International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 2 (2015), 93-99 http://www.etamaths.com

GEOMETRY OF A CLASS OF GENERALIZED CUBIC POLYNOMIALS

CHRISTOPHER FRAYER

ABSTRACT. This paper studies a class of generalized complex cubic polynomials of the form $p(z) = (z - 1)(z - r_1)^k(z - r_2)^k$ where r_1 and r_2 lie on the unit circle and k is a natural number. We completely characterize where the nontrivial critical points of p can lie, and to what extent they determine the polynomial. The main results include (1) a nontrivial critical point of such a polynomial almost always determines the polynomial uniquely, and (2) there is a 'desert' in the unit disk in which critical points cannot occur.

Several recent papers ([1], [2], [3]) have studied the geometry of cubic polynomials, specifically asking, how the critical points of a cubic polynomial depend upon its roots. Frayer, Kwon, Schafhauser, and Swenson [1] studied the critical points of a family of polynomials

$$\Gamma = \{q : \mathbb{C} \to \mathbb{C} \mid q(z) = (z-1)(z-r_1)(z-r_2), \ |r_1| = |r_2| = 1\}.$$

For $p \in \Gamma$ the main results of [1] include:

- A critical point almost always determines *p* uniquely.
- There is a *desert* in the unit disk, the open disk $\{z \in \mathbb{C} : |z \frac{2}{3}| < \frac{1}{3}\}$, in which critical points of p cannot occur.
- If $0 < |g \frac{1}{3}| \le \frac{2}{3}$, then there is a unique $p \in \Gamma$ with p''(g) = 0. Additionally, if $|g \frac{1}{3}| > \frac{2}{3}$, there is no $p \in \Gamma$ with p''(g) = 0.

We will extend the results of [1] to a class of generalized cubic polynomials

$$\Gamma_k = \left\{ q : \mathbb{C} \to \mathbb{C} \, | \, q(z) = (z-1)(z-r_1)^k (z-r_2)^k, \, |r_1| = |r_2| = 1, \, k \in \mathbb{N} \right\}.$$

A polynomial of the form

$$p(z) = (z - 1)(z - r_1)^k (z - r_2)^k$$

has 2k critical points; k - 1 critical points at r_1 and r_2 respectively, and two nontrivial critical points. Differentiation gives

$$p'(z) = (z-r_1)^{k-1}(z-r_2)^{k-1} \left[(2k+1)z^2 - (2k+(k+1)(r_1+r_2))z + k(r_1+r_2) + r_1r_2 \right]$$

so that the two nontrivial critical points of \boldsymbol{p} are the roots of

(1)
$$q(z) = (2k+1)z^2 - (2k+(k+1)(r_1+r_2))z + k(r_1+r_2) + r_1r_2.$$

²⁰¹⁰ Mathematics Subject Classification. 14G22.

Key words and phrases. geometry; generalized cubic polynomials.

^{©2015} Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

FRAYER

This paper will characterize where the nontrivial critical points of $p \in \Gamma_k$ lie, and to what extent they determine p.

PRELIMINARY INFORMATION

Circles which are internally tangent to the unit circle at 1 will play an important role in what follows. Given $\alpha > 0$, denote by T_{α} the circle of diameter α passing through 1 and $1 - \alpha$ in the complex plane. That is,

$$T_{\alpha} = \left\{ z \in \mathbb{C} : \left| z - \left(1 - \frac{\alpha}{2} \right) \right| = \frac{\alpha}{2} \right\}.$$

For example, T_2 is the unit circle (a circle of diameter 2 centered at the origin). A key result of [1] will be used to establish a geometric relationship between the critical points of a polynomial in Γ_k .

Theorem 1 ([1]). Let $f(z) = (z-1)(z-r_1)\cdots(z-r_n)$, where $|z_k| = 1$ for each k. Let c_1, c_2, \ldots, c_n denote the critical points of f(z), and suppose that $1 \neq c_k \in T_{\alpha_k}$ for each k. Then

(2)
$$\sum_{k=1}^{n} \frac{1}{\alpha_k} = n$$

A general result related to the geometry of complex polynomials is the Gauss-Lucas Theorem.

Theorem 2 (Gauss-Lucas Theorem). Let p be a complex-valued polynomial. The critical points of p are located in the convex hull of its roots.

An additional fact of interest is related to fractional linear transformations.

Theorem 3 ([4]). A fractional linear transformation T sends the unit circle to the unit circle if and only if $T(z) = \frac{\bar{\alpha}z + \bar{\beta}}{\beta z + \alpha}$ for some $\alpha, \beta \in \mathbb{C}$.

CRITICAL POINTS

We begin by analyzing a few special cases for future reference.

Example 1. Suppose $p \in \Gamma_k$ has nontrivial critical point c = 1. This occurs if and only if z = 1 is a repeated root of p. That is, r_1 and/or r_2 must be 1. Hence, $p(z) = (z-1)^{k+1}(z-r)^k$ for some $r \in T_2$. Conversely, given $p(z) = (z-1)^{k+1}(z-r)^k$ for some $r \in T_2$, differentiation yields

$$p'(z) = (2k+1)(z-1)^{k-1}(z-r)^{k-1} \left[(z-1)\left(z - \frac{k}{2k+1} - \frac{(k+1)}{2k+1}r\right) \right].$$

Therefore, $p \in \Gamma_k$ has a nontrivial critical point at z = 1 if and only if $p(z) = (z-1)^{k+1}(z-r)^k$ with $r \in T_2$. In this case, the other nontrivial critical point is $\frac{k}{2k+1} + \frac{(k+1)}{2k+1}r \in T_{\frac{2k+2}{2k+1}}$.

Now that we know which polynomials in Γ_k have nontrivial critical point c = 1, we may assume that $c \neq 1$ throughout the remainder of the paper.

Example 2. Suppose $p \in \Gamma_k$ has nontrivial critical point $1 \neq c \in T_2$. This occurs if and only if z = c is a repeated root of p with multiplicity greater than k. That is, $r_1 = r_2 = c$ so that $p(z) = (z-1)(z-c)^{2k}$. Conversely, given $p(z) = (z-1)(z-c)^{2k}$, differentiation yields

$$p'(z) = (2k+1)(z-c)^{2k-2} \left[(z-c)\left(z - \frac{2k}{2k+1} - \frac{1}{2k+1}c\right) \right].$$

Therefore, $p \in \Gamma_k$ has nontrivial critical point $c \neq 1$ on T_2 if and only if $p(z) = (z - 1)(z-c)^{2k}$. In this case, the other nontrivial critical point is $\frac{2k}{2k+1} + \frac{1}{2k+1}c \in T_{\frac{2}{2k+1}}$.

Let's now determine where the nontrivial critical points of $p \in \Gamma_k$ lie. The Gauss-Lucas Theorem guarantees that the nontrivial critical points will lie within the unit disk. But we can say more; there is a *desert* in the unit disk, the open disk $\{z \mid z \in T_{\alpha} \text{ with } 0 < \alpha < \frac{2}{2k+1}\}$, in which nontrivial critical points of p cannot occur.

Theorem 4. No polynomial $p \in \Gamma_k$ has a nontrivial critical point strictly inside $T_{\frac{2}{2k+1}}$.

Proof. Let $c_1 \neq 1$ and $c_2 \neq 1$ be nontrivial critical points of $p(z) = (z-1)(z-r_1)^k(z-r_2)^k$ with $c_1 \in T_{\alpha}$ and $c_2 \in T_{\beta}$. As the 2k-2 trivial critical points lie on T_2 , Theorem 1 gives

$$(2k-2)\left(\frac{1}{2}\right) + \frac{1}{\alpha} + \frac{1}{\beta} = 2k$$

which simplifies to

(3)
$$\frac{1}{\alpha} + \frac{1}{\beta} = k + 1.$$

Suppose to the contrary that $\alpha < \frac{2}{2k+1}$. Then

$$\frac{\frac{1}{\beta}}{=} k + 1 - \frac{1}{\alpha}$$
$$< k + 1 - \frac{2k + 1}{2}$$
$$= \frac{1}{2}.$$

But then $\beta > 2$ which violates Theorem 2.

Theorem 5. Let $c_1 \neq 1$ and $c_2 \neq 1$ be nontrivial critical points of $p \in \Gamma_k$ with $c_1 \in T_\alpha$ and $c_2 \in T_\beta$. If c_1 lies on $T_{\frac{2}{k+1}}$ so does c_2 . Otherwise, c_1 and c_2 lie on opposite sides of $T_{\frac{2}{k+1}}$.

Proof. Let $c_1 \neq 1$ and $c_2 \neq 1$ be nontrivial critical points of $p \in \Gamma_k$ with $c_1 \in T_\alpha$ and $c_2 \in T_\beta$. Then, from equation (3), $\frac{1}{\alpha} + \frac{1}{\beta} = k + 1$. Therefore, $\alpha = \frac{2}{k+1}$ if and

only if $\beta = \frac{2}{k+1}$. Additionally, if $\alpha < \frac{2}{k+1}$, then

$$\begin{aligned} \frac{1}{\beta} &= k+1-\frac{1}{\alpha} \\ &< k+1-\frac{k+1}{2} \\ &= \frac{k+1}{2} \end{aligned}$$

and $\beta > \frac{2}{k+1}$.

Now that we know where the nontrivial critical points lie, let's investigate to what extent they determine the polynomial. Given $p \in \Gamma_k$ with roots at 1, r_1 and r_2 , and a nontrivial critical point c, we have

$$0 = q'(c) = (2k+1)c^2 - (2k+(k+1)(r_1+r_2))c + k(r_1+r_2) + r_1r_2.$$

Direct calculations give

$$r_2 = \frac{(k - c(k+1))r_1 + (2k+1)c^2 - 2k}{-r_1 + c(k+1) - k}$$

Definition 1. Given $c \in \mathbb{C}$, define

$$f_c(z) = \frac{(k - c(k+1))z + (2k+1)c^2 - 2k}{-z + c(k+1) - k}$$

and let S_c denote the image of the unit circle under f_c .

That is, $f_c(T_2) = S_c$ and $f_c(r_1) = r_2$.

Theorem 6. Polynomial $p(z) = (z-1)(z-r_1)^k(z-r_2)^k \in \Gamma_k$ has nontrivial critical $c \neq 1$ if and only if $f_c(r_1) = r_2$.

As fractional linear transformations send circles and lines to circles and lines, S_c will be a circle when $c \notin T_{\frac{2}{k+1}}$. To see this, note that S_c is a line when

$$\left|c(k+1)-k\right| = 1 \longleftrightarrow \left|c - \left(1 - \frac{1}{k+1}\right)\right| = \frac{1}{k+1}$$

which is equivalent to $c \in T_{\frac{2}{k+1}}$. We have established the following theorem (See Theorem 8). Let's investigate a special case.

Example 3. Suppose $1 \neq c \in T_2$. Using the fact that

$$f_c(c) = c$$
, $f_c(1) = \frac{(2k+1)c - k}{k+1}$, and $f_c(-1) = \frac{c^2(2k+1) + c(1-k) - k}{c(k+1) + (1-k)}$

direct calculations give

$$\left| f_c(z) - \left(\frac{2k+1}{k+1}\right) c \right| = \frac{k}{k+1}$$

for $z \in \{c, \pm 1\}$. Therefore, for $1 \neq c \in T_2$, S_c is a circle with radius $\frac{k}{k+1}$ and center $\left(\frac{2k+1}{k+1}\right)c$, which is externally tangent to T_2 at c.

When $1 \neq c \in T_2$, it follows from Example 2 that the other critical point of p lies on the boundary of the desert at $c_2 = \frac{2k}{2k+1} + \frac{1}{2k+1}c$. Similar calculations show that S_{c_2} is a circle with radius $\frac{k}{k+1}$ and center $\left(\frac{1}{k+1}\right)c$, which is internally tangent to T_2 at c.

When c = 1, $f_c(z) = \frac{-z+1}{-z+1} = 1$ and $(f_c)^{-1}$ does not exist. If $c \neq 1$, then $(f_c)^{-1} = f_c$ so that $f_c(r_2) = r_1$. Hence, f_c restricts to a one-to-one correspondence from $S_c \cap T_2$ to itself, and if c is a nontrivial critical point of p, then $\{r_1, r_2\} \subseteq S_c \cap T_2$. This observation allows us to classify the polynomials in Γ_k which have a critical point at $1 \neq c$ in the unit disk! We simply need to study the intersection of circles T_2 and S_c .

Theorem 7. If $c \notin \{1, -\frac{1}{2k+1}\}$ lies on T_{α} for some $\alpha \in \left[\frac{2}{2k+1}, 2\right]$, then there is a unique $p \in \Gamma_k$ with nontrivial critical point at c.

Proof. Let $c \in \mathbb{C}$. In order to determine if there is a polynomial $p \in \Gamma_k$ with critical point at c we must study the intersection of S_c and T_2 . As S_c and T_2 are circles, their intersection is disjoint, contains one point, contains two points, or is all of T_2 .

If $S_c \cap T_2 = \emptyset$, then there is no polynomial in Γ_k with a nontrivial critical point at c. At a minimum, this occurs when $c \in T_\alpha$ with $\alpha > 2$ (Theorem 2) and $\alpha < \frac{2}{2k+1}$ (Theorem 4).

If $S_c \cap T_2 = \{r\}$, then $f_c(r) = r$ and by Theorem 6, r is a nontrivial critical point of $p(z) = (z-1)(z-r)^{2k}$. Conversely, as illustrated in Example 3, if $p(z) = (z-1)(z-r)^{2k}$, then $S_c \cap T_2 = \{r\}$.

If $S_c \cap T_2 = \{r, s\}$ with $r \neq s$, there are two possibilities: $f_c(r) = r$ and $f_c(s) = s$, or $f_c(r) = s$ and $f_c(s) = r$. We will rule out the first possibility. If $f_c(r) = r$ and $f_c(s) = s$, then by Theorem 6, c is a nontrivial critical point of $p(z) = (z-1)(z-r)^{2k}$ and $p(z) = (z-1)(z-s)^{2k}$. By the Gauss-Lucas Theorem, c lies on line segments $\overline{1r}$ and $\overline{1s}$. A contradiction. Therefore, $f_c(r) = s$ and $f_c(s) = r$, and it follows by Theorem 6 that $p(z) = (z-1)(z-r)^k(z-s)^k$ is the only polynomial in Γ_k with a nontrivial critical point at c.

If $S_c \cap T_2 = T_2$, then $f_c(T_2) = T_2$. As

$$f_c(z) = \frac{(k - c(k+1))z + (2k+1)c^2 - 2k}{-z + c(k+1) - k} = -\frac{(k - c(k+1))z + (2k+1)c^2 - 2k}{z + k - c(k+1)}$$

according to Theorem 3, $f_c(T_2) = T_2$ exactly when $k - c(k+1) = \overline{k - c(k+1)}$ and $(2k+1)c^2 - 2k = 1$. The first equation implies $c \in \mathbb{R}$, and the second equation simplifies to

$$((2k+1)c+1)(c-1) = 0.$$

Since $c \neq 1$, $S_c \cap T_2 = T_2$ precisely when $c = -\frac{1}{2k+1}$. Therefore, $c = -\frac{1}{2k+1}$ is the nontrivial critical point of $p \in \Gamma_k$ if and only if $p(z) = (z-1)(z-r)^k \left(z - f_{-\frac{1}{2k+1}}(r)\right)^k$ for $r \in T_2$.

In order to establish uniqueness, we need to show that if $c \neq -\frac{1}{2k+1}$ lies on T_{α} with $\alpha \in (\frac{2}{2k+1}, 2)$, then $|S_c \cap T_2| = 2$. This claim follows from a simple 'root

FRAYER

dragging'-type argument. Without loss of generality, suppose that $S_c \cap T_2 = \emptyset$ and S_c lies inside T_2 . As we 'drag' c to T_2 along a line segment going away from the origin, S_c is continuously transformed into a circle externally tangent to T_2 . The Intermediate Value Theorem implies that there exists a c_0 on the line segment with S_{c_0} internally tangent to T_2 . As c never crosses $T_{\frac{2}{2k+1}}^2$, this is a contradiction. \Box

Now that we have proven uniqueness, let's revisit Theorem 5.

Theorem 8. Suppose c_1 and c_2 are nontrivial critical points of $p \in \Gamma_k$. If $1 \neq c_1 \in T_{\frac{2}{k+1}}$, then $c_2 = \bar{c_1}$.

Stated differently, if $c \in T_{\frac{2}{k+1}}$, then S_c is a vertical line passing through $f_c(1) = \frac{(2k+1)c-k}{k+1}$. We use this fact, along with uniqueness, to provide a proof.

Proof. Let
$$c = x + iy \in T_{\frac{2}{k+1}}$$
. Suppose $r = e^{i\theta}$ with $\cos(\theta) = \left(\frac{2k+1}{k+1}x - \frac{k}{k+1}\right)$ and $q(z) = (z-1)(z-r)^k(z-\bar{r})^k \in \Gamma_k$.

Then

 $q'(z) = (z-r)^{k-1}(z-\bar{r})^{k-1} \left[(2k+1)z^2 - ((k+1)(r+\bar{r})+2k)z + k(r+\bar{r}) + r\bar{r} \right]$ and q has nontrivial critical points when

$$(2k+1)z^{2} - ((k+1)2\cos(\theta) + 2k)z + 2k\cos(\theta) + 1 = 0.$$

Using $\cos(\theta) = \left(\frac{2k+1}{k+1}x - \frac{k}{k+1}\right)$ yields $(2k+1)z^2 - (2(2k+1)x)z + \frac{2k(2k+1)}{k+1}x - \frac{(2k+1)(k-1)}{k+1} = 0$ $(2k+1)\left[z^2 - 2xz + \frac{2k}{k+1}x - \frac{k-1}{k+1}\right] = 0$ $z^2 - (c+\bar{c})z + c\bar{c} = 0$ $(z-c)(z-\bar{c}) = 0$

and $q \in \Gamma_k$ has nontrivial critical points at c and \bar{c} . Therefore, by uniqueness, if $p \in \Gamma_k$ has nontrivial critical point at $1 \neq c_1 \in T_{\frac{2}{k+1}}$, then $c_2 = \bar{c_1}$.

CENTERS

Given $p(z) = (z-1)(z-r_1)^k(z-r_2)^k \in \Gamma_k$, we saw in Equation (1) that the nontrivial critical points are the solutions of

$$q(z) = (2k+1)z^{2} - (2k+(k+1)(r_{1}+r_{2}))z + k(r_{1}+r_{2}) + r_{1}r_{2}.$$

We define $g \in \mathbb{C}$ to be the *center* of p(z) if q'(g) = 0. Since q has degree 2, every $p \in \Gamma_k$ has the unique center

$$g = \frac{k}{2k+1} + \frac{k+1}{2k+1} \left(\frac{r_1 + r_2}{2}\right).$$

As in [1] we will use a geometric construction to show exactly where the center can lie.

Theorem 9. Let $g \in \mathbb{C}$

- $p \in \Gamma_k$ has center $\frac{k}{2k+1}$ if and only if $p(z) = (z-1)(z-r_1)^k(z-r_2)^k$ with $r_2 = -r_1.$
- If 0 < |g k/2k+1| ≤ k+1/2k+1, then there is a unique polynomial in Γ_k with center g.
 If |g k/2k+1| > k+1/2k+1, then there is no polynomial in Γ_k with center g.

Proof. Suppose g is the center of $p \in \Gamma_k$. By the Gasuss-Lucas Theorem, g is contained in $\Delta r_1 r_2 1$, where r_1 and r_2 are points to be constructed on T_2 . Even though we do not know r_1 and r_2 , their midpoint, w, lies in the unit disk with $g = \frac{k}{2k+1} + \frac{k+1}{2k+1}w$. Therefore $|g - \frac{k}{2k+1}| \le \frac{k+1}{2k+1}$. If $0 < |g - \frac{k}{2k+1}| \le \frac{k+1}{2k+1}$, then $g \neq \frac{k}{2k+1}$ and $w \neq 0$. As $\overline{r_1r_2}$ is a chord of T_2 , its perpendicular bisector passes through w and the origin O. Since w lies in the unit

disk, the line through w perpendicular to \overline{Ow} intersects T_2 in two places, r_1 and r_2 .

If $g = \frac{k}{2k+1}$, then w = 0 is the midpoint of $\overline{r_1 r_2}$ and it follows that $r_2 = -r_1$. \Box

This proof completes the extension of [1] to the class of generalized cubics Γ_k . This paper completely characterizes where the critical points and centers of a $p \in \Gamma_k$ can lie and to what extent they determine a polynomial in Γ_k .

References

- [1] Christopher Frayer, Myeon Kwon, Christopher Schafahuser, and James A. Swenson, The Geometry of Cubic Polynomials, Math. Magazine 87 (2014), no. 2, 113-124.
- [2]Dan Kalman, An elementary proof of Marden's theorem, Amer. Math. Monthly 115 (2008), no. 4, 330-338.
- Sam Northshield, Geometry of Cubic Polynomials, Math. Magazine 86 (April 2013), 136-143. [3]
- [4] E.B Saff and A.D Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.

UNIVERSITY OF WISCONSIN-PLATTEVILLE, UNITED STATES