GELFAND TRIPLE ISOMORPHISMS FOR WEIGHTED BANACH SPACES ON LOCALLY COMPACT GROUPS

S.S. PANDEY AND ASHISH KUMAR*

ABSTRACT. As in [1], we use the concept of wavelet transform on a locally compact group G to construct weighted Banach spaces $\mathcal{H}^1_w(G)$, we being a submultiple weight function on G. The main result of this paper provides an extension of a unitary mapping \mathcal{U} from $\mathcal{H}(G_1)$ to $\mathcal{H}(G_2)$ under suitable conditions to an isomorphism between the Gelfand triple $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1-}_w)(G_1)$ and $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1-}_w)(G_2)$; where G_1 , G_2 are any two locally compact groups, \mathcal{H} a Hilbert space and \mathcal{H}^{1-}_w is the space of all continuous-conjugate linear functional on \mathcal{H}^1_w . This paper paves the way for the study of some other properties of Gelfand triples.

1. INTRODUCTION

I.M. Gelfand introduced a triple of abstract space consisting of a Frechet space \mathcal{F} of test functions continuously and densely embedded in Hilbert space \mathcal{H} while \mathcal{H} itself is continuously and densely embedded in the dual space \mathcal{F}' of \mathcal{F} (for details see [3]). Feichtinger and Kozek [2] have studied a number of properties of Gelfand triple replacing the Frechet space \mathcal{F} by a suitable Banach space. In particular, they have discussed in detail the extensions of isomorphisms between L^2 -spaces on elementary locally compact abelian groups G to Gelfand triples of the form $(S_0, L^2, S'_0)(G)$ where $S_0(G)$ is the well known Feichtinger algebra, which has a number of highly useful functional properties ([2], p. 237). Also, they have studied some important properties of the operator Gelfand triple (B, H, B'), where B is the Banach space of all bounded linear operators from $S'_0(G)$ to $S_0(G)$ with respect to the operator norm $\|\cdot\|_{op}$.

In the present paper, following Feichtinger and Gröchenig ([1], p. 309), we define Wavelet transform $V_g f$ of a function f with respect to g, both as elements of a Hilbert space \mathcal{H} , on a locally compact group G. Using these wavelet transforms, we construct a weighted Banach spaces $\mathcal{H}^1_w(G)$ as in ([1], p. 317), where w is a submultiplicative weight function on G. We prove that any unitary map \mathcal{U} from $\mathcal{H}(G_1)$ to $\mathcal{H}(G_2)$ extends as an isomorphism from the Gelfand triple $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_1)$ to $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_2)$ if and only if the restrictions of \mathcal{U} and \mathcal{U}^* are bounded linear operators from $\mathcal{H}^1_w(G_1)$ to $\mathcal{H}^1_w(G_2)$ respectively, where $\mathcal{H}^{1\sim}_w(G_1)$ is the Banach space of all continuous-conjugate linear functionals on $\mathcal{H}^1_w(G)$.

This paper paves the way for the study of some properties associated with these Gelfand triples.

2. NOTATIONS AND BASIC CONCEPTS.

Let G be a locally compact group and dx the normalized Haar measure on it. We assume that $w: G \to R_+$ is a submultiplicative weight function on G such that

$$w(x \circ y) \le w(x) \ w(y)$$

for all $x, y \in G$

Key words and phrases. Wavelet transform on locally compact groups; Unitary mappings and Gelfand triples.

²⁰¹⁰ Mathematics Subject Classification. 43A15, 43A32, 43B65 and 47A67.

^{©2015} Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

We suppose that all weight on G are symmetrical, i.e., $w(x) = w(-x), \quad \forall \ x \in G.$

We denote by $L^p_w(G)$, $1 \le p < \infty$, the Banach space of functions on G with respect to the norm

$$||f||_{p,w} = \left(\int_{G} |f(x)|^{p} w^{p}(x) dx\right)^{1/p} < \infty.$$
(2.1)

In case $p = \infty$, we define the space $L^{\infty}_{w}(G)$ as the Banach space of all measurable functions f on G such that

$$||f||_{\infty,w} = \operatorname{ess\,sup}\{|f(x)| \ w(x): \ x \in G\} < \infty.$$
(2.2)

The conjugate space of $L^p_w(G)$ is the space $L^{p'}_{w^{-1}}(G)$, where 1/p + 1/p' = 1..

It is well known that $L^1_w(G)$ is a commutative Banach algebra under convolution, which is usually known as Beurling algebra, and we have the properties:

$$L^p_w(G) * L^1_w(G) \subseteq L^p_w(G)$$

and

$$||f * g|| \le ||f||_{p,w} ||g||_{1,w}$$

for all $f \in L^p_w(G)$ and $g \in L^1_w(G)$.

3. Wavelet Transform on G.

Let (π, \mathcal{H}) be an irreducible continuous unitary representation of a locally compact group G on a Hilbert space $\mathcal{H}(G)$. If $f, g \in \mathcal{H}$, then the wavelet transform of f with respect to g is given by ([1], p. 317):

$$V_g f: x \to \langle \pi(x)g, f \rangle,$$

where

$$V_g f(x) = \int_G \pi(x) \ g(x) \bar{f}(y) \ dy$$

and $\bar{f}(y)$ is the complex conjugate of f(y).

The representation π is called square integrable provided $V_g f \in L^1(G)$, $\forall g \in \mathcal{H}$. It is known that if π is square-integrable, i.e., $V_g g \in L^2(G)$, then \exists a unique, positive, self-adjoint and densely defined operator A on \mathcal{H} satisfying the following orthogonality relation ([1], pp. 309-310):

$$\int_{G} V_{g_1} f_1(x) \ V_{g_2} f_2(x) \ dx = \langle Ag_2, \ Ag_1 \rangle \langle f_1, f_2 \rangle$$

for all $f_1, f_2 \in \mathcal{H}$ and $g_1, g_2 \in \text{dom } A$. In case $f_1 = f_2 = g_1 = g_2 = g \in \text{dom } A$, $f_1 = f$ and $||g_1||_2 = 1$, then we have

$$\begin{array}{rcl} V_g \ f \ast V_g \ g & = & V_g \ f \langle g, g \rangle \\ & = & V_g. \end{array}$$

Now, on the line of Feichtinger and Gröchenig ([1], p.317), we define the set of analyzing vector $h_w^1(G)$ by

$$h^1_w(G) = \{g : g \in \mathcal{H}, V_g \ g \in L^1_w(G)\}.$$

Since π is irreducible h_w^1 is a dense linear subspace of \mathcal{H} . We suppose that $h_w^1(G)$ is non-trivial and g is a non-zero fixed element of $h_w^1(G)$. we define $\mathcal{H}_w^1(G)$ by

$$\mathcal{H}^1_w(G) = \{ f; f \in \mathcal{H}, V_g \ f \in L^1_w \},\$$

which is a Banach space under the norm

$$||f|\mathcal{H}_{w}^{1}|| = ||V_{g} f|L_{w}^{1}||.$$

As mention by Feichtinger and Gröchenig (loc. cit.), $\mathcal{H}^1_w(G)$ is a π -invariant Banach space dense in \mathcal{H} and the set $\{\pi(x)g, x \in G\}$ is a total subset of $\mathcal{H}^1_w(G)$

We denote by $\mathcal{H}_w^{1^{\sim}}(G)$ the Banach space of all continuous-conjugate linear functionals on $\mathcal{H}_w^1(G)$. Hence $\mathcal{H}_w^{1^{\sim}}(G)$ is a π -invariant Banach space with the continuous dense embeddings

$$\mathcal{H}^1_w \hookrightarrow \mathcal{H} \ \hookrightarrow \mathcal{H}^1_w$$

Which insure that

$$(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1^{\sim}}_w)$$

forms a Gabor triple (for detail see [3])

4. EXTENSION OF UNITARY GELFAND TRIPLE ISOMORPHISMS

In a recent paper Feichtinger and Kozek ([2], pp.239-240) have shown that a unitary mapping U acting from $L^2(G_1)$ to $L^2(G_2)$ extends to an isomorphism between the Gelfand triples $(S_0, L^2, S'_0)(G_1)$ and $(S_0, L^2, S'_0)(G_2)$ if an only if the restrictions of U and U^* are bounded linear operators between $S_0(G_1)$ and $S_0(G_2)$, where $S_0(G_1)$ and $S_0(G_2)$ denote the Feichtinger algebras on elementary locally compact abelian groups G_1 and G_2 respectively and $S'_0(G_1)$ and $S'_0(G)$ their topological duals. Also, they have pointed out some applications of the above isomorphism ([2], p.239).

In this section, on the lines of Feichtinger and Kozek, we study an extension of a unitary mapping \mathcal{U} acting from \mathcal{H} to \mathcal{H} to an isomorphism between the Gelfand triples $(\mathcal{H}_w^1, \mathcal{H}, \mathcal{H}_w^{1\sim})(G_1)$ and $(\mathcal{H}_w^1, \mathcal{H}, \mathcal{H}_w^{1\sim})(G_2)$, where G_1 , G_2 are any two locally compact groups.

Precisely, we prove the following :

Theorem 4.1. If \mathcal{U} is an unitary operator from $\mathcal{H}(G_1)$ to $\mathcal{H}(G_2)$, then it extends isomorphism from the Gelfand triples where G_1 , G_2 are any two locally compact groups $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_1)$ and $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_2)$ if and only if there exists a positive constant c such that

$$\|\mathcal{U}f|\mathcal{H}^1_w(G_2)\| \le c \|f|\mathcal{H}^1_w(G_1)\|, \quad \forall \ f \in \mathcal{H}^1_w(G_1)$$

$$(4.1)$$

and

$$\|\mathcal{U}^*f|\mathcal{H}^1_w(G_1)\| \le c \|f|\mathcal{H}^1_w(G_2)\|, \quad \forall \ f \in \mathcal{H}^1_w(G_2)$$

$$(4.2)$$

where \mathcal{U}^* is the adjoint operator of \mathcal{U} .

Proof: The proof follows on the lines of Feichtinger and Kozek ([2], p. 240). But, since our settings are different, it is necessary to give the proof.

Let us assume that (4.1) holds true. Then by virtue of the relation

 $\langle \overline{\mathcal{U}}g, f \rangle = \langle g, \mathcal{U}^*f \rangle, \ \forall \ g \in \mathcal{H}^{1\sim}_w(G_1) \text{ and } f \in \mathcal{H}^{1\sim}_w(G_2),$

we see that $g \to \overline{\mathcal{U}} g$ is a bounded linear mapping, which extends the unitary map \mathcal{U} on $\mathcal{H}(G_1)$. Next, since $\mathcal{H}(G_1)$ is boundedly dense in $\mathcal{H}^{1\sim}_w(G_1), \overline{\mathcal{U}}$ is a continuous and bounded linear mapping from $\mathcal{H}^{1\sim}_w(G_1)$ to $\mathcal{H}^{1\sim}_w(G_2)$. Also, $\overline{\mathcal{U}}$ is unique and it coincides with \mathcal{U} on $\mathcal{H}(G_1)$. In the same way it is clear that $\overline{\mathcal{U}^*}$ is a unique, continuous and bounded linear mapping from $\mathcal{H}^{1\sim}_w(G_2)$ to $\mathcal{H}^{1\sim}_w(G_1)$, which coincides with \mathcal{U}^* on $\mathcal{H}(G_2)$.

Thus we infer that $\overline{\mathcal{U}}$ defines an isomorphism between $\mathcal{H}^{1\sim}_w(G_1)$ and $\mathcal{H}^{1\sim}_w(G_2)$ with respect to their norm topologies.

Conversely, we suppose that \mathcal{U} is a unitary operator, which extends as an isomorphism from $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_1)$ and $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_2)$. Hence the restrictions of \mathcal{U} and \mathcal{U}^* are bounded

linear mapping on the spaces $\mathcal{H}^1_w(G_1)$ and $\mathcal{H}^1_w(G_2)$ respectively.

This completes the proof of the theorem.

As a corollary of the above theorem, we show that the Gelfand triples isomorphisms holds true provided there exists a bijection mapping V between $\mathcal{H}(G_1)$ and $\mathcal{H}(G_2)$ such that

$$\langle f_1 f_2 \rangle_{\mathcal{H}(G_1)} = \langle V f_1, V f_2 \rangle_{\mathcal{H}(G_2)}$$

for all $f_1, f_2 \in \mathcal{H}(G_1)$.

As in [2], p.240), we prove the following :

Corollary: If $V : \mathcal{H}^1_w(G_1) \to \mathcal{H}^1_w(G_2)$ is an isomorphism, then it extends to a unitary Gelfand triples isomorphism between $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_1)$ and $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_2)$ if and only if

$$\langle f_1, f_2 \rangle_{\mathcal{H}(G_1)} = \langle V f_1, V f_2 \rangle_{\mathcal{H}(G_2)} \tag{4.3}$$

for all $f_1, f_2 \in \mathcal{H}^1_w(G_1)$.

Proof: The isomorphism V as defined above is a unitary operator isomorphism from $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_1)$ to $(\mathcal{H}^1_w, \mathcal{H}, \mathcal{H}^{1\sim}_w)(G_2)$ provided the condition (4.3) holds true.

Conversely, we suppose that the condition (4.3) holds. Then we have

$$\begin{split} \|f\|_{\mathcal{H}(G_1)}^2 &= \langle f, f \rangle_{\mathcal{H}(G_1)} \\ &= \langle Vf, Vf \rangle_{\mathcal{H}(G_2)} \\ &= \|Vf\|_{\mathcal{H}(G_2)}^2, \quad \forall \ f \in \mathcal{H}^1_w(G_1). \\ \Rightarrow \|f\|_{\mathcal{H}(G_1)}^2 &= \|Vf\|_{\mathcal{H}(G_2)} \quad \operatorname{say} \mathcal{U}, \end{split}$$

 \Rightarrow V is extends to an isomorphism mapping, from $\mathcal{H}(G_1)$ to $\mathcal{H}(G_2)$.

Next, since $V(\mathcal{H}^1_w(G_1)) = \mathcal{H}^1_w(G_1)$ is dense in $\mathcal{H}(G_2) \mathcal{U}$ has a dense range in $\mathcal{H}(G_2)$.

 $\Rightarrow \mathcal{U}$ is an isomorphism from $\mathcal{H}(G_1)$ to $\mathcal{H}(G_2)$.

Hence, by the duality condition, \mathcal{U} is an isomorphism between the Gelfand triples $(\mathcal{H}_w^1, \mathcal{H}, \mathcal{H}_w^{1\sim})(G_1)$ and $(\mathcal{H}_w^1, \mathcal{H}, \mathcal{H}_w^{1\sim})(G_2)$

This complete the proof the theorem

References

- H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions I, *Journal of Functional analysis*, 86 (1989), 307-340.
- [2] H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H.G. Feichtinger and T. Ströhmer, Editors, Gabor Analysis and Alorithms: Theory and Applications, Birkhaüser, Boston, 1998, 233-266.
- [3] I.M. Gelfand and N.J. Wilenkin. Genralized Functions, Vol. IV: Some Applications of Harmonic Analysis. Rigged Hilbert Spaces. Academic Press, New York, 1964.

DEPARTMENT OF MATHEMATICS, R.D. UNIVERSITY ,JABALPUR, INDIA

*Corresponding author