GELFAND TRIPLE ISOMORPHISMS FOR WEIGHTED BANACH SPACES ON LOCALLY COMPACT GROUPS

S.S. PANDEY AND ASHISH KUMAR*

Abstract

As in [1], we use the concept of wavelet transform on a locally compact group G to construct weighted Banach spaces $\mathcal{H}_{w}^{1}(G)$, we being a submultiple weight function on G. The main result of this paper provides an extension of a unitary mapping \mathcal{U} from $\mathcal{H}\left(G_{1}\right)$ to $\mathcal{H}\left(G_{2}\right)$ under suitable conditions to an isomorphism between the Gelfand triple $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$; where G_{1}, G_{2} are any two locally compact groups, \mathcal{H} a Hilbert space and $\mathcal{H}_{w}^{1 \sim}$ is the space of all continuous-conjugate linear functional on \mathcal{H}_{w}^{1}. This paper paves the way for the study of some other properties of Gelfand triples.

1. Introduction

I.M. Gelfand introduced a triple of abstract space consisting of a Frechet space \mathcal{F} of test functions continuously and densely embedded in Hilbert space \mathcal{H} while \mathcal{H} itself is continuously and densely embedded in the dual space \mathcal{F}^{\prime} of \mathcal{F} (for details see [3]). Feichtinger and Kozek [2] have studied a number of properties of Gelfand triple replacing the Frechet space \mathcal{F} by a suitable Banach space. In particular, they have discussed in detail the extensions of isomorphisms between L^{2}-spaces on elementary locally compact abelian groups G to Gelfand triples of the form $\left(S_{0}, L^{2}, S_{0}^{\prime}\right)(G)$ where $S_{0}(G)$ is the well known Feichtinger algebra, which has a number of highly useful functional properties ([2], p. 237). Also, they have studied some important properties of the operator Gelfand triple (B, H, B^{\prime}), where B is the Banach space of all bounded linear operators from $S_{0}^{\prime}(G)$ to $S_{0}(G)$ with respect to the operator norm $\|\cdot\|_{o p}$.

In the present paper, following Feichtinger and Gröchenig ([1], p. 309), we define Wavelet transform $V_{g} f$ of a function f with respect to g, both as elements of a Hilbert space \mathcal{H}, on a locally compact group G. Using these wavelet transforms, we construct a weighted Banach spaces $\mathcal{H}_{w}^{1}(G)$ as in ([1], p. 317), where w is a submultiplicative weight function on G. We prove that any unitary map \mathcal{U} from $\mathcal{H}\left(G_{1}\right)$ to $\mathcal{H}\left(G_{2}\right)$ extends as an isomorphism from the Gelfand triple $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ to $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$ if and only if the restrictions of \mathcal{U} and \mathcal{U}^{*} are bounded linear operators from $\mathcal{H}_{w}^{1}\left(G_{1}\right)$ to $\mathcal{H}_{w}^{1}\left(G_{2}\right)$ respectively, where $\mathcal{H}_{w}^{1 \sim}\left(G_{1}\right)$ is the Banach space of all continuous-conjugate linear functionals on $\mathcal{H}_{w}^{1}(G)$.

This paper paves the way for the study of some properties associated with these Gelfand triples.

2. Notations and Basic Concepts.

Let G be a locally compact group and $d x$ the normalized Haar measure on it. We assume that $w: G \rightarrow R_{+}$is a submultiplicative weight function on G such that

$$
w(x \circ y) \leq w(x) w(y)
$$

for all $x, y \in G$

2010 Mathematics Subject Classification. 43A15, 43A32, 43B65 and 47A67.
Key words and phrases. Wavelet transform on locally compact groups; Unitary mappings and Gelfand triples.

We suppose that all weight on G are symmetrical, i.e., $w(x)=w(-x), \quad \forall x \in G$.

We denote by $L_{w}^{p}(G), \quad 1 \leq p<\infty$, the Banach space of functions on G with respect to the norm

$$
\begin{equation*}
\|f\|_{p, w}=\left(\int_{G}|f(x)|^{p} w^{p}(x) d x\right)^{1 / p}<\infty \tag{2.1}
\end{equation*}
$$

In case $p=\infty$, we define the space $L_{w}^{\infty}(G)$ as the Banach space of all measurable functions f on G such that

$$
\begin{equation*}
\|f\|_{\infty, w}=\operatorname{ess} \sup \{|f(x)| w(x): x \in G\}<\infty \tag{2.2}
\end{equation*}
$$

The conjugate space of $L_{w}^{p}(G)$ is the space $L_{w^{-1}}^{p^{\prime}}(G)$, where $1 / p+1 / p^{\prime}=1$..
It is well known that $L_{w}^{1}(G)$ is a commutative Banach algebra under convolution, which is usually known as Beurling algebra, and we have the properties:

$$
L_{w}^{p}(G) * L_{w}^{1}(G) \subseteq L_{w}^{p}(G)
$$

and

$$
\|f * g\| \leq\|f\|_{p, w}\|g\|_{1, w}
$$

for all $f \in L_{w}^{p}(G)$ and $g \in L_{w}^{1}(G)$.

3. Wavelet Transform on G.

Let (π, \mathcal{H}) be an irreducible continuous unitary representation of a locally compact group G on a Hilbert space $\mathcal{H}(G)$. If $f, g \in \mathcal{H}$, then the wavelet transform of f with respect to g is given by ([1], p. 317):

$$
V_{g} f: x \rightarrow\langle\pi(x) g, f\rangle
$$

where

$$
V_{g} f(x)=\int_{G} \pi(x) g(x) \bar{f}(y) d y
$$

and $\bar{f}(y)$ is the complex conjugate of $f(y)$.
The representation π is called square integrable provided $V_{g} f \in L^{1}(G), \quad \forall g \in \mathcal{H}$. It is known that if π is square-integrable, i.e., $V_{g} g \in L^{2}(G)$, then \exists a unique, positive, self-adjoint and densely defined operator A on \mathcal{H} satisfying the following orthogonality relation ([1], pp. 309-310):

$$
\int_{G} V_{g_{1}} f_{1}(x) V_{g_{2}} f_{2}(x) d x=\left\langle A g_{2}, A g_{1}\right\rangle\left\langle f_{1}, f_{2}\right\rangle
$$

for all $f_{1}, f_{2} \in \mathcal{H}$ and $g_{1}, g_{2} \in \operatorname{dom} A$.
In case $f_{1}=f_{2}=g_{1}=g_{2}=g \in \operatorname{dom} A, f_{1}=f$ and $\left\|g_{1}\right\|_{2}=1$, then we have

$$
\begin{aligned}
V_{g} f * V_{g} g & =V_{g} f\langle g, g\rangle \\
& =V_{g}
\end{aligned}
$$

Now, on the line of Feichtinger and Gröchenig ([1], p.317), we define the set of analyzing vector $h_{w}^{1}(G)$ by

$$
h_{w}^{1}(G)=\left\{g: g \in \mathcal{H}, V_{g} g \in L_{w}^{1}(G)\right\}
$$

Since π is irreducible , h_{w}^{1} is a dense linear subspace of \mathcal{H}. We suppose that $h_{w}^{1}(G)$ is non-trivial and g is a non-zero fixed element of $h_{w}^{1}(G)$. we define $\mathcal{H}_{w}^{1}(G)$ by

$$
\mathcal{H}_{w}^{1}(G)=\left\{f ; f \in \mathcal{H}, V_{g} f \in L_{w}^{1}\right\}
$$

which is a Banach space under the norm

$$
\left\|f\left|\mathcal{H}_{w}^{1}\|=\| V_{g} f\right| L_{w}^{1}\right\|
$$

As mention by Feichtinger and Gröchenig (loc. cit.), $\mathcal{H}_{w}^{1}(G)$ is a π-invariant Banach space dense in \mathcal{H} and the set $\{\pi(x) g, x \in G\}$ is a total subset of $\mathcal{H}_{w}^{1}(G)$

We denote by $\mathcal{H}_{w}^{1^{\sim}}(G)$ the Banach space of all continuous-conjugate linear functionals on $\mathcal{H}_{w}^{1}(G)$. Hence $\mathcal{H}_{w}^{1^{\sim}}(G)$ is a π-invariant Banach space with the continuous dense embeddings

$$
\mathcal{H}_{w}^{1} \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{H}_{w}^{1^{\sim}}
$$

Which insure that

$$
\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1^{\sim}}\right)
$$

forms a Gabor triple (for detail see [3])

4. Extension of Unitary Gelfand Triple Isomorphisms

In a recent paper Feichtinger and Kozek ([2], pp.239-240) have shown that a unitary mapping U acting from $L^{2}\left(G_{1}\right)$ to $L^{2}\left(G_{2}\right)$ extends to an isomorphism between the Gelfand triples $\left(S_{0}, L^{2}, S_{0}^{\prime}\right)\left(G_{1}\right)$ and $\left(S_{0}, L^{2}, S_{0}^{\prime}\right)\left(G_{2}\right)$ if an only if the restrictions of U and U^{*} are bounded linear operators between $S_{0}\left(G_{1}\right)$) and $S_{0}\left(G_{2}\right)$, where $S_{0}\left(G_{1}\right)$ and $S_{0}\left(G_{2}\right)$ denote the Feichtinger algebras on elementary locally compact abelian groups G_{1} and G_{2} respectively and $\left.S_{0}^{\prime}\left(G_{1}\right)\right)$ and $\left.S_{0}^{\prime}(G) 1\right)$ their topological duals. Also, they have pointed out some applications of the above isomorphism ([2], p.239).

In this section, on the lines of Feichtinger and Kozek, we study an extension of a unitary mapping \mathcal{U} acting from \mathcal{H} to \mathcal{H} to an isomorphism between the Gelfand triples $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$, where G_{1}, G_{2} are any two locally compact groups.

Precisely, we prove the following :

Theorem 4.1. If \mathcal{U} is an unitary operator from $\mathcal{H}\left(G_{1}\right)$ to $\mathcal{H}\left(G_{2}\right)$, then it extends isomorphism from the Gelfand triples where G_{1}, G_{2} are any two locally compact groups $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$ if and only if there exists a positive constant c such that

$$
\begin{equation*}
\left\|\mathcal{U} f\left|\mathcal{H}_{w}^{1}\left(G_{2}\right)\|\leq c\| f\right| \mathcal{H}_{w}^{1}\left(G_{1}\right)\right\|, \quad \forall f \in \mathcal{H}_{w}^{1}\left(G_{1}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{U}^{*} f\left|\mathcal{H}_{w}^{1}\left(G_{1}\right)\|\leq c\| f\right| \mathcal{H}_{w}^{1}\left(G_{2}\right)\right\|, \quad \forall f \in \mathcal{H}_{w}^{1}\left(G_{2}\right) \tag{4.2}
\end{equation*}
$$

where \mathcal{U}^{*} is the adjoint operator of \mathcal{U}.
Proof: The proof follows on the lines of Feichtinger and Kozek ([2], p. 240). But, since our settings are different, it is necessary to give the proof.

Let us assume that (4.1) holds true. Then by virtue of the relation

$$
\langle\overline{\mathcal{U}} g, f\rangle=\left\langle g, \mathcal{U}^{*} f\right\rangle, \quad \forall g \in \mathcal{H}_{w}^{1 \sim}\left(G_{1}\right) \text { and } f \in \mathcal{H}_{w}^{1 \sim}\left(G_{2}\right)
$$

we see that $g \rightarrow \overline{\mathcal{U}} g$ is a bounded linear mapping, which extends the unitary map \mathcal{U} on $\mathcal{H}\left(G_{1}\right)$. Next, since $\mathcal{H}\left(G_{1}\right)$ is boundedly dense in $\mathcal{H}_{w}^{1 \sim}\left(G_{1}\right), \overline{\mathcal{U}}$ is a continuous and bounded linear mapping from $\mathcal{H}_{w}^{1 \sim}\left(G_{1}\right)$ to $\mathcal{H}_{w}^{1 \sim}\left(G_{2}\right)$. Also, $\overline{\mathcal{U}}$ is unique and it coincides with \mathcal{U} on $\mathcal{H}\left(G_{1}\right)$. In the same way it is clear that $\overline{\mathcal{U}}^{*}$ is a unique, continuous and bounded linear mapping from $\mathcal{H}_{w}^{1 \sim}\left(G_{2}\right)$ to $\mathcal{H}_{w}^{1 \sim}\left(G_{1}\right)$, which coincides with \mathcal{U}^{*} on $\mathcal{H}\left(G_{2}\right)$.

Thus we infer that $\overline{\mathcal{U}}$ defines an isomorphism between $\mathcal{H}_{w}^{1 \sim}\left(G_{1}\right)$ and $\mathcal{H}_{w}^{1 \sim}\left(G_{2}\right)$ with respect to their norm topologies.

Conversely, we suppose that \mathcal{U} is a unitary operator, which extends as an isomorphism from $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$. Hence the restrictions of \mathcal{U} and \mathcal{U}^{*} are bounded
linear mapping on the spaces $\mathcal{H}_{w}^{1}\left(G_{1}\right)$ and $\mathcal{H}_{w}^{1}\left(G_{2}\right)$ respectively.
This completes the proof of the theorem.
As a corollary of the above theorem, we show that the Gelfand triples isomorphisms holds true provided there exists a bijection mapping V between $\mathcal{H}\left(G_{1}\right)$ and $\mathcal{H}\left(G_{2}\right)$ such that

$$
\left\langle f_{1} f_{2}\right\rangle_{\mathcal{H}\left(G_{1}\right)}=\left\langle V f_{1}, V f_{2}\right\rangle_{\mathcal{H}\left(G_{2}\right)}
$$

for all $f_{1}, f_{2} \in \mathcal{H}\left(G_{1}\right)$.
As in [2], p.240), we prove the following :
Corollary: If $V: \mathcal{H}_{w}^{1}\left(G_{1}\right) \rightarrow \mathcal{H}_{w}^{1}\left(G_{2}\right)$ is an isomorphism, then it extends to a unitary Gelfand triples isomorphism between $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$ if and only if

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{\mathcal{H}\left(G_{1}\right)}=\left\langle V f_{1}, V f_{2}\right\rangle_{\mathcal{H}\left(G_{2}\right)} \tag{4.3}
\end{equation*}
$$

for all $f_{1}, f_{2} \in \mathcal{H}_{w}^{1}\left(G_{1}\right)$.
Proof: The isomorphism V as defined above is a unitary operator isomorphism from $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ to $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$ provided the condition (4.3) holds true.

Conversely, we suppose that the condition (4.3) holds. Then we have

$$
\begin{aligned}
\|f\|_{\mathcal{H}\left(G_{1}\right)}^{2} & =\langle f, f\rangle_{\mathcal{H}\left(G_{1}\right)} \\
& =\langle V f, V f\rangle_{\mathcal{H}\left(G_{2}\right)} \\
& =\|V f\|_{\mathcal{H}\left(G_{2}\right)}^{2}, \quad \forall f \in \mathcal{H}_{w}^{1}\left(G_{1}\right) . \\
\Rightarrow\|f\|_{\mathcal{H}\left(G_{1}\right)}^{2} & =\|V f\|_{\mathcal{H}\left(G_{2}\right)} \quad \text { say } \mathcal{U},
\end{aligned}
$$

$\Rightarrow \quad V$ is extends to an isomorphism mapping, from $\mathcal{H}\left(G_{1}\right)$ to $\mathcal{H}\left(G_{2}\right)$.
Next, since $V\left(\mathcal{H}_{w}^{1}\left(G_{1}\right)\right)=\mathcal{H}_{w}^{1}\left(G_{1}\right)$ is dense in $\mathcal{H}\left(G_{2}\right) \mathcal{U}$ has a dense range in $\mathcal{H}\left(G_{2}\right)$.
$\Rightarrow \mathcal{U}$ is an isomorphism from $\mathcal{H}\left(G_{1}\right)$ to $\mathcal{H}\left(G_{2}\right)$.
Hence, by the duality condition, \mathcal{U} is an isomorphism between the Gelfand triples $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{1}\right)$ and $\left(\mathcal{H}_{w}^{1}, \mathcal{H}, \mathcal{H}_{w}^{1 \sim}\right)\left(G_{2}\right)$
This complete the proof the theorem

References

[1] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions I, Journal of Functional analysis, 86 (1989), 307-340.
[2] H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H.G. Feichtinger and T. Ströhmer, Editors, Gabor Analysis and Alorithms: Theory and Applications, Birkhaüser, Boston, 1998, 233-266.
[3] I.M. Gelfand and N.J. Wilenkin. Genralized Functions, Vol. IV: Some Applications of Harmonic Analysis. Rigged HIlbert Spaces. Academic Press, New York, 1964.

Department of Mathematics, R.D. University ,Jabalpur, India

* Corresponding author

