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GEOMETRY OF A CLASS OF GENERALIZED CUBIC

POLYNOMIALS

CHRISTOPHER FRAYER

Abstract. This paper studies a class of generalized complex cubic polynomi-

als of the form p(z) = (z − 1)(z − r1)k(z − r2)k where r1 and r2 lie on the

unit circle and k is a natural number. We completely characterize where the
nontrivial critical points of p can lie, and to what extent they determine the

polynomial. The main results include (1) a nontrivial critical point of such a

polynomial almost always determines the polynomial uniquely, and (2) there
is a ‘desert’ in the unit disk in which critical points cannot occur.

Several recent papers ([1], [2], [3]) have studied the geometry of cubic polynomi-
als, specifically asking, how the critical points of a cubic polynomial depend upon
its roots. Frayer, Kwon, Schafhauser, and Swenson [1] studied the critical points of
a family of polynomials

Γ = {q : C→ C | q(z) = (z − 1)(z − r1)(z − r2), |r1| = |r2| = 1} .
For p ∈ Γ the main results of [1] include:

• A critical point almost always determines p uniquely.
• There is a desert in the unit disk, the open disk {z ∈ C : |z − 2

3 | <
1
3}, in

which critical points of p cannot occur.
• If 0 < |g− 1

3 | ≤
2
3 , then there is a unique p ∈ Γ with p′′(g) = 0. Additionally,

if |g − 1
3 | >

2
3 , there is no p ∈ Γ with p′′(g) = 0.

We will extend the results of [1] to a class of generalized cubic polynomials

Γk =
{
q : C→ C | q(z) = (z − 1)(z − r1)k(z − r2)k, |r1| = |r2| = 1, k ∈ N

}
.

A polynomial of the form

p(z) = (z − 1)(z − r1)k(z − r2)k

has 2k critical points; k − 1 critical points at r1 and r2 respectively, and two non-
trivial critical points. Differentiation gives

p′(z) = (z−r1)k−1(z−r2)k−1
[
(2k + 1)z2 − (2k + (k + 1)(r1 + r2))z + k(r1 + r2) + r1r2

]
so that the two nontrivial critical points of p are the roots of

q(z) = (2k + 1)z2 − (2k + (k + 1)(r1 + r2))z + k(r1 + r2) + r1r2.(1)
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This paper will characterize where the nontrivial critical points of p ∈ Γk lie, and
to what extent they determine p.

Preliminary Information

Circles which are internally tangent to the unit circle at 1 will play an important
role in what follows. Given α > 0, denote by Tα the circle of diameter α passing
through 1 and 1− α in the complex plane. That is,

Tα =
{
z ∈ C :

∣∣∣z − (1− α

2

)∣∣∣ =
α

2

}
.

For example, T2 is the unit circle (a circle of diameter 2 centered at the origin).
A key result of [1] will be used to establish a geometric relationship between the
critical points of a polynomial in Γk.

Theorem 1 ([1]). Let f(z) = (z− 1)(z− r1) · · · (z− rn), where |zk| = 1 for each k.
Let c1, c2, . . ., cn denote the critical points of f(z), and suppose that 1 6= ck ∈ Tαk

for each k. Then
n∑
k=1

1

αk
= n.(2)

A general result related to the geometry of complex polynomials is the Gauss-Lucas
Theorem.

Theorem 2 (Gauss-Lucas Theorem). Let p be a complex-valued polynomial. The
critical points of p are located in the convex hull of its roots.

An additional fact of interest is related to fractional linear transformations.

Theorem 3 ([4]). A fractional linear transformation T sends the unit circle to the

unit circle if and only if T (z) = ᾱz+β̄
βz+α for some α, β ∈ C.

Critical Points

We begin by analyzing a few special cases for future reference.

Example 1. Suppose p ∈ Γk has nontrivial critical point c = 1. This occurs if
and only if z = 1 is a repeated root of p. That is, r1 and/or r2 must be 1. Hence,
p(z) = (z−1)k+1(z−r)k for some r ∈ T2. Conversely, given p(z) = (z−1)k+1(z−r)k
for some r ∈ T2, differentiation yields

p′(z) = (2k + 1)(z − 1)k−1(z − r)k−1

[
(z − 1)

(
z − k

2k + 1
− (k + 1)

2k + 1
r

)]
.

Therefore, p ∈ Γk has a nontrivial critical point at z = 1 if and only if p(z) =
(z − 1)k+1(z − r)k with r ∈ T2. In this case, the other nontrivial critical point is
k

2k+1 + (k+1)
2k+1 r ∈ T 2k+2

2k+1
.

Now that we know which polynomials in Γk have nontrivial critical point c = 1,
we may assume that c 6= 1 throughout the remainder of the paper.
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Example 2. Suppose p ∈ Γk has nontrivial critical point 1 6= c ∈ T2. This occurs
if and only if z = c is a repeated root of p with multiplicity greater than k. That is,
r1 = r2 = c so that p(z) = (z−1)(z−c)2k. Conversely, given p(z) = (z−1)(z−c)2k,
differentiation yields

p′(z) = (2k + 1)(z − c)2k−2

[
(z − c)

(
z − 2k

2k + 1
− 1

2k + 1
c

)]
.

Therefore, p ∈ Γk has nontrivial critical point c 6= 1 on T2 if and only if p(z) = (z−
1)(z− c)2k. In this case, the other nontrivial critical point is 2k

2k+1 + 1
2k+1c ∈ T 2

2k+1
.

Let’s now determine where the nontrivial critical points of p ∈ Γk lie. The
Gauss-Lucas Theorem guarantees that the nontrivial critical points will lie within
the unit disk. But we can say more; there is a desert in the unit disk, the open
disk {z | z ∈ Tα with 0 < α < 2

2k+1}, in which nontrivial critical points of p cannot
occur.

Theorem 4. No polynomial p ∈ Γk has a nontrivial critical point strictly inside
T 2

2k+1
.

Proof. Let c1 6= 1 and c2 6= 1 be nontrivial critical points of p(z) = (z − 1)(z −
r1)k(z − r2)k with c1 ∈ Tα and c2 ∈ Tβ . As the 2k − 2 trivial critical points lie on
T2, Theorem 1 gives

(2k − 2)

(
1

2

)
+

1

α
+

1

β
= 2k

which simplifies to

1

α
+

1

β
= k + 1.(3)

Suppose to the contrary that α < 2
2k+1 . Then

1

β
= k + 1− 1

α

< k + 1− 2k + 1

2

=
1

2
.

But then β > 2 which violates Theorem 2. �

Theorem 5. Let c1 6= 1 and c2 6= 1 be nontrivial critical points of p ∈ Γk with
c1 ∈ Tα and c2 ∈ Tβ. If c1 lies on T 2

k+1
so does c2. Otherwise, c1 and c2 lie on

opposite sides of T 2
k+1

.

Proof. Let c1 6= 1 and c2 6= 1 be nontrivial critical points of p ∈ Γk with c1 ∈ Tα
and c2 ∈ Tβ . Then, from equation (3), 1

α + 1
β = k + 1. Therefore, α = 2

k+1 if and
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only if β = 2
k+1 . Additionally, if α < 2

k+1 , then

1

β
= k + 1− 1

α

< k + 1− k + 1

2

=
k + 1

2

and β > 2
k+1 . �

Now that we know where the nontrivial critical points lie, let’s investigate to
what extent they determine the polynomial. Given p ∈ Γk with roots at 1, r1 and
r2, and a nontrivial critical point c, we have

0 = q′(c) = (2k + 1)c2 − (2k + (k + 1)(r1 + r2))c+ k(r1 + r2) + r1r2.

Direct calculations give

r2 =
(k − c(k + 1))r1 + (2k + 1)c2 − 2k

−r1 + c(k + 1)− k
.

Definition 1. Given c ∈ C, define

fc(z) =
(k − c(k + 1))z + (2k + 1)c2 − 2k

−z + c(k + 1)− k
and let Sc denote the image of the unit circle under fc.

That is, fc(T2) = Sc and fc(r1) = r2.

Theorem 6. Polynomial p(z) = (z−1)(z−r1)k(z−r2)k ∈ Γk has nontrivial critical
c 6= 1 if and only if fc(r1) = r2.

As fractional linear transformations send circles and lines to circles and lines, Sc
will be a circle when c /∈ T 2

k+1
. To see this, note that Sc is a line when

|c(k + 1)− k| = 1←→
∣∣∣∣c− (1− 1

k + 1

)∣∣∣∣ =
1

k + 1

which is equivalent to c ∈ T 2
k+1

. We have established the following theorem (See

Theorem 8). Let’s investigate a special case.

Example 3. Suppose 1 6= c ∈ T2. Using the fact that

fc(c) = c, fc(1) =
(2k + 1)c− k

k + 1
, and fc(−1) =

c2(2k + 1) + c(1− k)− k
c(k + 1) + (1− k)

direct calculations give ∣∣∣∣fc(z)− (2k + 1

k + 1

)
c

∣∣∣∣ =
k

k + 1

for z ∈ {c,±1}. Therefore, for 1 6= c ∈ T2, Sc is a circle with radius k
k+1 and center(

2k+1
k+1

)
c, which is externally tangent to T2 at c.
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When 1 6= c ∈ T2, it follows from Example 2 that the other critical point of p
lies on the boundary of the desert at c2 = 2k

2k+1 + 1
2k+1c. Similar calculations show

that Sc2 is a circle with radius k
k+1 and center

(
1
k+1

)
c, which is internally tangent

to T2 at c.

When c = 1, fc(z) = −z+1
−z+1 = 1 and (fc)

−1 does not exist. If c 6= 1, then

(fc)
−1 = fc so that fc(r2) = r1. Hence, fc restricts to a one-to-one correspondence

from Sc∩T2 to itself, and if c is a nontrivial critical point of p, then {r1, r2} ⊆ Sc∩T2.
This observation allows us to classify the polynomials in Γk which have a critical
point at 1 6= c in the unit disk! We simply need to study the intersection of circles
T2 and Sc.

Theorem 7. If c /∈ {1,− 1
2k+1} lies on Tα for some α ∈

[
2

2k+1 , 2
]
, then there is a

unique p ∈ Γk with nontrivial critical point at c.

Proof. Let c ∈ C. In order to determine if there is a polynomial p ∈ Γk with critical
point at c we must study the intersection of Sc and T2. As Sc and T2 are circles,
their intersection is disjoint, contains one point, contains two points, or is all of T2.

If Sc∩T2 = ∅, then there is no polynomial in Γk with a nontrivial critical point at
c. At a minimum, this occurs when c ∈ Tα with α > 2 (Theorem 2) and α < 2

2k+1

(Theorem 4).
If Sc ∩ T2 = {r}, then fc(r) = r and by Theorem 6, r is a nontrivial critical

point of p(z) = (z − 1)(z − r)2k. Conversely, as illustrated in Example 3, if p(z) =
(z − 1)(z − r)2k, then Sc ∩ T2 = {r}.

If Sc∩T2 = {r, s} with r 6= s, there are two possibilities: fc(r) = r and fc(s) = s,
or fc(r) = s and fc(s) = r. We will rule out the first possibility. If fc(r) = r and
fc(s) = s, then by Theorem 6, c is a nontrivial critical point of p(z) = (z−1)(z−r)2k

and p(z) = (z − 1)(z − s)2k. By the Gauss-Lucas Theorem, c lies on line segments
1r and 1s. A contradiction. Therefore, fc(r) = s and fc(s) = r, and it follows by
Theorem 6 that p(z) = (z − 1)(z − r)k(z − s)k is the only polynomial in Γk with a
nontrivial critical point at c.

If Sc ∩ T2 = T2, then fc(T2) = T2. As

fc(z) =
(k − c(k + 1))z + (2k + 1)c2 − 2k

−z + c(k + 1)− k
= − (k − c(k + 1))z + (2k + 1)c2 − 2k

z + k − c(k + 1)
,

according to Theorem 3, fc(T2) = T2 exactly when k− c(k+ 1) = k − c(k + 1) and
(2k + 1)c2 − 2k = 1. The first equation implies c ∈ R, and the second equation
simplifies to

((2k + 1)c+ 1)(c− 1) = 0.

Since c 6= 1, Sc ∩ T2 = T2 precisely when c = − 1
2k+1 . Therefore, c = − 1

2k+1 is the

nontrivial critical point of p ∈ Γk if and only if p(z) = (z−1)(z−r)k
(
z − f− 1

2k+1
(r)
)k

for r ∈ T2.
In order to establish uniqueness, we need to show that if c 6= − 1

2k+1 lies on Tα
with α ∈ ( 2

2k+1 , 2), then |Sc ∩ T2| = 2. This claim follows from a simple ‘root
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dragging’-type argument. Without loss of generality, suppose that Sc ∩ T2 = ∅ and
Sc lies inside T2. As we ‘drag’ c to T2 along a line segment going away from the
origin, Sc is continuously transformed into a circle externally tangent to T2. The
Intermediate Value Theorem implies that there exists a c0 on the line segment with
Sc0 internally tangent to T2. As c never crosses T 2

2k+1
, this is a contradiction. �

Now that we have proven uniqueness, let’s revisit Theorem 5.

Theorem 8. Suppose c1 and c2 are nontrivial critical points of p ∈ Γk. If 1 6= c1 ∈
T 2

k+1
, then c2 = c̄1.

Stated differently, if c ∈ T 2
k+1

, then Sc is a vertical line passing through fc(1) =
(2k+1)c−k

k+1 . We use this fact, along with uniqueness, to provide a proof.

Proof. Let c = x+ iy ∈ T 2
k+1

. Suppose r = eiθ with cos(θ) =
(

2k+1
k+1 x−

k
k+1

)
and

q(z) = (z − 1)(z − r)k(z − r̄)k ∈ Γk.

Then

q′(z) = (z − r)k−1(z − r̄)k−1
[
(2k + 1)z2 − ((k + 1)(r + r̄) + 2k) z + k(r + r̄) + rr̄

]
and q has nontrivial critical points when

(2k + 1)z2 − ((k + 1)2 cos(θ) + 2k) z + 2k cos(θ) + 1 = 0.

Using cos(θ) =
(

2k+1
k+1 x−

k
k+1

)
yields

(2k + 1)z2 − (2(2k + 1)x)z +
2k(2k + 1)

k + 1
x− (2k + 1)(k − 1)

k + 1
= 0

(2k + 1)

[
z2 − 2xz +

2k

k + 1
x− k − 1

k + 1

]
= 0

z2 − (c+ c̄)z + cc̄ = 0

(z − c)(z − c̄) = 0

and q ∈ Γk has nontrivial critical points at c and c̄. Therefore, by uniqueness, if
p ∈ Γk has nontrivial critical point at 1 6= c1 ∈ T 2

k+1
, then c2 = c̄1. �

Centers

Given p(z) = (z − 1)(z − r1)k(z − r2)k ∈ Γk, we saw in Equation (1) that the
nontrivial critical points are the solutions of

q(z) = (2k + 1)z2 − (2k + (k + 1)(r1 + r2))z + k(r1 + r2) + r1r2.

We define g ∈ C to be the center of p(z) if q′(g) = 0. Since q has degree 2, every
p ∈ Γk has the unique center

g =
k

2k + 1
+

k + 1

2k + 1

(
r1 + r2

2

)
.

As in [1] we will use a geometric construction to show exactly where the center can
lie.
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Theorem 9. Let g ∈ C
• p ∈ Γk has center k

2k+1 if and only if p(z) = (z − 1)(z − r1)k(z − r2)k with
r2 = −r1.

• If 0 < |g − k
2k+1 | ≤

k+1
2k+1 , then there is a unique polynomial in Γk with

center g.
• If |g − k

2k+1 | >
k+1
2k+1 , then there is no polynomial in Γk with center g.

Proof. Suppose g is the center of p ∈ Γk. By the Gasuss-Lucas Theorem, g is
contained in 4r1r21, where r1 and r2 are points to be constructed on T2. Even
though we do not know r1 and r2, their midpoint, w, lies in the unit disk with
g = k

2k+1 + k+1
2k+1w. Therefore |g − k

2k+1 | ≤
k+1
2k+1 .

If 0 < |g − k
2k+1 | ≤

k+1
2k+1 , then g 6= k

2k+1 and w 6= 0. As r1r2 is a chord of T2, its
perpendicular bisector passes through w and the origin O. Since w lies in the unit
disk, the line through w perpendicular to Ow intersects T2 in two places, r1 and r2.

If g = k
2k+1 , then w = 0 is the midpoint of r1r2 and it follows that r2 = −r1. �

This proof completes the extension of [1] to the class of generalized cubics Γk.
This paper completely characterizes where the critical points and centers of a p ∈ Γk
can lie and to what extent they determine a polynomial in Γk.
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