
International Journal of Analysis and Applications
ISSN 2291-8639
Volume 7, Number 2 (2015), 153-161
http://www.etamaths.com

ON A TYPE OF PROJECTIVE SEMI-SYMMETRIC

CONNECTION

S. K. PAL1,∗, M. K. PANDEY2 AND R. N. SINGH1

Abstract. In the present paper, we have studied some properties of curvature

tensors of special projective semi-symmetric connection. We have shown that

curvature tensor of such a connection satisfies Bianchi’s identities.

1. Introduction

The idea of semi-symmetric connection was introduced by A. Friedmann and J.
A. Schouten [2] in 1924. In 1932, H. A. Hayden [4] studied semi-symmetric metric-
connection. It was K. Yano [10] who started systematic study of semi-symmetric
metric connection and this was further studied by T. Imai [6], R. S. Mishra and
S. N. Pandey [9], U. C. De and B. K. De [1] and several other mathematicians
([7], [11]). In 2001, P. Zhao and H. Song [12] studied a semi-symmetric connection
which is projectively equivalent to Levi-Civita connection and such a connection
is called as projective semi-symmetric connection. They found an invariant under
the transformation of projective semi-symmetric connection and showed that this
invariant could degenerate into the Weyl projective curvature tensor under certain
conditions. After this various papers ([3], [5], [13]) on projective semi-symmetric
metric connection have appeared.

The organization of the paper is as follows. After introduction we give some
preliminary results in section 2. In sections 3, we present a brief account of special
projective semi-symmetric connection. Section 4 is devoted to the study of special
projective semi symmetric connection with recurrent curvature tensor.

2. Preliminaries

Let Mn be an n-dimensional (n > 2) Riemannian manifold equipped with a
Riemannian metric g and ∇ be the Levi-Civita connection associated with metric
g. A linear connection ∇̄ on Mn is called the semi symmetric metric connection
[10 ], if the torsion tensor T̄ of the connection ∇̄, given by

(2.1) T̄ (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies the condition

(2.2) T̄ (X,Y ) = π(Y )X − π(X)Y
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and

(2.3) (∇̄Xg)(Y, Z) = 0,

where π is a 1 - form on Mn associated with vector field ρ, i.e.,

(2.4) π(X) = g(X, ρ).

If the geodesic with respect to ∇̄ are always consistent with those of ∇, then
∇̄ is called a connection projectively equivalent to ∇. If ∇̄ is projective equivalent
connection to ∇ as well as the semi-symmetric, then ∇̄ is called projective semi-
symmetric connection. We also call ∇̄ as projective semi- symmetric transforma-
tion.

In this paper, we study a type of projective semi-symmetric connection ∇̄ intro-
duced by P. Zhao and H. Song [12]. The connection is given by

(2.5) ∇̄XY = ∇XY + ψ(Y )X + ψ(X)Y + φ(Y )X − φ(X)Y,

where 1-forms φ and ψ are given as

(2.6) φ(X) =
1

2
π(X) and ψ(X) =

n− 1

2(n+ 1)
π(X).

It is easy to observe that torsion tensor of projective semi- symmetric transforma-
tion is same as given by the equation (2.2) and also that

(2.7) (∇̄Xg)(Y,Z) =
1

n+ 1
[2π(X)g(Y, Z)− nπ(Y )g(Z,X)− nπ(Z)g(X,Y ),

i.e., the connection ∇̄ is a non metric one.

Let R̄ and R be the curvature tensor of the manifold relative to the projective
semi-symmetric connection ∇̄ and Levi-Civita connection ∇ respectively. It is
known that [12]

(2.8) R̄(X,Y, Z) = R(X,Y, Z) + β(X,Y )Z + α(X,Z)Y − α(Y,Z)X,

where β(X,Y ) and α(X,Y ) are given by the following relations

(2.9) β(X,Y ) = Ψ′(X,Y )−Ψ′(Y,X) + Φ′(Y,X)− Φ′(X,Y ),

(2.10) α(X,Y ) = Ψ′(X,Y ) + Φ′(Y,X)− ψ(X)φ(Y )− φ(X)ψ(Y ),

(2.11) Ψ′(X,Y ) = (∇Xψ)(Y )− ψ(X)ψ(Y )

and

(2.12) Φ′(X,Y ) = (∇Xφ)(Y )− φ(X)φ(Y ).

Contracting X in the equation (2.8), we get a relation between Ricci tensors
R̄ic(Y, Z) and Ric(Y, Z) of manifold with respect to connections ∇̄ and ∇ respec-
tively

(2.13) R̄ic(Y, Z) = Ric(Y, Z) + β(Y,Z)− (n− 1)α(Y, Z).

If r̄ and r are scalar curvatures of manifold with respect to connection ∇̄ and ∇
respectively, then from the equation (2.13), we get

(2.14) r̄ = r + b− (n− 1)a,
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where

b =

n∑
i = 1

β(ei, ei) and a =

n∑
i = 1

α(ei, ei).

The Weyl-projective curvature tensor W , conharmonic curvature tensor P and
concircular curvature tensor I are given by [9]

(2.15) W (X,Y, Z) = R(X,Y, Z) +
1

n− 1
{Ric(X,Z)Y −Ric(Y,Z)X},

P (X,Y, Z) = R(X,Y, Z)− 1

n− 2
[Ric(Y, Z)X −Ric(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ],
(2.16)

where

(2.17) g(QX,Y ) = Ric(X,Y )

and

(2.18) I(X,Y, Z) = R(X,Y, Z)− r

n− 1
[g(Y,Z)X − g(X,Z)Y ].

3. Special Projective Semi-Symmetric Connection

In this section, we consider a projective semi-symmetric connection ∇̄ given by
the equation (2.5) whose associated 1-form π is closed, i.e.,

(3.1) (∇̄Xπ)Y = (∇̄Y π)X.

Such a connection ∇̄ is called special projective semi-symmetric connection [12]. It
is easy to verify that both the 1-forms φ and ψ are closed as the 1-form π is closed
and also that the tensors Φ′ and Ψ′ are symmetric. Consequently, we get

(3.2) β(X,Y ) = 0

and

(3.3) α(X,Y ) = α(Y,X).

In view of the equations (3.1) and (3.2), the expressions (2.8), (2.13) and (2.14)
reduces to

(3.4) R̄(X,Y, Z) = R(X,Y, Z) + α(X,Z)Y − α(Y,Z)X,

(3.5) R̄ic(Y,Z) = Ric(Y,Z)− (n− 1)α(Y, Z)

and

(3.6) r̄ = r − (n− 1)a.

It is easy to observe that the Ricci tensor R̄ic(Y,Z) is symmetric.

Now, we prove the following theorems:

Theorem 3.1. Curvature tensor of special projective semi-symmetric connection
satisfies Bianchi’s first identity.
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Proof : Writing two more equations by cyclic permutations of X, Y and Z from
equation (3.4), we get

R̄(Y,Z,X) = R(Y,Z,X) + α(Y,X)Z − α(Z,X)Y,

and

R̄(Z,X, Y ) = R(Z,X, Y ) + α(Z, Y )X − α(X,Y )Z.

Adding these equations to the equation (3.4), we get result.

Theorem 3.2. Curvature tensor of special projective semi-symmetric connection
satisfies Bianchi’s second identity if α is parallel tensor with respect to Levi-Civita
connection ∇.

Proof : Suppose α is a parallel tensor with respect to Levi-Civita connection ∇,
i.e., ∇α = 0. Now differentiating the equation (3.4) covariantly with respect to the
connection ∇, we have

(3.7) (∇XR̄)(Y, Z, U) = (∇XR)(Y,Z, U).

Writing two more equations by cyclic permutations of X, Y and Z in above equa-
tion, we get

(3.8) (∇Y R̄)(Z,X,U) = (∇YR)(Z,X,U),

and

(3.9) (∇ZR̄)(X,Y, U) = (∇ZR)(X,Y, U).

Adding the equations (3.7), (3.8) and (3.9), we get

(∇XR̄)(Y, Z, U) + (∇Y R̄)(Z,X,U) + (∇ZR̄)(X,Y, U) = 0.

This shows that the curvature tensor of special projective semi-symmetric connec-
tion satisfies Bianchi’s second identity.

Theorem 3.3. The Weyl-projective curvature tensor of Riemannian manifold with
respect to the special projective semi-symmetric connection ∇̄ satisfies

W (X,Y, Z) +W (Y, Z,X) +W (Z,X, Y ) = 0.

Proof : The Weyl-projective curvature tensor of Riemannian Manifold with respect
to special projective semi-symmetric connection ∇̄ is given by

(3.10) W (X,Y, Z) = R̄(X,Y, Z)− 1

n− 1
[R̄ic(Y,Z)X − R̄ic(X,Z)Y ].

Writing two more equations by cyclic permutations of X, Y and Z in above
equation, we get

(3.11) W (Y, Z,X) = R̄(Y, Z,X)− 1

n− 1
[R̄ic(Z,X)Y − R̄ic(Y,X)Z],

(3.12) W (Z,X, Y ) = R̄(Z,X, Y )− 1

n− 1
[R̄ic(X,Y )Z − R̄ic(Z, Y )X].

Adding the equations (3.10), (3.11) and (3.12), we get

W (X,Y, Z) +W (Y, Z,X) +W (Z,X, Y ) = 0.
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4. Special Projective Semi-Symmetric Connection with
Recurrent Curvature Tensor

In this section, we consider a special projective semi-symmetric connection ∇̄
whose curvature tensor R̄ is recurrent with respect to the Levi-Civita connection
∇, i.e.,

(4.1) (∇U R̄)(X,Y, Z) = B(U)R̄(X,Y, Z),

where B is a non-zero 1-form.
Differentiating the equation (3.4) covariantly with respect to the Levi-Civita con-
nection ∇, we get

(4.2) (∇U R̄)(X,Y, Z) = (∇UR)(X,Y, Z) + (∇Uα)(X,Z)Y − (∇Uα)(Y,Z)X.

Contracting X in the above equation, we have

(4.3) (∇U R̄ic)(Y,Z) = (∇URic)(Y,Z)− (n− 1)(∇Uα)(Y, Z).

Putting Y = Z = ei in the above equation and taking summation over i, 1 ≤ i ≤ n,
we get

(4.4) (∇U r̄) = (∇Ur)− (n− 1)(∇Ua).

Now the equations (3.4) and (4.2) together give

(∇U R̄)(X,Y, Z)−B(U)R̄(X,Y, Z) =(∇UR)(X,Y, Z)−B(U)R(X,Y, Z)

+[(∇Uα)(X,Z)−B(U)α(X,Z)]Y

−[(∇Uα)(Y,Z)−B(U)α(Y,Z)]X,

(4.5)

which, in view of the equation (4.1), reduces to

(∇UR)(X,Y, Z)−B(U)R(X,Y, Z) =[(∇Uα)(Y,Z)−B(U)α(Y, Z)]X

−[(∇Uα)(X,Z)−B(U)α(X,Z)]Y.
(4.6)

Contracting X in above, we get

(4.7) (∇URic)(Y, Z)−B(U)Ric(Y,Z) = (n− 1){(∇Uα)(Y,Z)−B(U)α(Y, Z)}.
Further, we obtain

(4.8) (∇Ur)−B(U)r = (n− 1){(∇Ua)−B(U)a}.
Also, from the equation (2.17), we have

(4.9) g((∇UQ)X,Y ) = (∇URic)(X,Y ),

which can be written as

(4.10) g((∇UQ)X −B(U)QX,Y ) = (∇URic)(X,Y )−B(U)Ric(X,Y ).

Now we prove following theorems:

Theorem 4.1. If the curvature tensor of special projective semi-symmetric con-
nection on a Riemannian manifold Mn is recurrent with respect to the Levi-Civita
connection then manifold Mn is projectively recurrent.

Proof : Differentiating the projective curvature tensor W given by (2.15) covari-
antly with respect to Levi-Civita connection ∇, we have
(4.11)

(∇UW )(X,Y, Z) = (∇UR)(X,Y, Z)+
1

n− 1
{(∇URic)(X,Z)Y −(∇URic)(Y,Z)X}.
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The above equation gives

(∇UW )(X,Y, Z)−B(U)W (X,Y, Z) =(∇UR)(X,Y, Z)−B(U)R(X,Y, Z)

+
1

n− 1
[{(∇URic)(X,Z)−B(U)Ric(X,Z)}Y

−{(∇URic)(Y,Z)−B(U)Ric(Y,Z)}X].

(4.12)

Using equation (4.6) and (4.7) in above, we get

(∇UW )(X,Y, Z) = B(U)W (X,Y, Z),

which proves the statement.

Theorem 4.2. : A Riemannian manifold Mn admitting a special projective semi-
symmetric connection whose curvature tensor and tensor α are recurrent with re-
spect to the Levi-Civita connection, is conharmonically recurrent.

Proof: Differentiating covariantly the equation (2.16) with respect to the Levi-
Civita connection, we get

(∇UP )(X,Y, Z) =(∇UR)(X,Y, Z)− 1

n− 2
[(∇URic)(Y, Z)X − (∇URic)(X,Z)Y.

+g(Y,Z)(∇UQ)X − g(X,Z)(∇UQ)Y ],

(4.13)

From above, we have

(∇UP )(X,Y, Z)−B(U)P (X,Y, Z) =(∇UR)(X,Y, Z)−B(U)R(X,Y, Z)

− 1

n− 2
[{(∇URic)(Y, Z)−B(U)Ric(Y,Z)}X

−{(∇URic)(X,Z)−B(U)Ric(X,Z)}Y
+g(Y,Z){(∇UQ)X −B(U)QX}
−g(X,Z){(∇UQ)Y −B(U)QY }].

(4.14)

If the tensor α and the curvature tensor of the special projective semi-symmetric
connection ∇̄ are recurrent with respect to the Levi-Civita connection ∇, then from
the equations (4.6), (4.7) and (4.10), we get

(∇UP )(X,Y, Z) = B(U)P (X,Y, Z),

which shows that manifold is conharmonically recurrent.

Theorem 4.3. A Riemannian manifold Mn admitting a special projective semi-
symmetric connection whose curvature tensor and tensor α are recurrent with re-
spect to Levi-Civita connection, is concircular recurrent.

Proof: Differentiating the concircular curvature tensor I of Mn given by the equa-
tion (2.18) covariantly with respect to the Levi- Civita connection ∇, we have

(4.15) (∇UI)(X,Y, Z) = (∇UR)(X,Y, Z)− ∇Ur

(n− 1)
{g(Y, Z)X − g(X,Z)Y }.
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From this, we have

(∇UI)(X,Y, Z)−B(U)I(X,Y, Z) =(∇UR)(X,Y, Z)−B(U)R(X,Y, Z)

−∇Ur −B(U)r

(n− 1)
{g(Y, Z)X − g(X,Z)Y }.

(4.16)

If the tensor α and the curvature tensor of the special projective semi-symmetric
connection ∇̄ are recurrent with respect to the Levi-Civita connection ∇, then from
the equations (4.6), (4.7) and (4.8), we get

(∇UI)(X,Y, Z) = B(U)I(X,Y, Z).

Theorem 4.4. Let Mn be a Riemannian manifold admitting a special projec-
tive semi-symmetric connection whose Ricci-tensor is recurrent with respect to the
Levi-Civita connection. If the manifold is projectively recurrent with respect to
Levi-Civita connection, then the curvature tensor of the special projective semi-
symmetric connection is recurrent.

Proof: Let the manifold Mn be projectively recurrent with respect to Levi Civita
connection ∇. Then from the equation (4.12), we have

(∇UR)(X,Y, Z)−B(U)R(X,Y, Z) =
1

n− 1
[{(∇URic)(Y,Z)−B(U)Ric(Y,Z)X}

−{(∇URic)(X,Z)−B(U)Ric(X,Z)Y }].

(4.17)

Now, from equations (3.5) and (4.3), we get

(∇U R̄ic)(Y,Z)−B(U)R̄ic(Y,Z) =(∇URic)(Y, Z)−B(U)Ric(Y,Z)

−(n− 1){(∇Uα)(Y,Z)−B(U)α(Y,Z)}.
(4.18)

Since the Ricci tensor of the special projective semi-symmetric connection ∇̄ is
recurrent with respect to the Levi-Civita connection ∇, hence the above equation
gives

(4.19) (∇URic)(Y,Z)−B(U)Ric(Y,Z) = (n− 1){(∇Uα)(Y,Z)−B(U)α(Y, Z)}.

Thus, from the equations (4.17) and (4.19), we get

(∇UR)(X,Y, Z)−B(U)R(X,Y, Z) ={(∇Uα)(Y,Z)−B(U)α(Y, Z)}X
−{(∇Uα)(X,Z)−B(U)α(X,Z)}Y,

(4.20)

which, on using in the equation (4.5), gives

(4.21) (∇U R̄)(X,Y, Z) = B(U)R̄(X,Y, Z).

This proves the statement.

Theorem 4.5. Let Mn be a Riemannian manifold admitting a special projective
semi-symmetric connection whose Ricci-tensor is recurrent with respect to the Levi-
Civita connection. If the manifold is of constant curvature, then the curvature
tensor of the special projective semi-symmetric connection is recurrent with respect
to the Levi-Civita connection.



160 PAL, PANDEY AND SINGH

Proof: If the Riemannian manifold Mn is of constant curvature, then we have [9]

(4.22) R(X,Y, Z) =
1

n− 1
{Ric(Y,Z)X −Ric(X,Z)Y }.

Using the above equation in the equation (3.4), we have
(4.23)

R̄(X,Y, Z) =
1

n− 1
[{Ric(Y, Z)−(n−1)α(Y, Z)}X−{Ric(X,Z)−(n−1)α(X,Z)}Y ],

which, on using the equation (3.5), gives

(4.24) R̄(X,Y, Z) =
1

n− 1
{R̄ic(Y,Z)X − R̄ic(X,Z)Y }.

Differentiating the above equation covariantly with respect to the Levi-Civita con-
nection, we have

(∇U R̄)(X,Y, Z) =
1

n− 1
{(∇U R̄ic)(Y, Z)X − (∇U R̄ic)(X,Z)Y },

which can be written as

(∇U R̄)(X,Y, Z)−B(U)R̄(X,Y, Z) =
1

n− 1
[{(∇U R̄ic)(Y,Z)−B(U)R̄ic(Y,Z)}X

−{(∇U R̄ic)(X,Z)−B(U)R̄ic(X,Z)}Y ].

(4.25)

Since the Ricci tensor of special projective semi-symmetric connection is recurrent
with respect to the Levi-Civita connection ∇, hence from the above equation, we
have

(∇U R̄)(X,Y, Z) = B(U)R̄(X,Y, Z),

which proves the statement.
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