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EXISTENCE OF QUASILINEAR NEUTRAL IMPULSIVE

INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACE

B. RADHAKRISHNAN

Abstract. In this paper, we devoted to study the existence of mild solutions

for quasilinear impulsive integrodifferential equation in Banach spaces. The
results are established by using Hausdorff’s measure of noncompactness and

the fixed point theorems. Application is provided to illustrate the theory.

1. Introduction

In various fields of engineering and physics, many problems that are related to lin-
ear viscoelasticity, nonlinear elasticity have mathematical models and are described
by the problems of differential or integral equations or integrodifferential equations.
Our work centers on the problems described by the integrodifferential models. It is
important to note that when we describe the systems which are functions of space
and time by partial differential equations, in some situations, such a formulation
may not accurately model the physical system because, while describing the system
as a function at a given time, it may fail to take into account the effect of past his-
tory. Neutral differential equations arise in many areas of applied mathematics and
for this reason these equations have received much attention during the last few
decades [1, 2, 3]. A good guide to the literature for neutral functional differential
equations is the book by Hale and Verduyn Lunel [4] and the references therein.
The existence of solution to evolution equations with nonlocal conditions in Ba-
nach space was studied first by Byszewski [5, 6]. Byszewski and Lakshmikanthan
[7] proved an existence and uniqueness of solutions of a nonlocal Cauchy problem
in Banach spaces. Ntouyas and Tsamatos [8] studied the existence for semilinear
evolution equations with nonlocal conditions. The problem of existence of solutions
of evolution equations in Banach space has been studied by several authors [9, 10].

However, one may easily visualize that abrupt changes such as shock, harvesting
and disasters may occur in nature. These phenomena are short time perturbations
whose duration is negligible in comparison with the duration of the whole evolution
process. Consequently, it is natural to assume, in modeling these problems, that
these perturbations act instantaneously, that is in the form of impulses. The theory
of impulsive differential equation [11, 12, 13] is much richer than the corresponding
theory of differential equations without impulsive effects. The impulsive condition

∆u(ti) = u(t+i )− u(t−i ) = Ii(u(t−i )), i = 1, 2, . . . ,m,
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is a combination of traditional initial value problems and short-term perturbations
whose duration is negligible in comparison with the duration of the process. Liu [14]
discussed the iterative methods for the solution of impulsive functional differential
systems.

Measures of noncompactness are a very useful tool in many branches of mathe-
matics. They are used in the fixed point theory, linear operators theory, theory of
differential and integral equations and others [15]. There are two measures which
are the most important ones. The Kuratowski measure of noncompactness σ(X)
of a bounded set X in a metric space is defined as infimum of numbers r > 0 such
that X can be covered with a finite number of sets of diameter smaller than r. The
Hausdorff measure of noncompactness χ(X) defined as infimum of numbers r > 0
such that X can be covered with a finite number of balls of radii smaller than r.
There exist many formulae on χ(X) in various spaces [15, 18].

Let E be a Banach space and F be a subspace of E. Let χE(X), χF(X), σE(X),
σF(X) denote Hausdorff and Kuratowski measures in spaces E,F, respectively.
Then, for any bounded X ⊂ F we have χE(X) ≤ χF(X) ≤ σF(X) = σE(X) ≤
2χE(X). The notion of a measure of weak compactness was introduced by De Blasi
[16] and was subsequently used in numerous branches of functional analysis and the
theory of differential and integral equations. Several authors have studied the mea-
sures of noncompactness in Banach spaces [17, 18, 19]. Motivated by [9, 15, 20, 21],
in this paper, we study the existence results for quasilinear equation represented
by first-order neutral integrodifferential equations using the semigroup theory and
the measure of noncompactness.

2. Preliminaries

We consider the quasilinear integrodifferential equations with impulsive and non-
local condition of the form

d

dt

[
x(t) + e

(
t, x(t),

∫ t

0

k(t, s, x(s))ds
)]

+A(t, x(t))x(t)

= f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds, t ∈ [0, b], t 6= tk,(1)

x(0) + h(x) = x0,(2)

∆x(tk) = Ik(x(tk)), k = 1, 2, 3, . . . , n,(3)

where A : [0, b] × X → X is a continuous function in Banach space X, x0 ∈ X,
f : [0, b] × X → X, g : Λ × X → X, h : PC([0, b], X) → X, e : [0, b] × X ×
X → X, k : Λ × X → X and ∆x(tk) = x(t+k ) − x(t−k ), for all k = 1, 2, . . . ,m;
0 = t0 < t1 < t2 < . . . < tm < tm+1 = b; constitutes an impulsive condition. Here
Λ = {(t, s) : 0 ≤ s ≤ t ≤ b}.

Let X be a Banach space with norm || · ||. Let PC([0, b], X) consist of functions
u from [0, b] into X, such that x(t) is continuous at t 6= ti and left continuous at
t = ti and the right limit x(t+i ) exists, for i = 1, 2, 3, . . . , n. Evidently PC([0, b], X)
is a Banach space with the norm

‖x‖PC = sup
t∈[0,b]

‖x(t)‖,
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and denoted L([0, b], X) by the space of X-valued Bochner integrable functions on
[0, b] with the form

‖x‖L =

∫ b

0

‖x(t)‖dt.

The Hausdorff’s measure of noncompactness χY is defined by

χ(B) = inf{r > 0, B can be covered by finite number of balls with radii r},

for bounded set B in a Banach space Y .

Lemma 2.1 [15]. Let Y be a real Banach space and B, E ⊆ Y be bounded, with
the following properties:

(i) B is precompact if and only if χX(B) = 0.
(ii) χY (B) = χY (B̄) = χY (conB), where B̄ and conB mean the closure and

convex hull of B respectively.
(iii) χY (B) ≤ χY (E), where B ⊆ E.
(iv) χY (B + E) ≤ χY (B) + χY (E), where B + E = {x+ y : x ∈ B, y ∈ E}.
(v) χY (B ∪ E) ≤ max{χY (B), χY (E)}.
(vi) χY (λB) ≤ |λ|χY (B), for any λ ∈ R.
(vii) If the map F : D(F) ⊆ Y → Z is Lipschitz continuous with constant r,

then χZ(FB) ≤ rχY (B), for any bounded subset B ⊆ D(F), where Z be a
Banach space.

(viii) χY (B) = inf{dY (B, E);E ⊆ Y is precompact}
= inf{dY (B,E);E ⊆ Y is finite valued}, where dY (B, E) means the non-
symmetric (or symmetric) Hausdorff distance between B and E in Y .

(ix) If {Wn}+∞n=1 is decreasing sequence of bounded closed nonempty subsets of

Y and lim
n→∞

χY (Wn) = 0, then

+∞⋂
n=1

Wn is nonempty and compact in Y.

The map F : W ⊆ Y → Y is said to be a χY -contraction if there exists a positive
constant r < 1 such that χY (F(B)) ≤ rχY (B) for any bounded closed subset
B ⊆W, where Y is a Banach space.

Lemma 2.2 (Darbo-Sadovskii [15]). If W ⊆ Y is bounded closed and convex, the
continuous map F : W→W is a χY -contraction, the map F has atleast one fixed
point in W.

We denote by χ the Hausdorff’s measure of noncompactness of X and also denote
χc by the Hausdorff’s measure of noncompactness of PC([0, b], X).

Before we prove the existence results, we need the following Lemmas.

Lemma 2.3 [22] If W ⊆ PC([0, b], X) is bounded, then χ(W(t)) ≤ χc(W), for all
t ∈ [0, b], where W(t) = {u(t);u ∈W} ⊆ X. Furthermore if W is equicontinuous on
[0, b], then χ(W(t)) is continuous on [0, b] and χc(W) = sup{χ(W(t)), t ∈ [0, b]}.

Lemma 2.4 [22, 23]. If {un}∞n=1 ⊂ L1([0, b], X) is uniformly integrable, then the
function χ({un(t)}∞n=1) is measurable and

χ
({∫ t

0

un(s)ds

}∞
n=1

)
≤ 2

∫ t

0

χ({un(s)}∞n=1)ds.(4)
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Lemma 2.5 If W ⊆ PC([0, b], X) is bounded and equicontinuous, then χ(W(t)) is
continuous and

χ
(∫ t

0

W(s)ds
)
≤
∫ t

0

χ(W(s))ds, for all t ∈ [0, b],(5)

where

∫ t

0

W(s)ds =
{∫ t

0

u(s)ds : u ∈W
}
.

The C0 semigroup Uu(t, s) is said to be equicontinuous if (t, s) → {Uu(t, s)u(s) :
u ∈ B} is equicontinuous for t > 0, for all bounded set B in X. The following
lemma is obvious.

Lemma 2.6 If the evolution family {Uu(t, s)}0≤s≤t≤b is equicontinuous and η ∈

L([0, b],R+), then the set
{∫ t

0

Uu(t, s)u(s)ds, ||u(s)|| ≤ η(s), for a.e s ∈ [0, b]
}
, is

equicontinuous for t ∈ [0, b].
We know that, for any fixed u ∈ PC([0, b], X) there exist a unique continuous

function Uu : [0, b]× [0, b]→ B(X) defined on [0, b]× [0, b] such that

Uu(t, s) = I +

∫ t

s

Au(w)Uu(w, s)dw,(6)

where B(X) denote the Banach space of bounded linear operators from X to X
with the norm ||F|| = sup {||Fu|| : ||u|| = 1}, and I stands for the identity operator
on X, Au(t) = A(t, u(t)), we have

Uu(t, t) = I, Uu(t, s)Uu(s, r) = Uu(t, r), (t, s, r) ∈ [0, b]× [0, b]× [0, b],

∂Uu(t, s)

∂t
= Au(t)Uu(t, s), for almost all t, s ∈ [0, b].

3. The Existence of Mild Solution

Definition 3.1 A function x ∈ PC([0, b], X) is said to be a mild solution of (1)−(3)
if it satisfies the integral equation

x(t) = Ux(t, 0)x0 − Ux(t, 0)h(x) + Ux(t, 0)e(0, x(0), 0)− e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
+

∫ t

0

A(s, x(s))Ux(t, s)e

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

+

∫ t

0

Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds+

∑
0<tk<t

Ux(t, tk)Ik(x(tk)), 0 ≤ t ≤ b.

In this paper, we denote M0 = sup{‖Ux(t, s)‖ : (t, s) ∈ [0, b]× [0, b]}, for all x ∈ X.
Without loss of generality, we let x0 = 0.

Assume the following conditions:

(H1) The evolution family {Ux(t, s)}0≤s≤t≤b generated by A(t, x(t)) is equicon-
tinuous and ||Ux(t, s)|| ≤M0, for almost t, s ∈ [0, b].

(H2) (a) The function h : PC([0, b]×X)→ X is continuous and compact.
(b) There exists N0 > 0 such that ||h(x)|| ≤ N0, for all u ∈ PC([0, b];X).
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(H3) (i) The nonlinear function f : [0, b]×X → X satisfies the Carathèodory-
type conditions; that is, f(·, x) is measurable for all x ∈ X and f(t, ·)
is continuous, for a.e t ∈ [a, b].

(ii) There exists a function α ∈ L([0, b],R+) such that for every x ∈ X, we
have

‖f(t, x)‖ ≤ α(t)(1 + ‖x‖), a.e t ∈ [0, b].

(iii) There exists a function mf ∈ L([0, b],R+) such that, for every bounded
K ⊂ X, we have

χ(f(t,K)) ≤ mf (t)χ(K), a.e t ∈ [0, b].

(H4) (i) The nonlinear function g : [0, b]×[0, b]×X → X satisfies the Carathèodory-
type conditions; i.e., g(·, ·, x) is measurable, for all x ∈ X and g(t, s, ·)
is continuous for a.e t ∈ [a, b].

(ii) There exist two functions β1 ∈ L([0, b],R+) and β2 ∈ L([0, b],R+) such
that for every x ∈ X, we have

‖g(t, s, x(s))‖ ≤ β1(t)β2(s)(1 + ‖x(s)‖), a.e t ∈ [0, b].

(iii) There exist functions mg, ng ∈ L([0, b],R+) such that, for every bound-
ed K ⊂ X, we have

χ(g(t, s,K)) ≤ mg(t)ng(s)χ(K), a.e t ∈ [0, b].

Assume that the finite bound of
∫ t

0
mg(s)ds is G0.

(H5) (i) The function e : [0, b] ×X ×X → X satisfies the Carathèodory-type
conditions; that is, e(·, x, x1) is measurable, for all x, x1 ∈ X and
e(t, ·, ·) is continuous, for a.e t ∈ [0, b].

(ii) There exists a function γ ∈ L([0, b],R+) such that for every x, x1 ∈ X,
we have

‖e(t, x, x1)‖ ≤ γ(t)(1 + ‖x‖) + ‖x1‖, a.e t ∈ [0, b].

(iii) The nonlinear function q : [0, b]×[0, b]×X → X satisfies the Caratheodory-
type conditions; i.e. k(·, ·, x) is measurable, for all x ∈ X and k(t, s, ·)
is continuous, for a.e t ∈ [0, b].

(iv) There exist two functions ω1 ∈ L([0, b],R+) and ω2 ∈ L([0, b],R+)
such that for every x ∈ X, we have

‖k(t, s, x(s))‖ ≤ ω1(t)ω2(s)(1 + ‖x(s)‖), a.e t ∈ [0, b].

(v) There exists a function η ∈ L([0, b],R+) such that for every x, x1 ∈ X,
we have

‖A(t, x(t))e(t, x, x1)‖ ≤ η(t)‖e(t, x, x1)‖, a.e t ∈ [0, b].

(vi) There exists a function me ∈ L([0, b],R+) such that, for every bounded
K, K1 ⊂ X, we have

χ(e(t,K,K1)) ≤ me(t)(χ(K) + ϕ(K1)), a.e t ∈ [0, b].

Assume that the finite bound of
∫ t

0
me(s)ds is G1.

(vii) There exist functions mk, nk ∈ L([0, b],R+) such that for every bound-
ed K ⊂ X, we have

χ(k(t, s,K)) ≤ mk(t)nk(s)χ(K), a.e t ∈ [0, b].

Assume that the finite bound of
∫ t

0
mk(s)ds is G2.
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(H6) For every t ∈ [0, b] and there exist positive constants N1 and N2, the scalar
equation

m(t) = M0N0 + γ1(1 +m(s)) + M0γ0 + M0C1ω(t)(1 +m(s)) + γ(t)C1

∫ t

0

η(t)ω1(s)ds

+M0

∫ t

0

[
α(s)(1 +m(s))ds+ C0

∫ t

0

β1(s)(1 +m(s))ds+

n∑
k=1

dk

]
,

where C0 =

∫ s

0

β(t)dt.

(H7) Ik : X → X is continuous. There exist constants dk > 0 k = 1, 2, 3, . . . , n
such that

‖Ik(x(tk))‖ ≤
n∑

k=1

dk, where, k = 1, 2, 3, . . . , n.

For any bounded subset K ⊂ X, and there is a constant lk > 0 such that

χ(Ik(K)) ≤
n∑

k=1

liχ(K), k = 1, 2 . . . , n.

Theorem: 3.1. If assumptions (H1) − (H7) holds, then the quasilinear neutral
impulsive problem (1)− (3) has at least one mild solution.

Proof. Let m(t) be a solution of the scalar equation

m(t) = M0N0 + γ1(1 +m(s)) + M0γ0 + M0C1ω(t)(1 +m(s)) + γ(t)C1

∫ t

0

η(t)ω1(s)ds

+M0

∫ t

0

[
α(s)(1 +m(s))ds+ C0

∫ t

0

β1(s)(1 +m(s))ds+

n∑
k=1

dk

]
.(7)

Let us assume that the finite bound of

∫ t

0

β2(s)ds is C0, for t ∈ [0, b]. Consider the

map F : PC([0, b], X)→ PC([0, b], X) defined by

(Fx)(t) = Ux(t, 0)h(x) + Ux(t, 0)e(0, x(0), 0)− e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
+

∫ t

0

A(s, x(s))Ux(t, s)e

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

+

∫ t

0

Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

+
∑

0<tk<t

Ux(t, tk)Ik(x(tk)), 0 ≤ t ≤ b, for all x ∈ PC([0, b], X).(8)

Let us take W0 = {x ∈ PC([0, b], X), ||x(t)|| ≤ m(t), for all t ∈ [0, b]}. Then
W0 ⊆ PC([0, b];X) is bounded and convex. We define W1 = con K(W0), where
con means the closure of the convex hull in PC([0, b], X). As Ux(t, s) is equicon-
tinuous, h is compact and W0 ⊆ PC([0, b], X) is bounded, due to Lemma 2.6 and
using the assumptions, W1 ⊆ PC([0, b], X) is bounded closed convex nonempty and
equicontinuous on [0, b].
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For any x ∈ F(W0), we know

‖x(t)‖ ≤ ‖Ux(t, 0)h(x)‖+ ‖Ux(t, 0)e(0, x(0), 0)‖+ ‖e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
‖

+

∫ t

0

‖A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
‖ds

+

∫ t

0

‖Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(s))dτ
]
‖ds+

∑
0<tk<t

‖Ux(t, tk)Ii(x(tk))‖

≤ M0N0 + M0γ0 + γ1(1 + ‖x‖) +

∫ t

0

k(t, s, x(s))ds

+M0η(t)

∫ t

0

‖e
(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
‖ds

+M0

[ ∫ t

0

||f(s, x(s))||ds+

∫ t

0

∫ s

0

||g(s, τ, x(τ))||dτds
]

+ M0

n∑
k=1

‖Ik(x(tk))‖

≤ M0N0 + M0γ0 + γ1(1 + ‖x‖) + ω1(t)

∫ t

0

ω2(s)(1 + ‖x‖)ds

+M0

[ ∫ t

0

[
η(s)γ(s)ds+

∫ s

0

ω1(s)ω2(τ)dsdτ
]
(1 + ‖x‖)

]

+M0

∫ t

0

α(s)(1 + ‖x(s)‖)ds+ M0

∫ t

0

∫ s

0

β1(s)β2(τ)(1 + ‖x(τ)‖)dτds+M0

n∑
k=1

dk

≤ M0N0 + γ1(1 +m(s)) + M0γ0 + M0C1ω(t)(1 +m(s)) + η(t)γ(t)C1

∫ t

0

ω1(s)ds

+M0

∫ t

0

[
α(s)(1 +m(s))ds+ C0

∫ t

0

β1(s)(1 +m(s))ds+

n∑
k=1

dk

]
= m(t).

It follows that W1 ⊂W0. We define Wn+1 = con F(Wn), for n = 1, 2, 3, · · · . From
above we know that {Wn}∞n=1 is a decreasing sequence of bounded, closed, convex,
equicontinuous on [0, b] and nonempty subsets in PC([0, b], X).

Now for n ≥ 1 and t ∈ [0, b], Wn(t) and F(Wn(t)) are bounded subsets of X,
hence, for any ε > 0, there is a sequence {xk}∞k=1 ⊆ Wn, such that (see, e.g. [24],
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pp.125).

χ(Wn+1(t)) = χ(FWn(t))

≤ 2χ
(
e(t, {xk(s)}∞k=1,

∫ t

0

k(t, s, {xk(t)}∞k=1)ds)
)

+2M0η(t)

∫ t

0

χ
(
e(s, {xk(s)}∞k=1,

∫ s

0

k(s, τ, {xk(τ)}∞k=1)dτ)
)
ds

+2M0

∫ t

0

χ
(
f(s, {xk(s)}∞k=1)

)
ds+ 4M0

∫ t

0

∫ s

0

χ
(
g(s, τ, {uk(τ)}∞k=1)

)
dτds

+2M0

n∑
i=1

χ
(
Ik({uk(tk)}∞k=1)

)
+ ε

≤ 2me(t)χ{xk(t)}∞k=1 + 2mk(t)

∫ t

0

mk(s)χ{xk(s)}∞k=1ds

+2M0η(t)
[ ∫ t

0

me(s)χ{xk(s)}∞k=1ds+ 2

∫ t

0

∫ s

0

mk(s)mk(τ)χ{xk(τ)}∞k=1dτds
]

+2M0

∫ t

0

mf (s)χ
(
{uk(s)}∞k=1

)
ds+4M0

∫ t

0

∫ s

0

mg(s)ng(τ)χ
(
{uk(τ)}∞k=1

)
dτds

+2M0

n∑
i=1

liχ
(
{uk(tk)}∞k=1

)
+ ε

≤ 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
χ(Wn(t)) + 2M0

[ ∫ t

0

{2G2mk(s)

+mf (s)}χ(Wn(s))ds+ 2G0

∫ t

0

ng(s)χ(Wn(s))ds
]

+ 2M0

n∑
k=1

lkχ(Wn(tk))+ε.

Since ε > 0 is arbitrary, it follows that from the above inequality that

χ(Wn+1(t)) ≤ 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
χ(Wn(t))

+2M0

[ ∫ t

0

[2G2mk(s) +mf (s) + 2G0ng(s)]χ(Wn(s))
]
ds

+2M0

n∑
k=1

lkχ(Wn(tk), for all t ∈ [0, b].(9)

Because Wn is decreasing for n, we have

λ(t) = lim
n→∞

χ(Wn(t)),

for all t ∈ [0, b]. From (9), we have

λ(t) ≤ 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
λ(t)

+2M0

[ ∫ t

0

[2G2mk(s) +mf (s) + 2G0ng(s)]λ(s)ds+

n∑
k=1

lkλ(tk)
]
,

for t ∈ [0, b], which implies that λ(t) = 0, for all ti ∈ [0, b]. By Lemma 2.3, we know

that lim
n→∞

χ(Wn(t)) = 0. Using Lemma 2.1 we know that W =

∞⋂
n=1

Wn is convex



30 RADHAKRISHNAN

compact and nonempty in PC([0, b], X) and F(W) ⊂ W. By the Schauder fixed
point theorem, there exist at least one mild solution u of the initial value problem
(1)− (3), where x ∈W is a fixed point of the continuous map F . �

Remark 3.2. If the functions f, g and Ii are compact or Lipschitz continuous (see
e.g [5, 7]), then (H3)− (H7) is automatically satisfied.

In some of the early related results in references and above results, it is supposed
that the map h is uniformly bounded. In fact, if h is compact, then it must be
bounded on bounded set. Here we give an existence result under growth condition of
f, g and Ii, when h is not uniformly bounded. Precisely, we replace the assumptions
(H3)− (H6) by

(H8) There exists a function p ∈ L([0, b],R+) and a increasing function φ : R+ →
R+ such that

‖f(t, x)‖ ≤ Lf (t)φ(‖x‖),

for a.e t ∈ [0, b], for all x ∈ PC([0, b], X).

(H9) There exist two functions Lg ∈ L([0, b],R+)and L̂g ∈ L([0, b],R+) and a
increasing function Ψ : R+ → R+ such that

‖g(t, s, x)‖ ≤ Lg(t)L̂g(s)Ψ(‖x‖),

for a.e t ∈ [0, b] and for all Lg ∈ PC([0, b], X). Assume that the finite bound

of
∫ t

0
Lg(s)ds is G3.

(H10) There exists a function Le ∈ L([0, b],R+) and a increasing function Γ :
R+ → R+ such that

‖e(t, x, x1)‖ ≤ Le(t)Γ(‖x‖) + ‖x1‖

for a.e t ∈ [0, b] and for all Lg ∈ PC([0, b], X). Assume that the finite bound

of
∫ t

0
Le(s)ds is G5.

(H11) There exist two functions Lk ∈ L([0, b],R+)and L̂k ∈ L([0, b],R+) and a
increasing function Θ : R+ → R+ such that

‖k(t, s, x)‖ ≤ Lk(t)L̂k(s)Θ(‖x‖),

for a.e t ∈ [0, b] and for all Lk ∈ PC([0, b], X). Assume that the finite bound

of
∫ t

0
Lk(s)ds is G4.

Theorem: 3.2. Suppose that the assumptions (H1)− (H2) and (H8)− (H11) are
satisfied, then the equation (1)− (3) has at least one mild solution if

lim
r→∞

sup
1

r

{
M0

[
ϕ(r) + Le(t)

]
+ Le(t)(Γ‖x‖)

+G3Lk(t)Θ(r) + η(t)M0

[
G4Γ(r) + G3Θ(r)

∫ t

0

L̂k(s)ds
]

+M0

[
φ(r)

∫ t

0

Lf (s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]}
< 1,(10)

where ϕ(r) = sup{||h(x)||, ||x|| ≤ r}.



QUASILINEAR NEUTRAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS 31

Proof. The inequality (10) implies that there exist a constant r > 0 such that

M0

[
ϕ(r) + Le(t)

]
+ Le(t)(Γ‖x‖) + G3Lk(t)Θ(r) + η(t)M0

[
G4Γ(r)

+G3Θ(r)

∫ t

0

L̂k(s)ds
]

+ M0

[
φ(r)

∫ t

0

p(s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]
< r,

As in the proof of Theorem 3.1, let W0 = {x ∈ PC([0, b], X), ||x(t)|| ≤ r} and
W1 = con FW0. Then for any x ∈W1, we have

‖x(t)‖ ≤ ‖Ux(t, 0)h(x)‖+ ‖Ux(t, 0)e(0, x(0), 0)‖+ ‖e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
‖

+

∫ t

0

‖A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
‖ds

+

∫ t

0

‖Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(s))dτ
]
‖ds+

∑
0<tk<t

‖Ux(t, tk)Ii(x(tk))‖

≤ M0

[
ϕ(r) + Le(t)

]
+ Le(t)(Γ‖x‖) +

∫ t

0

Lk(t)L̂k(s)Θ(‖x‖)ds

+η(t)M0

∫ t

0

[
p(s)Γ(‖x‖) +

∫ s

0

Lk(s)L̂k(τ)Θ(‖x‖)dτ
]
ds

+M0

[ ∫ t

0

Lf (s)φ(‖x(s)‖)ds+

∫ t

0

∫ s

0

Lg(s)L̂g(τ)Ψ‖(x(τ))||dτds+

n∑
k=1

dk

]
≤ M0

[
ϕ(r) + Le(t)

]
+ Le(t)(Γ‖x‖) + G3Lk(t)Θ(‖x‖)

+η(t)M0

[
G4Γ(‖x‖) + G3

∫ t

0

L̂k(s)Θ(‖x‖)ds
]

+M0

[ ∫ t

0

p(s)φ(‖x(s)‖)ds+ G2

∫ t

0

L̂g(s)Ψ(‖x(s)‖)ds+

n∑
k=1

dk

]

‖x(t)‖ ≤ M0

[
ϕ(r) + Le(t)

]
+ Le(t)(Γ‖x‖) +G3Lk(t)Θ(r)

+η(t)M0

[
G4Γ(r) + G3Θ(r)

∫ t

0

L̂k(s)ds
]

+M0

[
φ(r)

∫ t

0

p(s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]
< r,

for t ∈ [0, b]. It means that W1 ⊂ W0. So we can complete the proof similarly to
Theorem 3.1.

4. When h is Lipschitz

In this section, we discuss the equation (1) − (3) when h is Lipschitz and f, g
and Ik are not Lipschitz. Assume that
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(H12) The function h is a Lipschitz continuous inX, there exists a constant L0 > 0
such that

‖h(x)− h(y)‖ ≤ L0‖x− y‖, x, y ∈ PC([0, b], X).

Theorem: 4.1. Suppose that the assumptions (H1)− (H12) are satisfied, then the
equation (1)− (3) has at least one mild solution provided that

M0[L0 + h4(t)]χc(B) + 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
+2M0

[ ∫ t

0

{2G2mk(s) +mf (s) + 2G0ng(s)}ds+

n∑
k=1

lk

]
< 1.(11)

Proof. Consider the map F : PC([0, b], X) → PC([0, b], X) is defined by F =
F1 + F2, where

(F1x)(t) = Ux(t, 0)h(u) + Ux(t, 0)e(0, x(0), 0),

(F2u)(t) =

∫ t

0

A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

−e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
+

∫ t

0

Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

+
∑

0<tk<t

Ux(t, tk)Ik(x(tk)),

for x ∈ PC([0, b], X). As defined in the proof of Theorem 3.1. We define W0 =
{x ∈ PC([0, b], X) : ||x(t)|| ≤ m(t), for all t ∈ [0, b]} and let W = conFW0. Then
from the proof of Theorem 3.1 we know that W is a bounded closed convex and
equicontinuous subset of PC([0, b], X) and FW ⊂ W. We shall prove that F is
χc-contraction on W. Then Darbo-Sadovskii’s fixed point theorem can be used to
get a fixed point of F in W, which is a mild solution of (1) − (2). First, for every
bounded subset B ⊂W, from (H12) and Lemma 2.1 we have

χc(F1B) = χc(UB(t, 0)h(B)) + UB(t, 0)e(0,B(0), 0)

≤ M0χc

[
(h(B)) + e(0,B(0), 0)

]
≤ M0[L0 + h4(t)]χc(B)(12)

Next, for every bounded subset B ⊂ W, for t ∈ [0, b] and every ε > 0, there is a
sequence {xk}∞k=1 ⊂ B such that

χ(F2(B(t)) ≤ 2χ({F2xi(t)}∞n=1 + ε.
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Note that B and F2B are equicontinuous, we can get from Lemma 2.1, Lemma 2.4,
Lemma 2.5 and using the assumptions we get

χ(F2B(t)) ≤ 2χ
(
e(t, {xk(s)}∞k=1,

∫ t

0

k(t, s, {xk(t)}∞k=1)ds)
)

2M0η(t)

∫ t

0

χ
(
e(s, {xk(s)}∞k=1,

∫ s

0

k(s, τ, {xk(τ)}∞k=1)dτ)
)
ds

+2M0

∫ t

0

χ
(
f(s, {xk(s)}∞k=1)

)
ds+ 4M0

∫ t

0

∫ s

0

χ
(
g(s, τ, {uk(τ)}∞k=1)

)
dτds

+2M0

n∑
i=1

χ
(
Ik({uk(tk)}∞k=1)

)
+ ε

≤ 2me(t)χ{xk(t)}∞k=1 + 2mk(t)

∫ t

0

mk(s)χ{xk(s)}∞k=1ds

+2M0η(t)
[ ∫ t

0

me(s)χ{xk(s)}∞k=1ds+ 2

∫ t

0

∫ s

0

mk(s)mk(τ)χ{xk(τ)}∞k=1dτds
]

+2M0

∫ t

0

mf (s)χ
(
{uk(s)}∞k=1

)
ds+4M0

∫ t

0

∫ s

0

mg(s)ng(τ)χ
(
{uk(τ)}∞k=1

)
dτds

+2M0

n∑
i=1

liχ
(
{uk(tk)}∞k=1

)
+ ε

≤ 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
χ(B)

+2M0

[ ∫ t

0

{2G2mk(s) +mf (s)}χ(B))ds+ 2G0

∫ t

0

ng(s)χ(B)ds
]

+2M0

n∑
k=1

lkχ(B)+ε.

Since ε > 0 is arbitrary, it follows that from the above inequality that

χc(F2B(t)) ≤ 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
χc(B)

+2M0

[ ∫ t

0

{2G2mk(s) +mf (s) + 2G0ng(s)}ds+

n∑
k=1

lk

]
χc(B)(13)

for any bounded B ⊂W.
Now, for any subset B ⊂W, due to Lemma 2.1, (12) and (13) we have

χc(FB) ≤ χc(F1B) + χc(F2B)

≤ M0[L0 + h4(t)]χc(B) + 2
[
me(t) +mk(t)G2 + M0η(t)G1

]
χc(B)

+2M0

[ ∫ t

0

{2G2mk(s) +mf (s) + 2G0ng(s)}ds+

n∑
k=1

lk

]
χc(B)(14)

By (14) we know that F is a χc-contraction on W. By Lemma 2.2, there is a fixed
point x of F in W, which is a solution of (1)− (3). This completes the proof.

Theorem: 4.2. Suppose that the assumptions (H1)− (H12) are satisfied, then the
equation (1)− (3) has at least one mild solution if (15) and the following condition
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are satisfied.

M0L0 + lim
r→∞

sup
1

r

{
M0Le(t) + Le(t)Γ(r) + G3Lk(t)Θ(r)

+η(t)M0

[
G4Γ(r) + G3Θ(r)

∫ t

0

L̂k(s)ds
]

+M0

[
φ(r)

∫ t

0

Lf (s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]}
< 1.(15)

Proof. From the equation (15) and fact that L0 < 1, there exists a constant
r > 0 such that

M0

(
rL0 + ‖h(0)‖+ Le(t)

)
+ Le(t)(Γ‖x‖) + G3Lk(t)Θ(r)

+η(t)M0

[
G4Γ(r) + G3Θ(r)

∫ t

0

L̂k(s)ds
]

+M0

[
φ(r)

∫ t

0

Lf (s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]
} < r.

We define W0 = {x ∈ PC([0, b], X), ‖x(t)‖ ≤ r, for all t ∈ [0, b]}. Then for every
x ∈W0, we have

‖Fx(t)‖ ≤ ‖Ux(t, 0)h(u)‖+ ‖Ux(t, 0)e(0, x(0), 0)‖+ ‖e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
‖

+

∫ t

0

‖A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
‖ds

+

∫ t

0

‖Ux(t, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(s))dτ
]
‖ds+

∑
0<tk<t

‖Ux(t, tk)Ii(x(tk))‖

≤ M0

(
rL0 + ‖h(0)‖+ Le(t)

)
+ Le(t)(Γ‖x‖) + G3Lk(t)Θ(r)

+η(t)M0

[
G4Γ(r) + G3Θ(r)

∫ t

0

L̂k(s)ds
]

+M0

[
φ(r)

∫ t

0

Lf (s)ds+ G2Ψ(r)

∫ t

0

L̂g(s)ds+

n∑
k=1

dk

]
} < r.

for t ∈ [0, b]. This means that FW0 ⊂W0. Define W = conFW0. The above proof
also implies that FW ⊂W. So we can prove the theorem similar with Theorem 4.1
and hence we omit it.

5. Application

The notion of controllability is of great importance in mathematical control
theory. Many fundamental problems of control theory such as pole-assignment,
stabilizability and optimal control may be solved under the assumption that the
system is controllable. It means that it is possible to steer any initial state of the
system to any final state in some finite time using an admissible control. During the
last few decades, several authors [25, 27] have discussed the existence, uniqueness,
and asymptotic behavior of the solution of these systems. Apart from these, the
study of controllability and observability properties of a system in control theory
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is certainly, at present, one of the most active interdisciplinary areas of research.
Control theory arises in most modern applications. On the other hand, control
theory has remained a discipline where many mathematical ideas and methods
have fused to produce a new body of important mathematics. As an application of
Theorem 3.1 we shall consider the system (1)− (3) with a control parameter such
as

d

dt
[x(t) + e(t, x(t),

∫ t

0

k(t, s, x(s))ds)] +A(t, x(t))x(t)(16)

= f(t, x(t))+Cv(t)+

∫ t

0

g(t, s, x(s))ds, t ∈ [0, b], t 6= ti,

x(0) + h(x) = x0,(17)

∆x(tk) = Ik(x(tk)), k = 1, 2, 3, . . . , n,(18)

where A, f, g, h and Ik are as before and C is a bounded linear operator from a
Banach space V into X and the control function v ∈ L2(J, V ). The mild solution
of (16)− (18) is given by

x(t) = Ux(t, 0)x0 − Ux(t, 0)h(x) + Ux(t, 0)e(0, x(0), 0)− e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
+

∫ t

0

A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

+

∫ t

0

Ux(t, s)
[
f(s, x(s)) + Cv(s) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

+
∑

0<tk<t

Ux(t, tk)Ik(x(tk)), 0 ≤ t ≤ b.

Definition 5.1 ([26, 27]) System (16) − (18) is said to be controllable on the in-
terval J, if for every x0, x1 ∈ X, there exists a control v ∈ L2(J, V ) such that the
mild solution u(·) of (16)− (18) satisfies x(0) = x0 and x(b) = x1.

To study the controllability result we need the following additional condition:

(H13) The linear operator W : L2(J, V )→ X, defined by

Wv =

∫ b

0

Ux(b, s)Cv(s)ds

induces an inverse operator W−1 defined an L2(J, V )/kerW and there exists a
positive constant M1 > 0 such that ‖CW−1‖ ≤ M1.

Theorem: 5.1. If the assumptions (H1) − (H13) are satisfied, then the system
(16)− (18) is controllable on J.
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Proof. Using the assumption (H13), for an arbitrary function u(·), define the
control

v(t) = W−1
[
u1 − Ux(b, 0)x0 + Ux(b, 0)h(x)− Ux(b, 0)e(0, x(0), 0)

+e

(
b, x(b),

∫ b

0

k(b, s, x(s))ds

)

−
∫ b

0

A(b, x(b))Ux(b, s)e

(
b, x(b),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

−
∫ b

0

Ux(b, s)
[
f(s, x(s))−

∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<t

Ux(t, tk)Ik(x(tk))
]
(t).

We shall show that when using this control, the operator H : Z → Z defined by

(Hv)(t) = Ux(t, 0)x0 − Ux(t, 0)h(x) + Ux(t, 0)e(0, x(0), 0)− e
(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
+

∫ t

0

A(t, x(t))Ux(t, s)e

(
t, x(t),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

+

∫ t

0

Ux(t, s)
[
f(s, x(s)) + CW−1

[
u1 − Ux(b, 0)x0 + Ux(b, 0)h(x)

−Ux(b, 0)e(0, x(0), 0) + e

(
b, x(b),

∫ b

0

k(b, s, x(s))ds

)

+

∫ b

0

A(b, x(b))Ux(b, s)e

(
b, x(b),

∫ s

0

k(s, τ, x(τ))dτ

)
ds

−
∫ b

0

Ux(b, s)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<t

Ux(t, tk)Ik(x(tk))
]
(s) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

+
∑

0<tk<t

Ux(t, tk)Ik(x(tk))

has a fixed point. This fixed point is, then a solution of (16) − (18). Clearly,
(Hv)(b) = x(b) = x1, which means that the control v steers the system (16)− (18)
from the initial state x0 to the final state x1 at time b, provided we can obtain a
fixed point of the nonlinear operator H. The remaining part of the proof is similar
to Theorem 3.1 and hence, it is omitted.
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