SECOND HANKEL DETERMINANT FOR ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE

T. YAVUZ

Abstract

Let S denote the class of analytic and univalent functions in the open unit disk $D=\{z:|z|<1\}$ with the normalization conditions. In the present article an upper bound for the second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is obtained for the analytic functions defined by Ruscheweyh derivative.

1. INTRODUCTION

Let D be the unit disk $\{z:|z|<1\}, \mathcal{A}$ be the class of functions analytic in D, satisfying the conditions

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0)=1 \tag{1.1}
\end{equation*}
$$

Then each function f in \mathcal{A} has the Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.2}
\end{equation*}
$$

because of the conditions (1.1). Let S denote class of analytic and univalent functions in D with the normalization conditions (1.1).

The $q^{t h}$ determinant for $q \geq 1$ and $n \geq 0$ is stated by Noonan and Thomas [13] as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q+1} \tag{1.3}\\
a_{n+1} & \cdots & & \cdots \\
\vdots & & & \vdots \\
a_{n+q-1} & \cdots & & a_{n+2 q-2}
\end{array}\right|
$$

This determinant has also been considered by several authors. For example, Noor in [14] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for functions f given by (1.1) with bounded boundary. Ehrenborg in [2] stadied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman's article [9]. It is well known that [1] that for $f \in S$ and given by (1.2) the sharp inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$ holds. This corresponds to the Hankel determinant with $q=2$ and $k=1$. After that, Fekete-Szegö further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with real μ and $f \in S$. For a given class of functions in \mathcal{A}, the sharp bound for the nonlinear functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is known as the second Hankel determinant. This corresponds to the Hankel determinant

[^0]with $q=2$ and $k=2$. In particular, sharp bounds on $H_{2}(2)$ were obtained by several authors of articles [7], [17], [5], [6], [18] and [12] for different subclasses of univalent functions.

Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ be analytic functions in \mathbb{D}. The Hadamard product (convolution) of f and g, denoted by $f * g$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in \mathbb{D} \tag{1.4}
\end{equation*}
$$

Let $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. The Ruscheweyh derivative [15] of the $n^{t h}$ order of f, denoted by $D^{n} f(z)$, is defined by

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_{k} z^{k} \tag{1.5}
\end{equation*}
$$

The Ruscheweyh derivative gave an impulse for various generalization of well known classes of functions. By using the Ruscheweyh Derivative, we can generalize the class of the starlike and convex functions functions, denoted by S^{*} and C, which are defined as

$$
\begin{equation*}
S^{*}=\left\{f(z) \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{D}\right\} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\left\{f(z) \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{D}\right\} \tag{1.7}
\end{equation*}
$$

The class R_{n} was studied by Singh and Singh [16], which is given by the following definition

$$
\begin{equation*}
\operatorname{Re} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}>0, z \in \mathbb{D} \tag{1.8}
\end{equation*}
$$

We denote that $R_{0}=S^{*}$ and $R_{1}=C$. In the present paper, we obtain an upper bound for functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ in the class R_{n}.

2. Preliminary Results

The following lemmas are required to prove our main results. Let P be the family of all functions p analytic in \mathbb{D} for which $\operatorname{Re}(p(z))>0$ and

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z+\cdots \tag{2.1}
\end{equation*}
$$

Lemma 1. (Duren, [1]) If $p \in P$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$.
Lemma 2. (Grenander\&Szegö, [4]) The power series for $p(z)$ given by (2.1) converges in \mathbb{D} to a function in P if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \tag{2.2}\\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, n=1,2, \cdots
$$

and $c_{-k}=\overline{c_{k}}$, are all nonnegative. They are strictly positive except for $p(z)=$ $\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k} z}\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$ for $k \neq j$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.

We may assume that without restriction that $c_{1}>0$. On using Lemma 2.2, for $n=2$ and $n=3$ respectively, we get

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \tag{2.3}\\
\bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|=8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2} \geq 0
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.4}
\end{equation*}
$$

for some $x,|x| \leq 1$. If we consider the determinant

$$
D_{n}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} & c_{3} \tag{2.5}\\
\bar{c}_{1} & 2 & c_{1} & c_{2} \\
\bar{c}_{2} & \bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{3} & \bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right| \geq 0
$$

we get the following inequality

$$
\begin{equation*}
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|\left(2 c_{2}-c_{1}^{2}\right)\right|^{2} \tag{2.6}
\end{equation*}
$$

From (2.4) and (2.6), it is obtained that

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2 c_{1}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{2.7}
\end{equation*}
$$

for some $z,|z| \leq 1$.

3. Main Results

We prove the following theorem by using thecniques of Libera and Zlotkiewicz [10], [11].

Theorem 1. Let the function f given by (1.2) be in the class in R_{n}. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\begin{array}{cl}
1, & n=0 \tag{3.1}\\
\frac{1}{8}, & n=1 \\
\frac{12(n-1)}{(n+1)^{2}(n+2)^{2}(n+3)}, & n>1
\end{array}\right.
$$

Proof. Since $f \in R_{n}$, there exists an analytic function $p \in P$ in the unit disk D with $p(0)=1$ and $\operatorname{Re}(p(z))>0$ such that

$$
\begin{equation*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=p(z) \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
F(z)=D^{n} f(z)=z+\sum_{k=2}^{\infty} A_{k} z^{k} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=\frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_{k} \tag{3.4}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=p(z) \tag{3.5}
\end{equation*}
$$

By using the series expansion of $F(z)$ and $p(z)$ as in (3.3) and (2.1), equating coefficients in (3.5) yields

$$
\begin{align*}
a_{2} & =\frac{1}{n+1} c_{1} \\
a_{3} & =\frac{1}{(n+1)(n+2)}\left\{c_{2}+c_{1}^{2}\right\} \tag{3.6}\\
a_{4} & =\frac{1}{(n+1)(n+2)(n+3)}\left\{2 c_{3}+3 c_{1} c_{2}+c_{1}^{3}\right\}
\end{align*}
$$

Hence, we get from (3.6)

$$
\begin{equation*}
a_{2} a_{4}-a_{3}^{2}=A(n)\left\{2 c_{1} c_{3}+3 c_{1}^{2} c_{2}+c_{1}^{4}-B(n)\left(c_{2}+c_{1}^{2}\right)^{2}\right\} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
A(n)=\frac{1}{(n+1)(n+2)(n+3)} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
B(n)=\left(\frac{n+3}{n+2}\right), n=0,1,2, \cdots \tag{3.9}
\end{equation*}
$$

Using (2.4) and (2.7) in (3.7), we get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=A(n)\left|2 c_{1} c_{3}+3 c_{1}^{2} c_{2}+c_{1}^{4}-B(n)\left(c_{2}^{2}+2 c_{1} c_{2}+c_{1}^{4}\right)\right|
$$

and

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =A(n) \left\lvert\, 3\left(1-\frac{3}{4} B(n)\right) c_{1}^{4}+\frac{3}{2}(1-B(n)) c_{1}^{2} x\left(4-c_{1}^{2}\right)\right. \tag{3.10}\\
& \left.-\frac{c_{1}^{2}}{2}\left(4-c_{1}^{2}\right) x^{2}+c_{1}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z-B(n) \frac{x^{2}\left(4-c_{1}^{2}\right)^{2}}{4} \right\rvert\,
\end{align*}
$$

Since the function $p\left(e^{i \theta} z\right),(\theta \in \mathbb{R})$ is also in the class P, we assume that without loss of generality that $c_{1}>0$. For convenience of notation, we take $c_{1}=c, c \in[0,2]$. Applying the triangle inequality with the assumptions $c_{1}=c \in[0,2],|x|=\rho$ and $|z| \leq 1$, it is obtained that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq A(n) & \left\{3\left|1-\frac{3}{4} B(n)\right| c^{4}+\frac{3}{2}(B(n)-1) c^{2} \rho\left(4-c^{2}\right)\right. \tag{3.11}\\
& \left.+\rho^{2} \frac{\left(4-c^{2}\right) c(c-2)}{2}+c\left(4-c^{2}\right)+B(n) \rho^{2} \frac{\left(4-c^{2}\right)^{2}}{4}\right\} \\
= & G(c, \rho)
\end{align*}
$$

We now maximize the function $G(c, \rho)$ on the closed square $[0,2] \times[0,1]$. Since

$$
\begin{equation*}
\frac{\partial G(c, \rho)}{\partial \rho}=\frac{3}{2}(B(n)-1) c^{2}\left(4-c^{2}\right)-\rho\left(4-c^{2}\right)(2-c)\left\{c-\frac{B(n)}{2}(2+c)\right\} \tag{3.12}
\end{equation*}
$$

and $B(n) \in\left[1, \frac{3}{2}\right]$, we get the following inequality

$$
\begin{equation*}
\frac{\partial G(c, \rho)}{\partial \rho} \geq \frac{\rho\left(4-c^{2}\right)(2-c)(6-c)}{4}>0 . \tag{3.13}
\end{equation*}
$$

Hence, $G(c, \rho)$ can not have a maximum in the interior of the closed square $[0,2] \times$ $[0,1]$. Hence, for fixed $c \in[0,2]$

$$
\begin{equation*}
\max _{0 \leq \rho \leq 1} G(c, \rho)=G(c, 1)=F(c) . \tag{3.14}
\end{equation*}
$$

One can obtain that

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq A(n) F(c), \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
F(c)=3\left|1-\frac{3}{4} B(n)\right| c^{4}+\frac{3}{2}(B(n)-1) c^{2}\left(4-c^{2}\right)+\frac{c\left(4-c^{2}\right)}{2}+B(n) \frac{\left(4-c^{2}\right)^{2}}{4} . \tag{3.16}
\end{equation*}
$$

Since

$$
F^{\prime}(c)=\left\{\begin{array}{l}
\frac{25}{3} c^{3}+c\left(4-c^{2}\right)+\frac{3}{2} c^{3}, n=0 \tag{3.17}\\
\frac{8}{3} c\left(1-c^{2}\right), n=1 \\
(12-9 B(n)) c^{3}+(B(n)-1) c\left(4-c^{2}\right)-3(B(n)-2) c^{3}, n>1
\end{array},\right.
$$

we have to consider following three cases:
Case 1. For $n=0, F^{\prime}(c)>0$. Hence $F(c) \leq F(2)$. We get the following result

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq A(0)\left\{48\left|1-\frac{3}{4} B(0)\right|\right\}=1 . \tag{3.18}
\end{equation*}
$$

This one coincides with the result in the article [8].
Case 2. After necessarly calculations, it is obtained that

$$
\begin{equation*}
F^{\prime}(0)=0 \text { and } F^{\prime}(1)=0 . \tag{3.19}
\end{equation*}
$$

Since

$$
F^{\prime \prime}(0)>0 \text { and } F^{\prime \prime}(1)<0,
$$

$F(c)$ has a maximum at $c=1$. Hence, we obtain

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8} \tag{3.20}
\end{equation*}
$$

which is also stated in [8].
Case 3. Let $n>1$. Then, $F^{\prime}(c)$ can be rewrite as

$$
\begin{equation*}
F^{\prime}(c)=c\left\{(20-14 B(n)) c^{2}+8(B(n)-1)\right\} . \tag{3.21}
\end{equation*}
$$

Since $20-14 B(n)>0$ and $B(n)-1>0$, we get $F^{\prime}(0)=0, F^{\prime \prime}(0)>0$ and $F^{\prime}(c)>0$ in the interval $(0,2]$. Therefore, it is obvious that

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq A(n)\left\{48\left|1-\frac{3}{4} B(n)\right|\right\}=\frac{12(n-1)}{(n+1)^{2}(n+2)^{2}(n+3)} . \tag{3.22}
\end{equation*}
$$

This completes the proof of theorem.

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] R. Ehrenborg, The Hankel determinant of exponantial polynomials. American Mathematical Monthly, 107 (2000), 557-560.
[3] M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc, 8 (1933), 85-89.
[4] U. Grenander and G. Szegö, Toeplitz forms and their application, Univ. of Calofornia Press, Berkely and Los Angeles, (1958).
[5] T. Hayami and S. Owa, Hankel determinant for p-valently starlike and convex functions of order α, General Math., 17 (2009), 29-44.
[6] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), 2573-2585.
[7] A. Janteng, S. A. Halim, and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Ineq. Pure and Appl. Math, 7 (2) (2006), 1-5.
[8] A. Janteng, Halim, S. A. and Darus, M. : Hankel Determinant For Starlike and Convex Functions, Int. Journal of Math. Analysis, I (13) (2007), 619-625.
[9] J. W. Layman, The Hankel transform and some of its properties. J. of integer sequences, 4 (2001), 1-11.
[10] R.J. Libera, and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[11] R.J. Libera, and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251-289.
[12] G. Murugusundaramoorthy and N. Magesh, Coefficient Inequalities For Certain Classes of Analytic Functions Associated with Hankel Determinant, Bulletin of Math. Anal. Appl., I (3) (2009), 85-89.
[13] J. W. Noonan and D. K. Thomas, On the second Hankel Determinant of a really mean p valent functions, Trans. Amer. Math. Soc, 223 (2) (1976), 337-346.
[14] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl, 28 (8) (1983), 731-739.
[15] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109115.
[16] R. Singh, S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979) 336-340.
[17] S. C. Soh and D. Mohamad, Coefficient Bounds For Certain Classes of Close-to-Convex Functions, Int. Journal of Math. Analysis, 2 (27) (2008), 1343-1351.
[18] T. Yavuz, Second hankel determinant problem for a certain subclass of univalent functions, International Journal of Mathematical Analysis Vol. 9(10), (2015), 493-498.

Gebze Technical University, Department of Mathematics, Kocaeli, TURKEY

[^0]: 2010 Mathematics Subject Classification. Primary 30C45, Secondary 33C45.
 Key words and phrases. univalent functions, starlike functions, convex functions, Hankel determinant, Ruscheweyh derivative.

