# SECOND HANKEL DETERMINANT FOR BI-UNIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH HOHLOV OPERATOR 

G. MURUGUSUNDARAMOORTHY* AND K. VIJAYA


#### Abstract

In the present paper, we consider a subclass of the function class $\Sigma$ of bi-univalent analytic functions in the open unit disk $\Delta$ associated with Hohlov operator and we obtain the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function class $\Sigma$. Our result gives corresponding $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the subclasses of $\Sigma$ defined in the literature.


## 1. Introduction

Let $\mathcal{A}$ be the class of functions given by the power series

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

and analytic in the open unit disk

$$
\Delta:=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Also let $\Omega$ be the family of functions $f \in \mathcal{A}$ which are univalent in $\Delta$ and satisfying the normalization conditions (see[4]):

$$
f(0)=f^{\prime}(0)-1=0
$$

The well-known Koebe one-quarter theorem (see[4]) asserts that the image of $\Delta$ under every univalent function $f \in \Omega$ contains a disk of radius $\frac{1}{4}$. Thus, the inverse of $f \in \Omega$ is a univalent analytic function on the disk $\Delta_{\rho}:=\{z: z \in \mathbb{C}$ and $|z|<$ $\left.\rho ; \rho \geq \frac{1}{4}\right\}$. Therefore, for each function $f(z)=w \in \Omega$, there is an inverse function $f^{-1}(w)$ of $f(z)$ defined by

$$
f^{-1}(f(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(w \in \Delta_{\rho}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.2}
\end{equation*}
$$

A function $f \in \Omega$ is said to be bi-univalent in $\Delta$ if both $f$ and $f^{-1}$ are univalent in $\Delta$. Let $\Sigma$ denote the class of bi-univalent function in $\Delta$ given by (1.1). The concept of bi-univalent analytic functions was introduced by Lewin [14] in 1967 and he showed

[^0](c)2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.
that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [1] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [18], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$. The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right| \quad(n \in$ $\mathbb{N} \backslash\{1,2\}$ ) is presumably still an open problem. In [3](see also [2, 7, 20, 22, 23]), certain subclasses of the bi-univalent analytic functions class $\Sigma$ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found.

In 1976, Noonan and Thomas [19] defined the $q$ th Hankel determinant of $f$ for $q \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

Further, Fekete and Szegö [6] considered the Hankel determinant of $f \in A$ for $q=2$ and $n=1, H_{2}(1)=\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{3}\end{array}\right|$. They made an early study for the estimates of $\left|a_{3}-\mu a_{2}^{2}\right|$ when $a_{1}=1$ with $\mu$ real. The well known result due to them states that if $f \in \mathcal{A}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}4 \mu-3 & \text { if } \quad \mu \geq 1 \\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) & \text { if } \quad 0 \leq \mu \leq 1 \\ 3-4 \mu & \text { if } \quad \mu \leq 0\end{cases}
$$

Furthermore, Hummel [9, 10] obtained sharp estimates for $\left|a_{3}-\mu a_{2}^{2}\right|$ when $f$ is convex functions and also Keogh and Merkes [13] obtained sharp estimates for $\left|a_{3}-\mu a_{2}^{2}\right|$ when $f$ is close-to-convex, starlike and convex in $\Delta$. Here we consider the Hankel determinant of $f \in \mathcal{A}$ for $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

For the functions $f, g \in \mathcal{A}$ and given by the series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \quad(z \in \Delta)
$$

the Hadamard product (or convolution) of $f$ and $g$ denoted by $f * g$ is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \quad(z \in \Delta)
$$

By using the Hadamard product (or convolution ), Hohlov (cf.[11]) introduced and studied the linear operator $\mathcal{I}_{c}^{a, b}: \Omega \rightarrow \Omega$ defined by

$$
\mathcal{I}_{c}^{a, b} f(z)=z_{2} F_{1}(a, b ; c ; z) * f(z) \quad(f \in \Omega, z \in \Delta)
$$

where ${ }_{2} F_{1}(z)$ known as Gaussian hypergeometric function is defined by (1.3)
${ }_{2} F_{1}(z)={ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n} \quad\left(a, b \in \mathbb{C}, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=:\{0,-1,-2, \ldots\}\right)$
and $(\lambda)_{n}$ is the Pochhamer symbol or shifted factorial, written in terms of the gamma function $\Gamma$, by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1, & n=0 \\ \lambda(\lambda+1) \ldots(\lambda+n-1), & n \in \mathbb{N}:=\{1,2,3, \ldots . .\}\end{cases}
$$

Note that ${ }_{2} F_{1}(z)$ is symmetric in $a$ and $b$ and that the series (1.3) terminates if at least one of the numerator parameter $a$ and $b$ is zero or a negative integer.Observe that for the function $f$ of the form (1.1), we have

$$
\begin{align*}
\mathcal{I}_{c}^{a, b} f(z) & =z+\sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} a_{n} z^{n} \\
& =z+\sum_{n=2}^{\infty} \Phi_{n} a_{n} z^{n} \quad(z \in \Delta) \tag{1.4}
\end{align*}
$$

where

$$
\Phi_{n}=\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}}
$$

Making use of Hohlov operator we consider a new subclass of $\Sigma$ due to Panigarhi and Murugusundaramoorthy[20] as given below

Definition 1.1. [20] A function $f \in \Sigma$ and of the form (1.1) is said to be in the class $\mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left[(1-\lambda) \frac{\mathcal{I}_{c}^{a, b} f(z)}{z}+\lambda\left(\mathcal{I}_{c}^{a, b} f(z)\right)^{\prime}\right]>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in \Delta) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left[(1-\lambda) \frac{\mathcal{I}_{c}^{a, b} g(w)}{w}+\lambda\left(\mathcal{I}_{c}^{a, b} g(w)\right)^{\prime}\right]>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in \Delta) \tag{1.6}
\end{equation*}
$$

where the function $g$ is the inverse of $f$ given by (1.2).
It is of interest to note that by taking $a=b$ and $c=1$ we state the following subclass $\mathcal{F}_{\Sigma}(\beta, \lambda)$ due to Frasin et al.[7].

Example 1.2. [7] A function $f \in \Sigma$ and of the form (1.1) is said to be in the class $\mathcal{F}_{\Sigma}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right]>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in \Delta) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right]>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in \Delta) \tag{1.8}
\end{equation*}
$$

where the function $g$ is the inverse of $f$ given by (1.2).
It is of interest to note that by taking $a=b ; c=1$ and $\lambda=1$ we state the following subclass $\mathcal{H}_{\Sigma}(\beta)$ due to Srivastava et al.[22]. By taking $a=b ; c=1$ and we state the following :

Example 1.3. [22] A function $f \in \Sigma$ and of the form (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\beta)$ if the following conditions are satisfied:

$$
\Re\left[f^{\prime}(z)\right]>\beta \quad(0 \leq \beta<1, z \in \Delta)
$$

and

$$
\Re\left[g^{\prime}(w)\right]>\beta \quad(0 \leq \beta<1, w \in \Delta)
$$

where the function $g$ is the inverse of $f$ given by (1.2).
The object of the present paper is to determine the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function $f \in \mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$. Our result gives corresponding $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the subclasses of $\Sigma$ defined in the Examples 1.2 and 1.3.
2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $\mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$

We need the following lemma for our investigation.
Lemma 2.1. (see [4], p. 41) Let $\mathcal{P}$ be the class of all analytic functions $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{2.1}
\end{equation*}
$$

satisfying $\Re(p(z))>0(z \in \Delta)$ and $p(0)=1$. Then

$$
\left|p_{n}\right| \leq 2(n=1,2,3, \ldots)
$$

This inequality is sharp for each $n$. In particular, equality holds for all $n$ for the function

$$
p(z)=\frac{1+z}{1-z}=1+\sum_{n=1}^{\infty} 2 z^{n} .
$$

Lemma 2.2. If the function $p \in \mathcal{P}$ is given by the series

$$
\begin{equation*}
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2} z\right) \tag{2.3}
\end{equation*}
$$

for some $x, z$ with $|x| \leq 1$ and $|z| \leq 1$.
Lemma 2.3. [8] The power series for $p$ given in (2.1) converges in $\Delta$ to a function in $P$ if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n}  \tag{2.4}\\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, \quad n=1,2,3, \ldots
$$

and $c_{-k}=\overline{c_{k}}$, are all nonnegative. They are strictly positive except for

$$
p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k} z}\right), \rho_{k}>0, t_{k} \text { real }
$$

and $t_{k} \neq t_{j}$ for $k \neq j$ in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.
In the following theorem we determine the second hankel coefficient results for

Theorem 2.4. Let $f \in \mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$ be given by (1.1). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}4\left(1-\beta^{2}\right)\left[\frac{(1+\lambda)^{3} \Phi_{2}^{3}+4(1-\beta)^{2}(1+3 \lambda) \Phi_{4}}{(1+\lambda)^{4}(1+3 \lambda) \Phi_{2}^{4} \Phi_{4}}\right], & \beta \in\left[0,1-\sqrt{\frac{(1+\lambda)^{3} \Phi_{2}^{3}}{8(1+3 \lambda) \Phi_{4}}}\right]  \tag{2.5}\\ \frac{9(1+\lambda)^{2}(1-\beta)^{2} \Phi_{2}^{2}}{2(1+3 \alpha) \Phi_{4}\left[(1+\lambda)^{3} \Phi_{2}^{3}-2(1-\beta)^{2}(1+3 \lambda) \Phi_{4}\right]}, & \beta \in\left(1-\sqrt{\frac{(1+\lambda)^{3} \Phi_{2}^{3}}{8(1+3 \lambda) \Phi_{4}}}, 1\right)\end{cases}
$$

Proof. Since $f \in \mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$, there exists two functions $\phi(z)$ and $\psi(z) \in \mathcal{P}$ satisfying the conditions of Lemma 2.1 such that

$$
\begin{equation*}
(1-\lambda) \frac{\mathcal{I}_{c}^{a, b} f(z)}{z}+\lambda\left(\mathcal{I}_{c}^{a, b} f(z)\right)^{\prime}=\beta+(1-\beta) \phi(z) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{\mathcal{I}_{c}^{a, b} g(w)}{w}+\lambda\left(\mathcal{I}_{c}^{a, b} g(w)\right)^{\prime}=\beta+(1-\beta) \psi(z) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(w)=1+d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\ldots \tag{2.9}
\end{equation*}
$$

. Equating the coefficients in (2.6) and (2.7)gives

$$
\begin{align*}
& (1+\lambda) \Phi_{2} a_{2}=(1-\beta) c_{1}  \tag{2.10}\\
& (1+2 \lambda) \Phi_{3} a_{3}=(1-\beta) c_{2}  \tag{2.11}\\
& (1+3 \lambda) \Phi_{4} a_{4}=(1-\beta) c_{3} \tag{2.12}
\end{align*}
$$

and

$$
\begin{gather*}
-(1+\lambda) \Phi_{2} a_{2}=(1-\beta) d_{1}  \tag{2.13}\\
(1+2 \lambda) \Phi_{3}\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) d_{2}  \tag{2.14}\\
-(1+3 \lambda) \Phi_{4}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)=(1-\beta) d_{3} \tag{2.15}
\end{gather*}
$$

From (2.10) and (2.13) gives

$$
\begin{equation*}
a_{2}=\frac{1-\beta}{(1+\lambda) \Phi_{2}} c_{1}=-\frac{1-\beta}{(1+\lambda) \Phi_{2}} d_{1} \tag{2.16}
\end{equation*}
$$

which implies

$$
c_{1}=-d_{1}
$$

Now from(2.11) and (2.14), we obtain

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}}{(1+\lambda)^{2} \Phi_{2}^{2}} c_{1}^{2}+\frac{(1-\beta)}{4(1+2 \lambda) \Phi_{3}}\left(c_{1}-c_{2}\right) \tag{2.17}
\end{equation*}
$$

On the other hand, subtracting (2.15) from (2.12) and using (2.16), we get (2.18)
$a_{4}=\frac{1}{2(1+3 \lambda) \Phi_{4}}\left[\frac{-5(1+3 \lambda)(1-\beta)^{3} \Phi_{4}}{(1+\lambda)^{3} \Phi_{2}^{3}} c_{1}^{3}+\frac{5(1+3 \lambda)(1-\beta) \Phi_{4}}{(1+\lambda) \Phi_{2}} a_{3} c_{1}+(1-\beta)\left(c_{3}-d_{3}\right)\right]$.

Thus we establish that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left\lvert\,-\frac{(1-\beta)^{4}}{(1+\lambda)^{4} \Phi_{2}^{4}} c_{1}^{4}+\frac{(1-\beta)^{3} c_{1}^{2}\left(c_{2}-d_{2}\right)}{8(1+\lambda)^{2}(1+2 \lambda) \Phi_{2}^{2} \Phi_{3}}\right.  \tag{2.19}\\
& \left.+\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}} c_{1}\left(c_{3}-d_{3}\right)-(1-\beta)^{2}\left(c_{2}-d_{2}\right)^{2} \right\rvert\,
\end{align*}
$$

According to Lemma2.2 we have

$$
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right), \quad \text { and } \quad 2 d_{2}=d_{1}^{2}+x\left(4-d_{1}^{2}\right),
$$

hence we have

$$
\begin{equation*}
c_{2}=d_{2} \tag{2.20}
\end{equation*}
$$

and further

$$
\begin{gather*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2} z\right) \\
4 d_{3}=d_{1}^{3}+2\left(4-d_{1}^{2}\right) d_{1} x-d_{1}\left(4-d_{1}^{2}\right) x^{2}+2\left(4-d_{1}^{2}\right)\left(1-|x|^{2} z\right) \\
c_{3}-d_{3}=\frac{1}{2} c_{1}^{3}+c_{1}\left(4-c_{1}^{2}\right) x-\frac{1}{2} c_{1}\left(4-c_{1}^{2}\right) x^{2}  \tag{2.21}\\
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left\lvert\, \frac{-(1-\beta)^{4}}{(1+\lambda)^{4} \Phi_{2}^{4}} c_{1}^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}} c_{1}^{4}\right.  \tag{2.22}\\
\left.\quad+\frac{(1-\beta)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right) x}{2(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}-\frac{(1-\beta)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right) x^{2}}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}} \right\rvert\,
\end{gather*}
$$

Letting $c_{1}=c$, we may assume without restriction that $c \in[0,2]$ since $\phi \in \mathcal{P}$ so $\left|c_{1}\right| \leq 2$.Thus,applying triangle inequality on (2.19), with $\mu=|x| \leq 1$, we obtain

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{(1-\beta)^{4}}{(1+\lambda)^{4} \Phi_{2}^{4}} c^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}} c^{4}  \tag{2.23}\\
& +\frac{(1-\beta)^{2} c^{2}\left(4-c^{2}\right) \mu}{2(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}+\frac{(1-\beta)^{2} c^{2}\left(4-c^{2}\right) \mu^{2}}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}=F(\mu)
\end{align*}
$$

Differentiating $F(\mu)$, we get

$$
F^{\prime}(\mu)=\frac{(1-\beta)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right)}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}+\frac{(1-\beta)^{2} c^{2}\left(4-c^{2}\right) \mu}{2(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}
$$

By using elementary calculus, one can show that $F^{\prime}(\mu)>0$ for $\mu>0$ hence $F$ is an increasing function and thus, the upper bound for $F(\mu)$ corresponds to $\mu=1$, in which case

$$
\begin{align*}
& F(\mu)=F(1)=\left[\frac{(1-\beta)^{4}}{(1+\lambda)^{4} \Phi_{2}^{4}}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}\right] c^{4}  \tag{2.24}\\
& \quad+\frac{3(1-\beta)^{2} c^{2}\left(4-c^{2}\right)}{4(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}=G(c)
\end{align*}
$$

Assume that $G(c)$ has a maximum value in an interior of $c \in[0,2]$, by elementary calculations we find

$$
\begin{equation*}
G^{\prime}(c)=\left[\frac{4(1-\beta)^{4}}{(1+\lambda)^{4} \Phi_{2}^{4}}-\frac{2(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}}\right] c^{3}+\frac{6(1-\beta)^{2} c}{(1+\lambda)(1+3 \lambda) \Phi_{4} \Phi_{2}} \tag{2.25}
\end{equation*}
$$

Then $G^{\prime}(c)=0$ implies the real critical point $c_{01}=0$ or $c_{02}=\sqrt{\frac{3(1+\lambda)^{3} \Phi_{2}^{3}}{(1+\lambda)^{3} \Phi_{2}^{3}-2(1-\beta)^{2}(1+3 \lambda) \Phi_{4}}}$.
After some calculations we concluded following cases:
Case 1: When $\beta \in\left[0,1-\sqrt{\frac{(1+\lambda)^{3} \Phi_{2}^{3}}{8(1+3 \lambda) \Phi_{4}}}\right]$, we observe that $c_{02} \geq 2$, that is, $c_{02}$ is out of the interval $(0,2)$. Therefore the maximum value of $G(c)$ occurs at $c_{01}=0$ or $c=c_{02}$ which contradicts our assumption of having the maximum value at the interior point of $c \in[0,2]$. Since $G$ is an increasing function in the interval $[0,2]$, maximum point of $G$ must be on the boundary of $c \in[0,2]$, that is, $c=2$. Thus, we have

$$
\max _{0 \leq c \leq 2} G_{1}(p)=G(2)=4\left(1-\beta^{2}\right)\left[\frac{(1+\lambda)^{3} \Phi_{2}^{3}+4(1-\beta)^{2}(1+3 \lambda) \Phi_{4}}{(1+\lambda)^{4}(1+3 \lambda) \Phi_{2}^{4} \Phi_{4}}\right]
$$

Case 2: When $\beta \in\left(1-\sqrt{\frac{(1+\lambda)^{3} \Phi_{2}^{3}}{8(1+3 \lambda) \Phi_{4}}}, 1\right)$, we observe that $c_{02} \leq 2$, that is, $c_{02}$ is interior of the interval $[0,2]$. Since $G^{\prime \prime}\left(c_{02}\right)<0$, the maximum value of $G(c)$ occurs at $c=c_{02}$. Thus, we have

$$
\begin{aligned}
\max _{0 \leq c \leq 2} G(c)=G\left(c_{02}\right) & =G\left(\sqrt{\frac{3(1+\lambda)^{3} \Phi_{2}^{3}}{(1+\lambda)^{3} \Phi_{2}^{3}-2(1-\beta)^{2}(1+3 \lambda) \Phi_{4}}}\right) \\
& =\frac{9(1+\lambda)^{2}(1-\beta)^{2} \Phi_{2}^{2}}{2(1+3 \alpha) \Phi_{4}\left[(1+\lambda)^{3} \Phi_{2}^{3}-2(1-\beta)^{2}(1+3 \lambda) \Phi_{4}\right]}
\end{aligned}
$$

Concluding Remarks: Suitably specializing the parameter $\lambda$ one can state the Hankel coefficients for various subclasses of $\mathcal{M}_{\Sigma}^{a, b ; c}(\beta, \lambda)$. In fact, by choosing $a=b$ and $c=1$ we have $\Phi_{2}=1 ; \Phi_{3}=1 ; \Phi_{4}=1$ hence we state the Hankel determinant coefficients for the function $f \in \mathcal{F}_{\Sigma}(\beta, \lambda)$ studied in[7] as given below:

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}4\left(1-\beta^{2}\right)\left[\frac{(1+\lambda)^{3}+4(1-\beta)^{2}(1+3 \lambda)}{(1+\lambda)^{4}(1+3 \lambda)}\right], & \beta \in\left[0,1-\sqrt{\frac{(1+\lambda)^{3}}{8(1+3 \lambda)}}\right]  \tag{2.26}\\ \frac{9(1+\lambda)^{2}(1-\beta)^{2}}{2(1+3 \alpha)\left[(1+\lambda)^{3}-2(1-\beta)^{2}(1+3 \lambda)\right]}, & \beta \in\left(1-\sqrt{\frac{(1+\lambda)^{3}}{8(1+3 \lambda)}}, 1\right)\end{cases}
$$

Also by choosing $\lambda=1$ one can easily derive Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the functions $f \in \mathcal{H}_{\Sigma}$ studied by Srivastava et al.[22].

## References

[1] D.A. Brannan, J.G. Clunie(Eds.), Aspects of Contemporary Complex Analysis (Proceeding of the NATO Advanced study Institute held at the University of Durham, Durham: July 1-20, 1979), Academic Press, New York and London, 1980.
[2] D.A. Brannan, J. Clunie, W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22(1970), 476-485.
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia Univ. BabesBolyai Math. 31(2)(1986), 70-77.
[4] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[5] E.Deniz, M.Ca̧g̀lar, and H. Orhan,Second hankel determinant for bi-starlike and bi-convex functions of order $\beta$, arxiv:1303.2504v2.
[6] M.Fekete and G.Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London. Math. Soc., 8(1933), 85-89.
[7] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(2011), 1569-1973.
[8] U.Grenander and G.Szegö, Toeplitz forms and their applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[9] J.Hummel, The coefficient regions of starlike functions, Pacific. J. Math., 7 (1957), 13811389.
[10] J.Hummel, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc., 11 (1960), 741-749.
[11] Yu.E. Hohlov, Operators and operations in the class of univalent functions (in Russian), Izv. Vyss̃. Uc̃ebn. Zaved. Matematika 10 (1978) 83-89.
[12] A.Janteng, S.A.Halim and M.Darus, Coefficient inequality for a function whose derivative has a positive real part, J.Ineq. Pure and Appl. Math., Vol.7, 2 (50) (2006), 1-5.
[13] F.R.Keogh and E.P.Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967) 63-68.
[15] R.J.Libera and E.J.Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[16] R.J.Libera and E.J.Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251-289.
[17] T.H.MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32(1969) 100-112.
[19] J.W.Noonan and D.K.Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346
[20] T.Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for Bi- univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc,16 (1) (2013) 91-100.
[21] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[22] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(2010), 1188-1192.
[23] T.S. Taha, Topics in Univalent Function Theory, Ph.D Thesis, University of London, 1981. School of Advanced Sciences, VIT University, Vellore - 632014, Tamilnadu, India
*Corresponding author


[^0]:    2010 Mathematics Subject Classification. 30C45.
    Key words and phrases. Univalent functions; Analytic functions; Bi-univalent functions; Hohlov operator; Coefficient bounds.

