alpha,\beta}(\mu) = \frac{2^{\rho-i\mu}\Gamma(\alpha+1)\Gamma(i\mu)}{\Gamma(\frac{1}{2}(\rho+i\mu))\Gamma(\frac{1}{2}(\alpha-\beta+1+i\mu))}, \quad \mu \in \mathbb{C} \setminus (i\mathbb{N})$$

and $\mathbb{I}_{\mathbb{R}\setminus]-\rho,\rho[}$ is the characteristic function of $\mathbb{R}\setminus]-\rho,\rho[$. The Jacobi-Dunkl transform is a unitary isomorphism from $L^2_{\alpha,\beta}(\mathbb{R})$ onto $L^2(\mathbb{R}, d\sigma(\lambda))$, i.e.

(1) $||f|| := ||f||_{L^{2}_{\alpha,\beta}(\mathbb{R})} = ||\mathcal{F}_{\alpha,\beta}(f)||_{L^{2}(\mathbb{R},d\sigma(\lambda))}.$

124

The operator of Jacobi-Dunkl translation is defined by

$$T_x f(y) = \int_{\mathbb{R}} f(z) d\nu_{x,y}^{\alpha,\beta}(z), \quad \forall x, y \in \mathbb{R}$$

where $\nu_{x,y}^{\alpha,\beta}(z), x, y \in \mathbb{R}$ are the signed measures given by

$$d\nu_{x,y}^{\alpha,\beta}(z) = \begin{cases} K_{\alpha,\beta}(x,y,z)A_{\alpha,\beta}(z)dz & \text{if } x, y \in \mathbb{R}^* \\ \delta_x & \text{if } y = 0 \\ \delta_y & \text{if } x = 0 \end{cases}$$

Here, δ_x is the Dirac measure at x. And,

$$\begin{split} K_{\alpha,\beta}(x,y,z) &= M_{\alpha,\beta}(\sinh(|x|)\sinh(|y|)\sinh(|z|))^{-2\alpha}\mathbb{I}_{I_{x,y}} \times \int_{0}^{\pi} \rho_{\theta}(x,y,z) \\ &\times (g_{\theta}(x,y,z))_{+}^{\alpha-\beta-1}\sin^{2\beta}\theta d\theta \\ I_{x,y} &= [-|x| - |y|, -||x| - |y||] \cup [||x| - |y||, |x| + |y|] \\ \rho_{\theta}(x,y,z) &= 1 - \sigma_{x,y,z}^{\theta} + \sigma_{z,x,y}^{\theta} + \sigma_{z,y,x}^{\theta} \\ \forall z \in \mathbb{R}, \theta \in [0,\pi], \sigma_{x,y,z}^{\theta} = \begin{cases} \frac{\cosh(x) + \cosh(y) - \cosh(z)\cos(\theta)}{\sinh(x)\sinh(y)} &, \text{if } xy \neq 0 \\ 0 &, \text{if } xy = 0 \end{cases} \\ g_{\theta}(x,y,z) = 1 - \cosh^{2}(x) - \cosh^{2}(y) - \cosh^{2}(z) + 2\cosh(x)\cosh(y)\cosh(z)\cos\theta \\ t_{+} = \begin{cases} t &, \text{if } t > 0 \\ 0 &, \text{if } t \leq 0 \end{cases} \end{split}$$

and,

$$M_{\alpha,\beta} = \begin{cases} \frac{2^{-2\rho}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha-\beta)\Gamma(\beta+\frac{1}{2})} & \text{,if } \alpha > \beta \\ 0 & \text{,if } \alpha = \beta \end{cases}$$

In [2], we have

(2)
$$\mathcal{F}_{\alpha,\beta}(T_h f)(\lambda) = \psi_{\lambda}^{\alpha,\beta}(h) \mathcal{F}_{\alpha,\beta}(f)(\lambda); \quad \lambda, h \in \mathbb{R}$$

For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind defined by:

$$j_{\alpha}(x) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{x}{2})^{2n}}{n! \Gamma(n+\alpha+1)}.$$

Moreover, we see that

$$\lim_{x \to 0} \frac{j_{\alpha}(x) - 1}{x^2} \neq 0,$$

by consequence , there exists $C_1>0$ and $\varepsilon>0$ satisfying

(3)
$$|x| \le \varepsilon \Rightarrow |j_{\alpha}(x) - 1| \ge C_1 |x|^2$$

Lemma 1.2. (See[8],Lemma 3.1,Lemma 3.2) The following inequalities are valid for Jacobi functions $\varphi_{\mu}^{\alpha,\beta}(x)$ (c) $|\varphi_{\mu}^{\alpha,\beta}(x)| < 1$

(c)
$$|\varphi_{\mu}^{\alpha,\beta}(x)| \leq$$

 $\begin{array}{ll} \text{(c)} & |\varphi_{\mu}^{\alpha,\beta}(x)| \leq 1, \\ \text{(d)} & |1-\varphi_{\mu}^{\alpha,\beta}(x)| \leq x^2(\mu^2+\rho^2). \end{array}$

125

Lemma 1.3. (See[4],Lemma 9) Let $\alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$. Then for $|\nu| \leq \rho$, there exists a positive constant C_2 such that

$$|1 - \varphi_{\mu+i\nu}^{\alpha,\beta}(x)| \ge C_2 |1 - j_\alpha(\mu x)|.$$

2. Main Results

In this section we give the main results of this paper. We need first to define (η, γ) -Jacobi-Dunkl Lipschitz class.

Definition 2.1. Let $0 < \eta < 1$ and $\gamma > 0$. A function $f \in L^2_{\alpha,\beta}(\mathbb{R})$ is said to be in the (η, γ) -Jacobi-Dunkl Lipschitz class, denoted by $Lip(\eta, \gamma, 2)$, if

$$||T_h f(x) + T_{-h} f(x) - 2f(x)|| = O\left(\frac{h^{\eta}}{(\log \frac{1}{h})^{\gamma}}\right), \quad as \quad h \to 0.$$

Lemma 2.2. For $f \in L^2_{\alpha,\beta}(\mathbb{R})$, then

$$||T_h f(x) + T_{-h} f(x) - 2f(x)||^2 = 4 \int_{\mathbb{R}} |\varphi_{\mu}^{\alpha,\beta}(h) - 1|^2 |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\sigma(\lambda).$$

Proof. We us formula (2), we conclude that

$$\mathcal{F}_{\alpha,\beta}(T_h f + T_{-h} f - 2f)(\lambda) = (\psi_{\lambda}^{\alpha,\beta}(h) + \psi_{\lambda}^{\alpha,\beta}(-h) - 2)\mathcal{F}_{\alpha,\beta}(f)(\lambda),$$

Since

$$\begin{split} \psi_{\lambda}^{\alpha,\beta}(h) &= \varphi_{\mu}^{\alpha,\beta}(h) + i \frac{\lambda}{4(\alpha+1)} sinh(2h) \varphi_{\mu}^{\alpha+1,\beta+1}(h), \\ \psi_{\lambda}^{\alpha,\beta}(-h) &= \varphi_{\mu}^{\alpha,\beta}(-h) - i \frac{\lambda}{4(\alpha+1)} sinh(2h) \varphi_{\mu}^{\alpha+1,\beta+1}(-h), \end{split}$$

and $\varphi_{\mu}^{\alpha,\beta}$ is even (see [2]), then

$$\mathcal{F}_{\alpha,\beta}(T_h f + T_{-h} f - 2f)(\lambda) = 2(\varphi_{\mu}^{\alpha,\beta}(h) - 1)\mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

By Parseval's identity (formula (1)), we have the result.

Theorem 2.3. Let $0 < \eta < 1$, $\gamma > 0$ and $f \in L^2_{\alpha,\beta}(\mathbb{R})$. Then the following conditions are equivalents (i) $f \in Lip(\eta, \gamma, 2)$

$$(i) \quad \int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\sigma(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad \text{as} \quad r \to \infty.$$

Proof. (i) \Rightarrow (ii). Assume that $f \in Lip(\eta, \gamma, 2)$. Then we have

$$\|T_h f(x) + T_{-h} f(x) - 2f(x)\| = O\left(\frac{h^{\eta}}{(\log \frac{1}{h})^{\gamma}}\right), \quad as \quad h \to 0$$

From Lemma 2.2, we have

$$||T_h f(x) + T_{-h} f(x) - 2f(x)||^2 = 4 \int_{\mathbb{R}} |\varphi_{\mu}^{\alpha,\beta}(h) - 1|^2 |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\sigma(\lambda).$$

By (3) and Lemma 1.3, we get

$$\int_{\frac{\varepsilon}{2h} \le |\lambda| \le \frac{\varepsilon}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \ge C_1^2 C_2^2 \int_{\frac{\varepsilon}{2h} \le |\lambda| \le \frac{\varepsilon}{h}} |\mu h|^4 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda).$$

From $\frac{\varepsilon}{2h} \leq |\lambda| \leq \frac{\varepsilon}{h}$ we have

$$\begin{pmatrix} \frac{\varepsilon}{2h} \end{pmatrix}^2 & - \rho^2 \le \mu^2 \le \left(\frac{\varepsilon}{h}\right)^2 - \rho^2 \\ \Rightarrow & \mu^2 h^2 \ge \frac{\varepsilon^2}{4} - \rho^2 h^2.$$

Take $h \leq \frac{\varepsilon}{3\rho}$, then we have $\mu^2 h^2 \geq C_3 = C_3(\varepsilon)$. So,

$$\int_{\frac{\varepsilon}{2h} \le |\lambda| \le \frac{\varepsilon}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \ge C_1^2 C_2^2 C_3^2 \int_{\frac{\varepsilon}{2h} \le |\lambda| \le \frac{\varepsilon}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda).$$

There exists then a positive constant C_4 such that

$$\int_{\frac{\varepsilon}{2h} \le |\lambda| \le \frac{\varepsilon}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le C_4 \int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda)$$
$$= O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right).$$

We obtain

$$\int_{r \le |\lambda| \le 2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le C \frac{r^{-2\eta}}{(\log r)^{2\gamma}},$$

where ${\cal C}$ is a positive constant. Now,

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = \sum_{i=0}^{\infty} \int_{2^i r \le |\lambda| \le 2^{i+1}r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \\
\le C \left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}} + \frac{(2r)^{-2\eta}}{(\log 2r)^{2\gamma}} + \frac{(4r)^{-2\eta}}{(\log 4r)^{2\gamma}} + \cdots \right) \\
\le C \frac{r^{-2\eta}}{(\log r)^{2\gamma}} \left(1 + 2^{-2\eta} + (2^{-2\eta})^2 + (2^{-2\eta})^3 + \cdots \right) \\
\le K_{\eta} \frac{r^{-2\eta}}{(\log r)^{2\gamma}},$$

where $K_{\eta} = C(1 - 2^{-2\eta})^{-1}$ since $2^{-2\eta} < 1$. Consequently

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\sigma(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

 $(ii) \Rightarrow (i)$. Suppose now that

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\lambda = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty,$$

and write

$$\int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = I_1 + I_2$$

where

$$I_{1} = \int_{|\lambda| < \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda),$$
$$I_{2} = \int_{|\lambda| \geq \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda).$$

127

Firstly, we use the formula $|\varphi_{\mu}^{\alpha,\beta}(h)| \leq 1$ and

(4)
$$I_2 \le 4 \int_{|\lambda| \ge \frac{1}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right).$$

 Set

$$\phi(\lambda) = \int_{\lambda}^{\infty} |\mathcal{F}_{\alpha,\beta}(f)(x)|^2 d\sigma(x).$$

An integration by parts gives

$$\int_0^x \lambda^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = \int_0^x -\lambda^2 \phi'(\lambda) d\lambda$$
$$= -x^2 \phi(x) + 2 \int_0^x \lambda \phi(\lambda) d\lambda$$
$$\leq 2 \int_0^x \lambda^{1-2\delta} (\log \lambda)^{-2\gamma} d\lambda$$
$$= O(x^{2-2\delta} (\log x)^{-2\gamma}).$$

We use the formula (d) of Lemma 1.2

$$I_{1} \leq \int_{|\lambda| < \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)| |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda)$$

$$\leq \int_{|\lambda| < \frac{1}{h}} (\mu^{2} + \rho^{2}) h^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda)$$

$$\leq h^{2} \int_{|\lambda| < \frac{1}{h}} \lambda^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda)$$

$$= O\left(h^{2} h^{-2+2\eta} \left(\log \frac{1}{h}\right)^{-2\gamma}\right)..$$

Hence,

(5)
$$I_1 = O\left(\frac{h^{2\eta}}{(\log\frac{1}{h})^{2\gamma}}\right).$$

Finally, we conclude from (4) and (5) that

$$\int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right).$$

And this ends the proof.

References

- Ben Mohamed. H and Mejjaoli. H, Distributional Jacobi-Dunkl transform and applications, Afr.Diaspora J.Math 1(2004), 24-46.
- [2] Ben Mohamed. H, The Jacobi-Dunkl transform on \mathbb{R} and the convolution product on new space of distributions, Ramanujan J.21(2010), 145-175..
- [3] Ben Salem. N and Ahmed Salem. A, Convolution structure associated with the Jacobi-Dunkl operator on R, Ramanuy J.12(3) (2006), 359-378.
- [4] Bray. W. O and Pinsky. M. A, Growth properties of Fourier transforms via module of continuity, Journal of Functional Analysis.255(288), 2256-2285.
- [5] Chouchane. F, Mili. M and Trimche. K, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R, J.Anal. Appl.1(4)(2003), 387-412.

- [6] Koornwinder. T. H, Jacobi functions and analysis on noncompact semi-simple Lie groups.in: Askey.RA, Koornwinder. T. H and Schempp.W(eds) Special Functions: Group theatrical aspects and applications.D.Reidel, Dordrecht (1984).
- [7] Younis . M. S, Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci. (1986), 9 (2), 301C312. doi:10.1155/S0161171286000376
- [8] Platonov. S, Approximation of functions in L_2 -metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270.

Departement of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco

*Corresponding Author