ON A TYPE OF PROJECTIVE SEMI-SYMMETRIC CONNECTION

S. K. PAL ${ }^{1, *}$, M. K. PANDEY ${ }^{2}$ AND R. N. SINGH ${ }^{1}$

Abstract

In the present paper, we have studied some properties of curvature tensors of special projective semi-symmetric connection. We have shown that curvature tensor of such a connection satisfies Bianchi's identities.

1. Introduction

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten [2] in 1924. In 1932, H. A. Hayden [4] studied semi-symmetric metricconnection. It was K. Yano [10] who started systematic study of semi-symmetric metric connection and this was further studied by T. Imai [6], R. S. Mishra and S. N. Pandey [9], U. C. De and B. K. De [1] and several other mathematicians ([7], [11]). In 2001, P. Zhao and H. Song [12] studied a semi-symmetric connection which is projectively equivalent to Levi-Civita connection and such a connection is called as projective semi-symmetric connection. They found an invariant under the transformation of projective semi-symmetric connection and showed that this invariant could degenerate into the Weyl projective curvature tensor under certain conditions. After this various papers ([3], [5], [13]) on projective semi-symmetric metric connection have appeared.

The organization of the paper is as follows. After introduction we give some preliminary results in section 2 . In sections 3 , we present a brief account of special projective semi-symmetric connection. Section 4 is devoted to the study of special projective semi symmetric connection with recurrent curvature tensor.

2. Preliminaries

Let M^{n} be an n-dimensional $(n>2)$ Riemannian manifold equipped with a Riemannian metric g and ∇ be the Levi-Civita connection associated with metric g. A linear connection $\bar{\nabla}$ on M^{n} is called the semi symmetric metric connection [10], if the torsion tensor \bar{T} of the connection $\bar{\nabla}$, given by

$$
\begin{equation*}
\bar{T}(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] \tag{2.1}
\end{equation*}
$$

satisfies the condition

$$
\begin{equation*}
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.2}
\end{equation*}
$$

2010 Mathematics Subject Classification. 53C12.
Key words and phrases. Projective semi-symmetric connection; curvature tensor.
(C)2015 Authors retain the copyrights of their papers, and all
open access articles are distributed under the terms of the Creative Commons Attribution License.
and

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0 \tag{2.3}
\end{equation*}
$$

where π is a 1 - form on M^{n} associated with vector field ρ, i.e.,

$$
\begin{equation*}
\pi(X)=g(X, \rho) \tag{2.4}
\end{equation*}
$$

If the geodesic with respect to $\bar{\nabla}$ are always consistent with those of ∇, then $\bar{\nabla}$ is called a connection projectively equivalent to ∇. If $\bar{\nabla}$ is projective equivalent connection to ∇ as well as the semi-symmetric, then $\bar{\nabla}$ is called projective semisymmetric connection. We also call $\bar{\nabla}$ as projective semi- symmetric transformation.

In this paper, we study a type of projective semi-symmetric connection $\bar{\nabla}$ introduced by P. Zhao and H. Song [12]. The connection is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\psi(Y) X+\psi(X) Y+\phi(Y) X-\phi(X) Y \tag{2.5}
\end{equation*}
$$

where 1-forms ϕ and ψ are given as

$$
\begin{equation*}
\phi(X)=\frac{1}{2} \pi(X) \text { and } \psi(X)=\frac{n-1}{2(n+1)} \pi(X) \tag{2.6}
\end{equation*}
$$

It is easy to observe that torsion tensor of projective semi- symmetric transformation is same as given by the equation (2.2) and also that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=\frac{1}{n+1}[2 \pi(X) g(Y, Z)-n \pi(Y) g(Z, X)-n \pi(Z) g(X, Y) \tag{2.7}
\end{equation*}
$$

i.e., the connection $\bar{\nabla}$ is a non metric one.

Let \bar{R} and R be the curvature tensor of the manifold relative to the projective semi-symmetric connection $\bar{\nabla}$ and Levi-Civita connection ∇ respectively. It is known that [12]

$$
\begin{equation*}
\bar{R}(X, Y, Z)=R(X, Y, Z)+\beta(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X \tag{2.8}
\end{equation*}
$$

where $\beta(X, Y)$ and $\alpha(X, Y)$ are given by the following relations

$$
\begin{gather*}
\beta(X, Y)=\Psi^{\prime}(X, Y)-\Psi^{\prime}(Y, X)+\Phi^{\prime}(Y, X)-\Phi^{\prime}(X, Y) \tag{2.9}\\
\alpha(X, Y)=\Psi^{\prime}(X, Y)+\Phi^{\prime}(Y, X)-\psi(X) \phi(Y)-\phi(X) \psi(Y) \tag{2.10}
\end{gather*}
$$

$$
\begin{equation*}
\Psi^{\prime}(X, Y)=\left(\nabla_{X} \psi\right)(Y)-\psi(X) \psi(Y) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{\prime}(X, Y)=\left(\nabla_{X} \phi\right)(Y)-\phi(X) \phi(Y) \tag{2.12}
\end{equation*}
$$

Contracting X in the equation (2.8), we get a relation between Ricci tensors $\overline{\operatorname{Ri}} i c(Y, Z)$ and $\operatorname{Ric}(Y, Z)$ of manifold with respect to connections $\bar{\nabla}$ and ∇ respectively

$$
\begin{equation*}
\overline{\operatorname{R}} i c(Y, Z)=\operatorname{Ric}(Y, Z)+\beta(Y, Z)-(n-1) \alpha(Y, Z) \tag{2.13}
\end{equation*}
$$

If \bar{r} and r are scalar curvatures of manifold with respect to connection $\bar{\nabla}$ and ∇ respectively, then from the equation (2.13), we get

$$
\begin{equation*}
\bar{r}=r+b-(n-1) a \tag{2.14}
\end{equation*}
$$

where

$$
b=\sum_{i=1}^{n} \beta\left(e_{i}, e_{i}\right) \text { and } a=\sum_{i=1}^{n} \alpha\left(e_{i}, e_{i}\right) .
$$

The Weyl-projective curvature tensor W, conharmonic curvature tensor P and concircular curvature tensor I are given by [9]

$$
\begin{align*}
& W(X, Y, Z)=R(X, Y, Z)+\frac{1}{n-1}\{\operatorname{Ric}(X, Z) Y-\operatorname{Ric}(Y, Z) X\} \tag{2.15}\\
& \begin{aligned}
P(X, Y, Z)=R(X, Y, Z)- & \frac{1}{n-2}[\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y]
\end{aligned} \tag{2.16}
\end{align*}
$$

where

$$
\begin{equation*}
g(Q X, Y)=\operatorname{Ric}(X, Y) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
I(X, Y, Z)=R(X, Y, Z)-\frac{r}{n-1}[g(Y, Z) X-g(X, Z) Y] \tag{2.18}
\end{equation*}
$$

3. Special Projective Semi-Symmetric Connection

In this section, we consider a projective semi-symmetric connection $\bar{\nabla}$ given by the equation (2.5) whose associated 1-form π is closed, i.e.,

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right) Y=\left(\bar{\nabla}_{Y} \pi\right) X \tag{3.1}
\end{equation*}
$$

Such a connection $\bar{\nabla}$ is called special projective semi-symmetric connection [12]. It is easy to verify that both the 1 -forms ϕ and ψ are closed as the 1 -form π is closed and also that the tensors Φ^{\prime} and Ψ^{\prime} are symmetric. Consequently, we get

$$
\begin{equation*}
\beta(X, Y)=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(X, Y)=\alpha(Y, X) \tag{3.3}
\end{equation*}
$$

In view of the equations (3.1) and (3.2), the expressions (2.8), (2.13) and (2.14) reduces to

$$
\begin{gather*}
\bar{R}(X, Y, Z)=R(X, Y, Z)+\alpha(X, Z) Y-\alpha(Y, Z) X, \tag{3.4}\\
\bar{R} i c(Y, Z)=\operatorname{Ric}(Y, Z)-(n-1) \alpha(Y, Z) \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{r}=r-(n-1) a . \tag{3.6}
\end{equation*}
$$

It is easy to observe that the Ricci tensor $\overline{\operatorname{R}} i c(Y, Z)$ is symmetric.

Now, we prove the following theorems:
Theorem 3.1. Curvature tensor of special projective semi-symmetric connection satisfies Bianchi's first identity.

Proof : Writing two more equations by cyclic permutations of X, Y and Z from equation (3.4), we get

$$
\bar{R}(Y, Z, X)=R(Y, Z, X)+\alpha(Y, X) Z-\alpha(Z, X) Y
$$

and

$$
\bar{R}(Z, X, Y)=R(Z, X, Y)+\alpha(Z, Y) X-\alpha(X, Y) Z
$$

Adding these equations to the equation (3.4), we get result.
Theorem 3.2. Curvature tensor of special projective semi-symmetric connection satisfies Bianchi's second identity if α is parallel tensor with respect to Levi-Civita connection ∇.

Proof : Suppose α is a parallel tensor with respect to Levi-Civita connection ∇, i.e., $\nabla \alpha=0$. Now differentiating the equation (3.4) covariantly with respect to the connection ∇, we have

$$
\begin{equation*}
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)=\left(\nabla_{X} R\right)(Y, Z, U) \tag{3.7}
\end{equation*}
$$

Writing two more equations by cyclic permutations of X, Y and Z in above equation, we get

$$
\begin{equation*}
\left(\nabla_{Y} \bar{R}\right)(Z, X, U)=\left(\nabla_{Y} R\right)(Z, X, U) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{Z} \bar{R}\right)(X, Y, U)=\left(\nabla_{Z} R\right)(X, Y, U) \tag{3.9}
\end{equation*}
$$

Adding the equations (3.7), (3.8) and (3.9), we get

$$
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)+\left(\nabla_{Y} \bar{R}\right)(Z, X, U)+\left(\nabla_{Z} \bar{R}\right)(X, Y, U)=0
$$

This shows that the curvature tensor of special projective semi-symmetric connection satisfies Bianchi's second identity.
Theorem 3.3. The Weyl-projective curvature tensor of Riemannian manifold with respect to the special projective semi-symmetric connection $\bar{\nabla}$ satisfies

$$
\bar{W}(X, Y, Z)+\bar{W}(Y, Z, X)+\bar{W}(Z, X, Y)=0
$$

Proof : The Weyl-projective curvature tensor of Riemannian Manifold with respect to special projective semi-symmetric connection $\bar{\nabla}$ is given by

$$
\begin{equation*}
\bar{W}(X, Y, Z)=\bar{R}(X, Y, Z)-\frac{1}{n-1}[\bar{R} i c(Y, Z) X-\bar{R} i c(X, Z) Y] \tag{3.10}
\end{equation*}
$$

Writing two more equations by cyclic permutations of X, Y and Z in above equation, we get

$$
\begin{align*}
& \bar{W}(Y, Z, X)=\bar{R}(Y, Z, X)-\frac{1}{n-1}[\bar{R} i c(Z, X) Y-\bar{R} i c(Y, X) Z] \tag{3.11}\\
& \bar{W}(Z, X, Y)=\bar{R}(Z, X, Y)-\frac{1}{n-1}[\bar{R} i c(X, Y) Z-\bar{R} i c(Z, Y) X] \tag{3.12}
\end{align*}
$$

Adding the equations (3.10), (3.11) and (3.12), we get

$$
\bar{W}(X, Y, Z)+\bar{W}(Y, Z, X)+\bar{W}(Z, X, Y)=0
$$

4. Special Projective Semi-Symmetric Connection with Recurrent Curvature Tensor

In this section, we consider a special projective semi-symmetric connection $\bar{\nabla}$ whose curvature tensor \bar{R} is recurrent with respect to the Levi-Civita connection ∇, i.e.,

$$
\begin{equation*}
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)=B(U) \bar{R}(X, Y, Z) \tag{4.1}
\end{equation*}
$$

where B is a non-zero 1 -form.
Differentiating the equation (3.4) covariantly with respect to the Levi-Civita connection ∇, we get
(4.2) $\quad\left(\nabla_{U} \bar{R}\right)(X, Y, Z)=\left(\nabla_{U} R\right)(X, Y, Z)+\left(\nabla_{U} \alpha\right)(X, Z) Y-\left(\nabla_{U} \alpha\right)(Y, Z) X$.

Contracting X in the above equation, we have

$$
\begin{equation*}
\left(\nabla_{U} \bar{R} i c\right)(Y, Z)=\left(\nabla_{U} R i c\right)(Y, Z)-(n-1)\left(\nabla_{U} \alpha\right)(Y, Z) . \tag{4.3}
\end{equation*}
$$

Putting $Y=Z=e_{i}$ in the above equation and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\left(\nabla_{U} \bar{r}\right)=\left(\nabla_{U} r\right)-(n-1)\left(\nabla_{U} a\right) \tag{4.4}
\end{equation*}
$$

Now the equations (3.4) and (4.2) together give

$$
\begin{aligned}
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)-B(U) \bar{R}(X, Y, Z) & =\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) \\
& +\left[\left(\nabla_{U} \alpha\right)(X, Z)-B(U) \alpha(X, Z)\right] Y \\
& -\left[\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right] X,
\end{aligned}
$$

which, in view of the equation (4.1), reduces to

$$
\begin{align*}
\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) & =\left[\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right] X \\
& -\left[\left(\nabla_{U} \alpha\right)(X, Z)-B(U) \alpha(X, Z)\right] Y \tag{4.6}
\end{align*}
$$

Contracting X in above, we get
(4.7) $\quad\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z)=(n-1)\left\{\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right\}$.

Further, we obtain

$$
\begin{equation*}
\left(\nabla_{U} r\right)-B(U) r=(n-1)\left\{\left(\nabla_{U} a\right)-B(U) a\right\} \tag{4.8}
\end{equation*}
$$

Also, from the equation (2.17), we have

$$
\begin{equation*}
g\left(\left(\nabla_{U} Q\right) X, Y\right)=\left(\nabla_{U} \operatorname{Ric}\right)(X, Y) \tag{4.9}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
g\left(\left(\nabla_{U} Q\right) X-B(U) Q X, Y\right)=\left(\nabla_{U} \operatorname{Ric}\right)(X, Y)-B(U) \operatorname{Ric}(X, Y) \tag{4.10}
\end{equation*}
$$

Now we prove following theorems:
Theorem 4.1. If the curvature tensor of special projective semi-symmetric connection on a Riemannian manifold M^{n} is recurrent with respect to the Levi-Civita connection then manifold M^{n} is projectively recurrent.

Proof : Differentiating the projective curvature tensor W given by (2.15) covariantly with respect to Levi-Civita connection ∇, we have
$\left(\nabla_{U} W\right)(X, Y, Z)=\left(\nabla_{U} R\right)(X, Y, Z)+\frac{1}{n-1}\left\{\left(\nabla_{U} R i c\right)(X, Z) Y-\left(\nabla_{U} R i c\right)(Y, Z) X\right\}$.

The above equation gives
(4.12)

$$
\begin{aligned}
\left(\nabla_{U} W\right)(X, Y, Z)-B(U) W(X, Y, Z) & =\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) \\
& +\frac{1}{n-1}\left[\left\{\left(\nabla_{U} \operatorname{Ric}\right)(X, Z)-B(U) \operatorname{Ric}(X, Z)\right\} Y\right. \\
& \left.-\left\{\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z)\right\} X\right] .
\end{aligned}
$$

Using equation (4.6) and (4.7) in above, we get

$$
\left(\nabla_{U} W\right)(X, Y, Z)=B(U) W(X, Y, Z)
$$

which proves the statement.
Theorem 4.2. : A Riemannian manifold M^{n} admitting a special projective semisymmetric connection whose curvature tensor and tensor α are recurrent with respect to the Levi-Civita connection, is conharmonically recurrent.
Proof: Differentiating covariantly the equation (2.16) with respect to the LeviCivita connection, we get

$$
\begin{align*}
\left(\nabla_{U} P\right)(X, Y, Z) & =\left(\nabla_{U} R\right)(X, Y, Z)-\frac{1}{n-2}\left[\left(\nabla_{U} R i c\right)(Y, Z) X-\left(\nabla_{U} R i c\right)(X, Z) Y .\right. \tag{4.13}\\
& \left.+g(Y, Z)\left(\nabla_{U} Q\right) X-g(X, Z)\left(\nabla_{U} Q\right) Y\right]
\end{align*}
$$

From above, we have

$$
\begin{align*}
\left(\nabla_{U} P\right)(X, Y, Z)-B(U) P(X, Y, Z) & =\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) \tag{4.14}\\
& -\frac{1}{n-2}\left[\left\{\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z)\right\} X\right. \\
& -\left\{\left(\nabla_{U} \operatorname{Ric}\right)(X, Z)-B(U) \operatorname{Ric}(X, Z)\right\} Y \\
& +g(Y, Z)\left\{\left(\nabla_{U} Q\right) X-B(U) Q X\right\} \\
& \left.-g(X, Z)\left\{\left(\nabla_{U} Q\right) Y-B(U) Q Y\right\}\right] .
\end{align*}
$$

If the tensor α and the curvature tensor of the special projective semi-symmetric connection $\bar{\nabla}$ are recurrent with respect to the Levi-Civita connection ∇, then from the equations (4.6), (4.7) and (4.10), we get

$$
\left(\nabla_{U} P\right)(X, Y, Z)=B(U) P(X, Y, Z)
$$

which shows that manifold is conharmonically recurrent.

Theorem 4.3. A Riemannian manifold M^{n} admitting a special projective semisymmetric connection whose curvature tensor and tensor α are recurrent with respect to Levi-Civita connection, is concircular recurrent.

Proof: Differentiating the concircular curvature tensor I of M^{n} given by the equation (2.18) covariantly with respect to the Levi- Civita connection ∇, we have

$$
\begin{equation*}
\left(\nabla_{U} I\right)(X, Y, Z)=\left(\nabla_{U} R\right)(X, Y, Z)-\frac{\nabla_{U} r}{(n-1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{4.15}
\end{equation*}
$$

From this, we have

$$
\begin{align*}
\left(\nabla_{U} I\right)(X, Y, Z)-B(U) I(X, Y, Z) & =\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) \tag{4.16}\\
& -\frac{\nabla_{U} r-B(U) r}{(n-1)}\{g(Y, Z) X-g(X, Z) Y\}
\end{align*}
$$

If the tensor α and the curvature tensor of the special projective semi-symmetric connection $\bar{\nabla}$ are recurrent with respect to the Levi-Civita connection ∇, then from the equations (4.6), (4.7) and (4.8), we get

$$
\left(\nabla_{U} I\right)(X, Y, Z)=B(U) I(X, Y, Z)
$$

Theorem 4.4. Let M^{n} be a Riemannian manifold admitting a special projective semi-symmetric connection whose Ricci-tensor is recurrent with respect to the Levi-Civita connection. If the manifold is projectively recurrent with respect to Levi-Civita connection, then the curvature tensor of the special projective semisymmetric connection is recurrent.

Proof: Let the manifold M^{n} be projectively recurrent with respect to Levi Civita connection ∇. Then from the equation (4.12), we have

$$
\begin{align*}
\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) & =\frac{1}{n-1}\left[\left\{\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z) X\right\}\right. \tag{4.17}\\
& \left.-\left\{\left(\nabla_{U} \operatorname{Ric}\right)(X, Z)-B(U) \operatorname{Ric}(X, Z) Y\right\}\right]
\end{align*}
$$

Now, from equations (3.5) and (4.3), we get

$$
\begin{align*}
\left(\nabla_{U} \bar{R} i c\right)(Y, Z)-B(U) \bar{R} i c(Y, Z) & =\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z) \tag{4.18}\\
& -(n-1)\left\{\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right\}
\end{align*}
$$

Since the Ricci tensor of the special projective semi-symmetric connection $\bar{\nabla}$ is recurrent with respect to the Levi-Civita connection ∇, hence the above equation gives
(4.19) $\left(\nabla_{U} \operatorname{Ric}\right)(Y, Z)-B(U) \operatorname{Ric}(Y, Z)=(n-1)\left\{\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right\}$.

Thus, from the equations (4.17) and (4.19), we get

$$
\begin{align*}
\left(\nabla_{U} R\right)(X, Y, Z)-B(U) R(X, Y, Z) & =\left\{\left(\nabla_{U} \alpha\right)(Y, Z)-B(U) \alpha(Y, Z)\right\} X \\
& -\left\{\left(\nabla_{U} \alpha\right)(X, Z)-B(U) \alpha(X, Z)\right\} Y \tag{4.20}
\end{align*}
$$

which, on using in the equation (4.5), gives

$$
\begin{equation*}
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)=B(U) \bar{R}(X, Y, Z) \tag{4.21}
\end{equation*}
$$

This proves the statement.
Theorem 4.5. Let M^{n} be a Riemannian manifold admitting a special projective semi-symmetric connection whose Ricci-tensor is recurrent with respect to the LeviCivita connection. If the manifold is of constant curvature, then the curvature tensor of the special projective semi-symmetric connection is recurrent with respect to the Levi-Civita connection.

Proof: If the Riemannian manifold M^{n} is of constant curvature, then we have [9]

$$
\begin{equation*}
R(X, Y, Z)=\frac{1}{n-1}\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y\} \tag{4.22}
\end{equation*}
$$

Using the above equation in the equation (3.4), we have
(4.23)
$\bar{R}(X, Y, Z)=\frac{1}{n-1}[\{\operatorname{Ric}(Y, Z)-(n-1) \alpha(Y, Z)\} X-\{\operatorname{Ric}(X, Z)-(n-1) \alpha(X, Z)\} Y]$, which, on using the equation (3.5), gives

$$
\begin{equation*}
\bar{R}(X, Y, Z)=\frac{1}{n-1}\{\bar{R} i c(Y, Z) X-\bar{R} i c(X, Z) Y\} \tag{4.24}
\end{equation*}
$$

Differentiating the above equation covariantly with respect to the Levi-Civita connection, we have

$$
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)=\frac{1}{n-1}\left\{\left(\nabla_{U} \bar{R} i c\right)(Y, Z) X-\left(\nabla_{U} \bar{R} i c\right)(X, Z) Y\right\}
$$

which can be written as

$$
\begin{align*}
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)-B(U) \bar{R}(X, Y, Z) & =\frac{1}{n-1}\left[\left\{\left(\nabla_{U} \bar{R} i c\right)(Y, Z)-B(U) \bar{R} i c(Y, Z)\right\} X\right. \tag{4.25}\\
& \left.-\left\{\left(\nabla_{U} \bar{R} i c\right)(X, Z)-B(U) \bar{R} i c(X, Z)\right\} Y\right]
\end{align*}
$$

Since the Ricci tensor of special projective semi-symmetric connection is recurrent with respect to the Levi-Civita connection ∇, hence from the above equation, we have

$$
\left(\nabla_{U} \bar{R}\right)(X, Y, Z)=B(U) \bar{R}(X, Y, Z)
$$

which proves the statement.

References

[1] De, U.C. and De, B. K., On a type of semi-symmetric connection on a Riemannian manifold, Ganita, 47(2), (1996), 11-24.
[2] Friedmann, A. and Schouten, J. A., Uber die geometrie der halbsymmetrischen Ubertragungen, Math. Zeitschr., 21(1), (1924), 211-223.
[3] Fengyun, Fu. and Zhao. P., A property on geodesic mappings of pseudo-symmetric Riemannian manifolds, Bull. Malays. Math. Sci. Soc.(2), 33(2), (2010), 265-272.
[4] Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc., 34, (1932), 27-50.
[5] Han, Y., Yun, H. and Zhao, P., Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 27(4), (2013), 679-691.
[6] Imai, T., Notes on semi-symetric metric connections, Tensor, N. S., 24, (1972), 293-296.
[7] Liang Y., Some Properties of the Semi-symmetric Metric Connection, J. of Xiamen University (Natural Science), 30(1), (1991), 22-24.
[8] Mishra, R. S., Structures on a differentiable manifolds and their applications, Chandrama Prakashan, Allahabad, 1984.
[9] Mishra, R. S. and Pandey, S. N., Semi-symmetric metric connection in an almost contact manifold, Indian J. Pure Appl. Math., 9(6), (1978), 570-580.
[10] Yano, K., On semi-symmetric metric connection, Revue Roumaine de Math. Pure et Appliquees, 15, (1970), 1579-1581.
[11] Zhao, P. and Shangguan L., On semi-symmetric connection, J. of Henan Normal University (Natural Science), 19(4), (1994), 13-16.
[12] Zhao, P. and Song H., An invariant of the projective semisymmetric connection, Chinese Quarterly J. of Math., 17(4), (2001), 48-52.
[13] Zhao, P., Some properties of projective semi-symmetric connections, Int. Math.Forum, 3(7), (2008), 341-347.
${ }^{1}$ Department of Mathematical Sciences, A. P. S. University, Rewa, (M.P.), India, 486003
${ }^{2}$ Department of Mathematics, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, (M.P.), India, 462036
*Corresponding author

