GEOMETRY OF A CLASS OF GENERALIZED CUBIC POLYNOMIALS

CHRISTOPHER FRAYER

Abstract

This paper studies a class of generalized complex cubic polynomials of the form $p(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k}$ where r_{1} and r_{2} lie on the unit circle and k is a natural number. We completely characterize where the nontrivial critical points of p can lie, and to what extent they determine the polynomial. The main results include (1) a nontrivial critical point of such a polynomial almost always determines the polynomial uniquely, and (2) there is a 'desert' in the unit disk in which critical points cannot occur.

Several recent papers ([1], [2], [3]) have studied the geometry of cubic polynomials, specifically asking, how the critical points of a cubic polynomial depend upon its roots. Frayer, Kwon, Schafhauser, and Swenson [1] studied the critical points of a family of polynomials

$$
\Gamma=\left\{q: \mathbb{C} \rightarrow \mathbb{C}\left|q(z)=(z-1)\left(z-r_{1}\right)\left(z-r_{2}\right),\left|r_{1}\right|=\left|r_{2}\right|=1\right\}\right.
$$

For $p \in \Gamma$ the main results of [1] include:

- A critical point almost always determines p uniquely.
- There is a desert in the unit disk, the open disk $\left\{z \in \mathbb{C}:\left|z-\frac{2}{3}\right|<\frac{1}{3}\right\}$, in which critical points of p cannot occur.
- If $0<\left|g-\frac{1}{3}\right| \leq \frac{2}{3}$, then there is a unique $p \in \Gamma$ with $p^{\prime \prime}(g)=0$. Additionally, if $\left|g-\frac{1}{3}\right|>\frac{2}{3}$, there is no $p \in \Gamma$ with $p^{\prime \prime}(g)=0$.
We will extend the results of [1] to a class of generalized cubic polynomials

$$
\Gamma_{k}=\left\{q: \mathbb{C} \rightarrow \mathbb{C}\left|q(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k},\left|r_{1}\right|=\left|r_{2}\right|=1, k \in \mathbb{N}\right\}\right.
$$

A polynomial of the form

$$
p(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k}
$$

has $2 k$ critical points; $k-1$ critical points at r_{1} and r_{2} respectively, and two nontrivial critical points. Differentiation gives
$p^{\prime}(z)=\left(z-r_{1}\right)^{k-1}\left(z-r_{2}\right)^{k-1}\left[(2 k+1) z^{2}-\left(2 k+(k+1)\left(r_{1}+r_{2}\right)\right) z+k\left(r_{1}+r_{2}\right)+r_{1} r_{2}\right]$
so that the two nontrivial critical points of p are the roots of

$$
\begin{equation*}
q(z)=(2 k+1) z^{2}-\left(2 k+(k+1)\left(r_{1}+r_{2}\right)\right) z+k\left(r_{1}+r_{2}\right)+r_{1} r_{2} \tag{1}
\end{equation*}
$$

2010 Mathematics Subject Classification. 14G22.

Key words and phrases. geometry; generalized cubic polynomials.

This paper will characterize where the nontrivial critical points of $p \in \Gamma_{k}$ lie, and to what extent they determine p.

Preliminary Information

Circles which are internally tangent to the unit circle at 1 will play an important role in what follows. Given $\alpha>0$, denote by T_{α} the circle of diameter α passing through 1 and $1-\alpha$ in the complex plane. That is,

$$
T_{\alpha}=\left\{z \in \mathbb{C}:\left|z-\left(1-\frac{\alpha}{2}\right)\right|=\frac{\alpha}{2}\right\}
$$

For example, T_{2} is the unit circle (a circle of diameter 2 centered at the origin). A key result of [1] will be used to establish a geometric relationship between the critical points of a polynomial in Γ_{k}.

Theorem $1([1])$. Let $f(z)=(z-1)\left(z-r_{1}\right) \cdots\left(z-r_{n}\right)$, where $\left|z_{k}\right|=1$ for each k. Let $c_{1}, c_{2}, \ldots, c_{n}$ denote the critical points of $f(z)$, and suppose that $1 \neq c_{k} \in T_{\alpha_{k}}$ for each k. Then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{\alpha_{k}}=n \tag{2}
\end{equation*}
$$

A general result related to the geometry of complex polynomials is the Gauss-Lucas Theorem.

Theorem 2 (Gauss-Lucas Theorem). Let p be a complex-valued polynomial. The critical points of p are located in the convex hull of its roots.

An additional fact of interest is related to fractional linear transformations.
Theorem 3 ([4]). A fractional linear transformation T sends the unit circle to the unit circle if and only if $T(z)=\frac{\bar{\alpha} z+\bar{\beta}}{\beta z+\alpha}$ for some $\alpha, \beta \in \mathbb{C}$.

Critical Points

We begin by analyzing a few special cases for future reference.
Example 1. Suppose $p \in \Gamma_{k}$ has nontrivial critical point $c=1$. This occurs if and only if $z=1$ is a repeated root of p. That is, r_{1} and/or r_{2} must be 1 . Hence, $p(z)=(z-1)^{k+1}(z-r)^{k}$ for some $r \in T_{2}$. Conversely, given $p(z)=(z-1)^{k+1}(z-r)^{k}$ for some $r \in T_{2}$, differentiation yields

$$
p^{\prime}(z)=(2 k+1)(z-1)^{k-1}(z-r)^{k-1}\left[(z-1)\left(z-\frac{k}{2 k+1}-\frac{(k+1)}{2 k+1} r\right)\right]
$$

Therefore, $p \in \Gamma_{k}$ has a nontrivial critical point at $z=1$ if and only if $p(z)=$ $(z-1)^{k+1}(z-r)^{k}$ with $r \in T_{2}$. In this case, the other nontrivial critical point is $\frac{k}{2 k+1}+\frac{(k+1)}{2 k+1} r \in T_{\frac{2 k+2}{2 k+1}}$.

Now that we know which polynomials in Γ_{k} have nontrivial critical point $c=1$, we may assume that $c \neq 1$ throughout the remainder of the paper.

Example 2. Suppose $p \in \Gamma_{k}$ has nontrivial critical point $1 \neq c \in T_{2}$. This occurs if and only if $z=c$ is a repeated root of p with multiplicity greater than k. That is, $r_{1}=r_{2}=c$ so that $p(z)=(z-1)(z-c)^{2 k}$. Conversely, given $p(z)=(z-1)(z-c)^{2 k}$, differentiation yields

$$
p^{\prime}(z)=(2 k+1)(z-c)^{2 k-2}\left[(z-c)\left(z-\frac{2 k}{2 k+1}-\frac{1}{2 k+1} c\right)\right]
$$

Therefore, $p \in \Gamma_{k}$ has nontrivial critical point $c \neq 1$ on T_{2} if and only if $p(z)=(z-$ $1)(z-c)^{2 k}$. In this case, the other nontrivial critical point is $\frac{2 k}{2 k+1}+\frac{1}{2 k+1} c \in T_{\frac{2}{2 k+1}}$.

Let's now determine where the nontrivial critical points of $p \in \Gamma_{k}$ lie. The Gauss-Lucas Theorem guarantees that the nontrivial critical points will lie within the unit disk. But we can say more; there is a desert in the unit disk, the open disk $\left\{z \mid z \in T_{\alpha}\right.$ with $\left.0<\alpha<\frac{2}{2 k+1}\right\}$, in which nontrivial critical points of p cannot occur.

Theorem 4. No polynomial $p \in \Gamma_{k}$ has a nontrivial critical point strictly inside $T_{\frac{2}{2 k+1}}$.

Proof. Let $c_{1} \neq 1$ and $c_{2} \neq 1$ be nontrivial critical points of $p(z)=(z-1)(z-$ $\left.r_{1}\right)^{k}\left(z-r_{2}\right)^{k}$ with $c_{1} \in T_{\alpha}$ and $c_{2} \in T_{\beta}$. As the $2 k-2$ trivial critical points lie on T_{2}, Theorem 1 gives

$$
(2 k-2)\left(\frac{1}{2}\right)+\frac{1}{\alpha}+\frac{1}{\beta}=2 k
$$

which simplifies to

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=k+1 \tag{3}
\end{equation*}
$$

Suppose to the contrary that $\alpha<\frac{2}{2 k+1}$. Then

$$
\begin{aligned}
\frac{1}{\beta} & =k+1-\frac{1}{\alpha} \\
& <k+1-\frac{2 k+1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

But then $\beta>2$ which violates Theorem 2.
Theorem 5. Let $c_{1} \neq 1$ and $c_{2} \neq 1$ be nontrivial critical points of $p \in \Gamma_{k}$ with $c_{1} \in T_{\alpha}$ and $c_{2} \in T_{\beta}$. If c_{1} lies on $T_{\frac{2}{k+1}}$ so does c_{2}. Otherwise, c_{1} and c_{2} lie on opposite sides of $T_{\frac{2}{k+1}}$.

Proof. Let $c_{1} \neq 1$ and $c_{2} \neq 1$ be nontrivial critical points of $p \in \Gamma_{k}$ with $c_{1} \in T_{\alpha}$ and $c_{2} \in T_{\beta}$. Then, from equation (3), $\frac{1}{\alpha}+\frac{1}{\beta}=k+1$. Therefore, $\alpha=\frac{2}{k+1}$ if and
only if $\beta=\frac{2}{k+1}$. Additionally, if $\alpha<\frac{2}{k+1}$, then

$$
\begin{aligned}
\frac{1}{\beta} & =k+1-\frac{1}{\alpha} \\
& <k+1-\frac{k+1}{2} \\
& =\frac{k+1}{2}
\end{aligned}
$$

and $\beta>\frac{2}{k+1}$.
Now that we know where the nontrivial critical points lie, let's investigate to what extent they determine the polynomial. Given $p \in \Gamma_{k}$ with roots at $1, r_{1}$ and r_{2}, and a nontrivial critical point c, we have

$$
0=q^{\prime}(c)=(2 k+1) c^{2}-\left(2 k+(k+1)\left(r_{1}+r_{2}\right)\right) c+k\left(r_{1}+r_{2}\right)+r_{1} r_{2}
$$

Direct calculations give

$$
r_{2}=\frac{(k-c(k+1)) r_{1}+(2 k+1) c^{2}-2 k}{-r_{1}+c(k+1)-k} .
$$

Definition 1. Given $c \in \mathbb{C}$, define

$$
f_{c}(z)=\frac{(k-c(k+1)) z+(2 k+1) c^{2}-2 k}{-z+c(k+1)-k}
$$

and let S_{c} denote the image of the unit circle under f_{c}.
That is, $f_{c}\left(T_{2}\right)=S_{c}$ and $f_{c}\left(r_{1}\right)=r_{2}$.
Theorem 6. Polynomial $p(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k} \in \Gamma_{k}$ has nontrivial critical $c \neq 1$ if and only if $f_{c}\left(r_{1}\right)=r_{2}$.

As fractional linear transformations send circles and lines to circles and lines, S_{c} will be a circle when $c \notin T_{\frac{2}{k+1}}$. To see this, note that S_{c} is a line when

$$
|c(k+1)-k|=1 \longleftrightarrow\left|c-\left(1-\frac{1}{k+1}\right)\right|=\frac{1}{k+1}
$$

which is equivalent to $c \in T_{\frac{2}{k+1}}$. We have established the following theorem (See Theorem 8). Let's investigate a special case.

Example 3. Suppose $1 \neq c \in T_{2}$. Using the fact that

$$
f_{c}(c)=c, \quad f_{c}(1)=\frac{(2 k+1) c-k}{k+1}, \quad \text { and } \quad f_{c}(-1)=\frac{c^{2}(2 k+1)+c(1-k)-k}{c(k+1)+(1-k)}
$$

direct calculations give

$$
\left|f_{c}(z)-\left(\frac{2 k+1}{k+1}\right) c\right|=\frac{k}{k+1}
$$

for $z \in\{c, \pm 1\}$. Therefore, for $1 \neq c \in T_{2}, S_{c}$ is a circle with radius $\frac{k}{k+1}$ and center $\left(\frac{2 k+1}{k+1}\right) c$, which is externally tangent to T_{2} at c.

When $1 \neq c \in T_{2}$, it follows from Example 2 that the other critical point of p lies on the boundary of the desert at $c_{2}=\frac{2 k}{2 k+1}+\frac{1}{2 k+1} c$. Similar calculations show that $S_{c_{2}}$ is a circle with radius $\frac{k}{k+1}$ and center $\left(\frac{1}{k+1}\right) c$, which is internally tangent to T_{2} at c.

When $c=1, f_{c}(z)=\frac{-z+1}{-z+1}=1$ and $\left(f_{c}\right)^{-1}$ does not exist. If $c \neq 1$, then $\left(f_{c}\right)^{-1}=f_{c}$ so that $f_{c}\left(r_{2}\right)=r_{1}$. Hence, f_{c} restricts to a one-to-one correspondence from $S_{c} \cap T_{2}$ to itself, and if c is a nontrivial critical point of p, then $\left\{r_{1}, r_{2}\right\} \subseteq S_{c} \cap T_{2}$. This observation allows us to classify the polynomials in Γ_{k} which have a critical point at $1 \neq c$ in the unit disk! We simply need to study the intersection of circles T_{2} and S_{c}.

Theorem 7. If $c \notin\left\{1,-\frac{1}{2 k+1}\right\}$ lies on T_{α} for some $\alpha \in\left[\frac{2}{2 k+1}, 2\right]$, then there is a unique $p \in \Gamma_{k}$ with nontrivial critical point at c.

Proof. Let $c \in \mathbb{C}$. In order to determine if there is a polynomial $p \in \Gamma_{k}$ with critical point at c we must study the intersection of S_{c} and T_{2}. As S_{c} and T_{2} are circles, their intersection is disjoint, contains one point, contains two points, or is all of T_{2}.

If $S_{c} \cap T_{2}=\emptyset$, then there is no polynomial in Γ_{k} with a nontrivial critical point at c. At a minimum, this occurs when $c \in T_{\alpha}$ with $\alpha>2$ (Theorem 2) and $\alpha<\frac{2}{2 k+1}$ (Theorem 4).

If $S_{c} \cap T_{2}=\{r\}$, then $f_{c}(r)=r$ and by Theorem $6, r$ is a nontrivial critical point of $p(z)=(z-1)(z-r)^{2 k}$. Conversely, as illustrated in Example 3, if $p(z)=$ $(z-1)(z-r)^{2 k}$, then $S_{c} \cap T_{2}=\{r\}$.

If $S_{c} \cap T_{2}=\{r, s\}$ with $r \neq s$, there are two possibilities: $f_{c}(r)=r$ and $f_{c}(s)=s$, or $f_{c}(r)=s$ and $f_{c}(s)=r$. We will rule out the first possibility. If $f_{c}(r)=r$ and $f_{c}(s)=s$, then by Theorem 6, c is a nontrivial critical point of $p(z)=(z-1)(z-r)^{2 k}$ and $p(z)=(z-1)(z-s)^{2 k}$. By the Gauss-Lucas Theorem, c lies on line segments $\overline{1 r}$ and $\overline{1 s}$. A contradiction. Therefore, $f_{c}(r)=s$ and $f_{c}(s)=r$, and it follows by Theorem 6 that $p(z)=(z-1)(z-r)^{k}(z-s)^{k}$ is the only polynomial in Γ_{k} with a nontrivial critical point at c.

If $S_{c} \cap T_{2}=T_{2}$, then $f_{c}\left(T_{2}\right)=T_{2}$. As

$$
f_{c}(z)=\frac{(k-c(k+1)) z+(2 k+1) c^{2}-2 k}{-z+c(k+1)-k}=-\frac{(k-c(k+1)) z+(2 k+1) c^{2}-2 k}{z+k-c(k+1)}
$$

according to Theorem $3, f_{c}\left(T_{2}\right)=T_{2}$ exactly when $k-c(k+1)=\overline{k-c(k+1)}$ and $(2 k+1) c^{2}-2 k=1$. The first equation implies $c \in \mathbb{R}$, and the second equation simplifies to

$$
((2 k+1) c+1)(c-1)=0
$$

Since $c \neq 1, S_{c} \cap T_{2}=T_{2}$ precisely when $c=-\frac{1}{2 k+1}$. Therefore, $c=-\frac{1}{2 k+1}$ is the nontrivial critical point of $p \in \Gamma_{k}$ if and only if $p(z)=(z-1)(z-r)^{k}\left(z-f_{-\frac{1}{2 k+1}}(r)\right)^{k}$ for $r \in T_{2}$.

In order to establish uniqueness, we need to show that if $c \neq-\frac{1}{2 k+1}$ lies on T_{α} with $\alpha \in\left(\frac{2}{2 k+1}, 2\right)$, then $\left|S_{c} \cap T_{2}\right|=2$. This claim follows from a simple 'root
dragging'-type argument. Without loss of generality, suppose that $S_{c} \cap T_{2}=\emptyset$ and S_{c} lies inside T_{2}. As we 'drag' c to T_{2} along a line segment going away from the origin, S_{c} is continuously transformed into a circle externally tangent to T_{2}. The Intermediate Value Theorem implies that there exists a c_{0} on the line segment with $S_{c_{0}}$ internally tangent to T_{2}. As c never crosses $T_{\frac{2}{2 k+1}}$, this is a contradiction.

Now that we have proven uniqueness, let's revisit Theorem 5.
Theorem 8. Suppose c_{1} and c_{2} are nontrivial critical points of $p \in \Gamma_{k}$. If $1 \neq c_{1} \in$ $T_{\frac{2}{k+1}}$, then $c_{2}=\overline{c_{1}}$.

Stated differently, if $c \in T_{\frac{2}{k+1}}$, then S_{c} is a vertical line passing through $f_{c}(1)=$ $\frac{(2 k+1) c-k}{k+1}$. We use this fact, along with uniqueness, to provide a proof.

Proof. Let $c=x+i y \in T_{\frac{2}{k+1}}$. Suppose $r=e^{i \theta}$ with $\cos (\theta)=\left(\frac{2 k+1}{k+1} x-\frac{k}{k+1}\right)$ and

$$
q(z)=(z-1)(z-r)^{k}(z-\bar{r})^{k} \in \Gamma_{k}
$$

Then
$q^{\prime}(z)=(z-r)^{k-1}(z-\bar{r})^{k-1}\left[(2 k+1) z^{2}-((k+1)(r+\bar{r})+2 k) z+k(r+\bar{r})+r \bar{r}\right]$ and q has nontrivial critical points when

$$
(2 k+1) z^{2}-((k+1) 2 \cos (\theta)+2 k) z+2 k \cos (\theta)+1=0
$$

Using $\cos (\theta)=\left(\frac{2 k+1}{k+1} x-\frac{k}{k+1}\right)$ yields

$$
\begin{aligned}
(2 k+1) z^{2}-(2(2 k+1) x) z+\frac{2 k(2 k+1)}{k+1} x-\frac{(2 k+1)(k-1)}{k+1} & =0 \\
(2 k+1)\left[z^{2}-2 x z+\frac{2 k}{k+1} x-\frac{k-1}{k+1}\right] & =0 \\
z^{2}-(c+\bar{c}) z+c \bar{c} & =0 \\
(z-c)(z-\bar{c}) & =0
\end{aligned}
$$

and $q \in \Gamma_{k}$ has nontrivial critical points at c and \bar{c}. Therefore, by uniqueness, if $p \in \Gamma_{k}$ has nontrivial critical point at $1 \neq c_{1} \in T_{\frac{2}{k+1}}$, then $c_{2}=\overline{c_{1}}$.

Centers

Given $p(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k} \in \Gamma_{k}$, we saw in Equation (1) that the nontrivial critical points are the solutions of

$$
q(z)=(2 k+1) z^{2}-\left(2 k+(k+1)\left(r_{1}+r_{2}\right)\right) z+k\left(r_{1}+r_{2}\right)+r_{1} r_{2}
$$

We define $g \in \mathbb{C}$ to be the center of $p(z)$ if $q^{\prime}(g)=0$. Since q has degree 2 , every $p \in \Gamma_{k}$ has the unique center

$$
g=\frac{k}{2 k+1}+\frac{k+1}{2 k+1}\left(\frac{r_{1}+r_{2}}{2}\right) .
$$

As in [1] we will use a geometric construction to show exactly where the center can lie.

Theorem 9. Let $g \in \mathbb{C}$

- $p \in \Gamma_{k}$ has center $\frac{k}{2 k+1}$ if and only if $p(z)=(z-1)\left(z-r_{1}\right)^{k}\left(z-r_{2}\right)^{k}$ with $r_{2}=-r_{1}$.
- If $0<\left|g-\frac{k}{2 k+1}\right| \leq \frac{k+1}{2 k+1}$, then there is a unique polynomial in Γ_{k} with center g.
- If $\left|g-\frac{k}{2 k+1}\right|>\frac{k+1}{2 k+1}$, then there is no polynomial in Γ_{k} with center g.

Proof. Suppose g is the center of $p \in \Gamma_{k}$. By the Gasuss-Lucas Theorem, g is contained in $\triangle r_{1} r_{2} 1$, where r_{1} and r_{2} are points to be constructed on T_{2}. Even though we do not know r_{1} and r_{2}, their midpoint, w, lies in the unit disk with $g=\frac{k}{2 k+1}+\frac{k+1}{2 k+1} w$. Therefore $\left|g-\frac{k}{2 k+1}\right| \leq \frac{k+1}{2 k+1}$.

If $0<\left|g-\frac{k}{2 k+1}\right| \leq \frac{k+1}{2 k+1}$, then $g \neq \frac{k}{2 k+1}$ and $w \neq 0$. As $\overline{r_{1} r_{2}}$ is a chord of T_{2}, its perpendicular bisector passes through w and the origin O. Since w lies in the unit disk, the line through w perpendicular to $\overline{O w}$ intersects T_{2} in two places, r_{1} and r_{2}.

If $g=\frac{k}{2 k+1}$, then $w=0$ is the midpoint of $\overline{r_{1} r_{2}}$ and it follows that $r_{2}=-r_{1}$.
This proof completes the extension of [1] to the class of generalized cubics Γ_{k}. This paper completely characterizes where the critical points and centers of a $p \in \Gamma_{k}$ can lie and to what extent they determine a polynomial in Γ_{k}.

References

[1] Christopher Frayer, Myeon Kwon, Christopher Schafahuser, and James A. Swenson, The Geometry of Cubic Polynomials, Math. Magazine 87 (2014), no. 2, 113-124.
[2] Dan Kalman, An elementary proof of Marden's theorem, Amer. Math. Monthly 115 (2008), no. 4, 330-338.
[3] Sam Northshield, Geometry of Cubic Polynomials, Math. Magazine 86 (April 2013), 136-143.
[4] E.B Saff and A.D Snider, Fundamentals of Com,plex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.

University of Wisconsin-Platteville, United States

