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FIXED POINT AND TRIPLED FIXED POINT THEOREMS

UNDER PATA-TYPE CONDITIONS IN ORDERED METRIC

SPACES

ZORAN KADELBURG1,∗ AND STOJAN RADENOVIĆ2

Abstract. In this paper, we first prove a version of the fixed point theorem

obtained in [V. Pata, A fixed point theorem in metric spaces, J. Fixed Point
Theory Appl. 10 (2011) 299–305], adjusted for monotone mappings in ordered

metric spaces, as well as some generalizations. Then we apply them to obtain

results of this type for tripled fixed points in two cases—for monotone and
mixed-monotone mappings with three variables. An example is given to show

the difference between some of these results.

1. Introduction

A very interesting extension of the Banach Contraction Principle was recently
obtained by V. Pata in [1]. Some researchers followed this approach and already
several other fixed point results in the spirit of Pata have appeared, see, e.g., [3, 4,
2, 5].

On the other hand, fixed points of monotone mappings in ordered metric spaces
have been a matter of investigation ever since the first results given by Ran and
Reurings in [6]. This includes so-called coupled and tripled fixed points. Generally
speaking, fixed point results in ordered spaces use weaker contractive conditions
(restricted to comparable pairs of points), but at the expense of an additional
assumption that the given mapping is monotone.

Some coupled fixed point results with Pata-type conditions have been recently
obtained in [3, 4].

In this paper, we first prove “ordered versions” of the basic Pata’s result, as
well as some generalizations. Then we apply them to obtain results of this type
for tripled fixed points in two cases—for monotone and mixed-monotone mappings
with three variables. An example is given to show the difference between some of
these results.

2. Preliminaries

We begin with some notation and preliminaries. Throughout the paper, (X , d,�)
always denotes a partially ordered metric space, i.e., a triple where (X ,�) is a
partially ordered set and (X , d) is a metric space.

For x, y ∈ X , x � y will denote that x and y are comparable, i.e., either x � y
or y � x holds.
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Recall that the space (X , d,�) is said to be regular if it has the following prop-
erties:

(i) if for a non-decreasing sequence {xn}, xn → x as n → ∞, then xn � x for
all n;

(ii) if for a non-increasing sequence {xn}, xn → x as n → ∞, then xn � x for
all n.

Throughout the paper, ψ : [0, 1] → [0,∞) will be a fixed increasing function,
continuous at zero, satisfying ψ(0) = 0.

3. Pata-type fixed point results in ordered metric spaces

In this section, x0 will be an arbitrary stable point in the given ordered metric
space (X , d,�), and ‖x‖ will be defined by

‖x‖ = d(x, x0).

It will be clear that the results do not depend on the particular choice of point x0.

Theorem 3.1. Let the space (X , d,�) be complete and let Λ ≥ 0, α ≥ 1 and
β ∈ [0, α] be fixed constants. Let f : X → X be a non-decreasing map such that
there exists x0 satisfying x0 � fx0 and suppose that the inequality

(3.1) d(fx, fy) ≤ (1− ε)d(x, y) + Λεαψ(ε)[1 + ‖x‖+ ‖y‖]β

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X with x � y. If f is continuous or
(X , d,�) is regular, then f has a fixed point z ∈ X . Moreover,

(i) the set of fixed points of f is a singleton if and only if it is totally ordered;
(ii) the set of fixed points of f is a singleton if for every two points u, v ∈ X

there exists w ∈ X , comparable with u, v and fw.

Proof. As remarked before the formulation of theorem, we can take that the point
for which x0 � fx0 is the same as the one for which ‖x‖ is defined to be equal to
d(x, x0). Also, without loss of generality, we can assume that x0 � fx0. Then the
sequence {xn} defined by xn+1 = fxn, n = 0, 1, . . . , is non-decreasing. Suppose
further that xn 6= fxn for each n (otherwise there is nothing to prove).

Since any two terms of {xn} are comparable, the inequality (3.1) can be used in
the same way as in the proof of [1, Theorem 1] to obtain that:

(1) The sequence {d(xn, xn+1)} is strictly decreasing and tends to some d∗ ≥ 0
as n→∞;

(2) The sequence {cn} is bounded, where cn = ‖xn‖;
(3) d∗ = 0.
(4) {xn} is a Cauchy sequence, thus converging to some z ∈ X.
If the mapping f is continuous, then fxn → fz = z since fxn = xn+1.
If the space (X, d,�) is regular, then for the non-decreasing sequence {xn} we

have that xn � z for each n. Now, for ε = 0, we get from (3.1) that

d(fxn, fz) ≤ d(xn, z)→ 0

wherefrom fxn → fz, i.e., fz = z.
Uniqueness of the fixed point.
(i) If the set of fixed points Fix(f) is a singleton, then it is totally ordered. Con-

versely, assume that Fix(f) is totally ordered and that u, v are two (comparable)
fixed points of f . Applying (3.1), we get

d(u, v) = d(fu, fv) ≤ (1− ε)d(u, v) +Kεαψ(ε),
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where [1 + ‖u‖+ ‖v‖] β = K > 0, i.e.,

εd(u, v) ≤ Kεαψ(ε),

for each ε ∈ [0, 1], and it follows that u = v.
(ii) Suppose now that for every two points u, v ∈ X there exists w ∈ X , compa-

rable with u, v and fw. Assume that u and v are distinct fixed points of f . If they
are comparable, we get a contradiction as in (i). If not, choose w as stated. Then,
u = fnu � fnw and v = fnv � fnw; we will prove that d(u, fnw) ↓ u∗ = 0 and
d(v, fnw) ↓ v∗ = 0.

Indeed, for ε = 0, we get from (3.1) that

d(u, fnw) = d(ffn−1u, ffn−1w) ≤ d(fn−1u, fn−1w) = d(u, fn−1w)

and, similarly,

d(v, fnw) = d(ffn−1v, ffn−1w) ≤ d(fn−1v, fn−1w) = d(v, fn−1w),

i.e., d(u, fnw) ↓ u∗ and d(v, fnw) ↓ v∗. It remains to prove that u∗ = v∗ = 0.
We will prove first that the sequence cn = ‖fnw‖ is bounded. We have

(3.2) cn = d(fnw, x0) ≤ d(fnw, fn+1w) + d(fn+1w, fw) + d(fw, x0).

Since, by assumption, w � fw, we have that the sequence d(fnw, fn+1w) decreases.
Indeed, taking again ε = 0 in (3.1), we get that

d(fnw, fn+1w) = d(ffn−1w, ffnw) ≤ d(fn−1w, fnw) ≤ · · · ≤ d(w, fw).

Then it follows from (3.2) that

cn ≤ d(w, fw) + d(ffnw, fw) + d(fw,w) + d(w, x0)

= 2d(w, fw) + d(w, x0) + (1− ε)d(w, fnw)

+ Λεαψ(ε)[1 + ‖fnw‖+ ‖w‖] β

≤ 2d(w, fw) + d(w, x0) + (1− ε)d(w, x0)

+ (1− ε)d(x0, f
nw) + Λεαψ(ε)[1 + cn + d(w, x0)] β .

Hence, we get that

εcn ≤ aεαψ(ε)cαn + b,

for some constants a, b > 0. Now, in the same way as in [1, Lemma 2.1], it follows
that {cn} is a bounded sequence.

We are now able to prove that, e.g., u∗ = 0. Indeed,

d(u, fnw) = d(ffn−1u, ffn−1w) ≤ (1− ε)d(fn−1u, fn−1w)

+ Λεαψ(ε)[1 + ‖u‖+ ‖fn−1w‖] β ,
i.e.,

d(u, fnw) ≤ (1− ε)d(u, fn−1w) +Kεαψ(ε),

for some K > 0. Passing to the limit as n→∞, we get that

u∗ ≤ (1− ε)u∗ +Kεαψ(ε),

i.e., u∗ = 0. In the same way, v∗ = 0 is proved.
It follows that

d(u, v) ≤ d(u, fnw) + d(fnw, v)→ 0 + 0 = 0,

i.e., u = v. �
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Remark 3.1. Theorem 3.1 is strictly stronger than [6, Theorem 2.1]. On the one
side, the hypotheses of [6, Theorem 2.1] imply those of Theorem 3.1, which follows
in the same way as it was proved in [1, §3] that the classical Banach’s contractive
condition implies Pata’s condition (3.1).

On the other side, the example of function

f : [1,+∞)→ [1,+∞), f(x) = −2 + x− 2
√
x+ 4 4

√
x

(see [1, Example, p. 303]) shows that condition (3.1) can be satisfied when Banach’s
condition is not. It is also an example of the situation when condition (ii) for the
uniqueness of fixed point (in the previous theorem) is fulfilled (since the given space
is totally ordered).

It is well known that there are a lot of generalizations of Banach Contraction
Principle, obtained by modifying the basic contractive conditions (see, e.g., [7]).
Some of them already have their Pata-type versions (see [4, 2]). We shall present
here a result of Pata-type for so-called generalized contractions, in the “ordered”
version.

Theorem 3.2. Let the space (X , d,�) be complete and let Λ ≥ 0, α ≥ 1 and
β ∈ [0, α] be fixed constants. Let f : X → X be a non-decreasing map such that
there exists x0 satisfying x0 � fx0 and suppose that the inequality

d(fx, fy) ≤ (1− ε) max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
(3.3)

+ Λεαψ(ε)[1 + ‖x‖+ ‖y‖+ ‖fx‖+ ‖fy‖]β

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X with x � y. If f is continuous or
(X , d,�) is regular, then f has a fixed point z ∈ X . Moreover,

(i) the set of fixed points of f is a singleton if and only if it is totally ordered;
(ii) the set of fixed points of f is a singleton if for every two points u, v ∈ X

there exists w ∈ X , comparable with u, v and fw.

Proof. 1. As usual, starting with the given point x0, construct the sequence {xn} by
xn+1 = fxn, n = 0, 1, . . . Similarly as in the proof of Theorem 3.1, this sequence
is monotone, hence condition (3.3) can be used for its elements. Suppose that
xn 6= xn+1 for each n.

In order to prove that the sequence {d(xn, xn+1)} is decreasing, suppose, to the
contrary, that

d(xk, xk+1) = max{d(xk−1, xk), d(xk, xk+1)}
for some k ∈ N. Then, applying (3.3) with x = xk−1, y = xk, we get that

d(xk, xk+1) = d(fxk−1, fxk)

≤ (1− ε) max

{
d(xk−1, xk), d(xk, xk+1),

1

2
d(xk−1, xk+1)

}
+ Λεαψ(ε)[1 + ‖xk−1‖+ 2‖xk‖+ ‖xk+1‖]β

= (1− ε)d(xk, xk+1) +Kεαψ(ε),

for someK > 0. It follows that d(xk, xk+1) = 0, a contradiction! Hence, {d(xn, xn+1)}
is a (strictly) decreasing sequence, thus tending to some d∗ ≥ 0.

2. Denote cn = ‖xn‖. We will prove that the sequence {cn} is bounded.
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We have that

cn = d(xn, x0) ≤ d(xn, xn+1) + d(fxn, fx0) + c1

≤ 2c1 + (1− ε) max

{
d(xn, x0), d(xn, xn+1), d(x0, x1),

1

2
(d(xn, x1) + d(xn+1, x0))

}
+ Λεαψ(ε)[1 + ‖xn‖+ ‖xn+1‖+ ‖x1‖] β

≤ 2c1 + (1− ε) max {cn, c1, cn + c1}+ Λεαψ(ε)[1 + cn + c1 + cn + c1] β

≤ 2c1 + (1− ε)(cn + c1) + Λεαψ(ε)[1 + 2c1 + 2cn]α

(it was used that d(xn, xn+1) ≤ c1, d(xn, x1)+d(xn+1, x0) ≤ d(xn, x0)+d(x1, x0)+
d(xn+1, xn)+d(xn, x0) ≤ 2(cn+c1) and ‖xn+1‖ ≤ d(xn+1, xn)+d(xn, x0) ≤ c1+cn).
Finally, we get that

εcn ≤ aεαψ(ε)cαn + b

for some constants a, b > 0. In the same way as in the proof of [1, Lemma 3], it
follows that the sequence {cn} is bounded.

3. Now we use the boundedness of {cn} to prove that d∗ = 0.
Indeed, we have that

d(xn+1, xn) = d(fxn, fxn−1)

≤ (1− ε)d(xn,xn−1) + Λεαψ(ε)[1 + ‖xn‖+ 2‖xn−1‖+ ‖xn+1‖] β

≤ (1− ε)d(xn,xn−1) +Kεαψ(ε),

for some K > 0. Passing to the limit as n→∞, it follows that d∗ = 0.
4. In order to prove that {xn} is a Cauchy sequence, suppose the contrary.

Then, using the standard procedure (see, e.g., [8, Lemma 2.1]), we get that there
exist δ > 0 and two increasing sequences of integers {m(k)} and {n(k)}, such that
nk > mk > k and the sequences d(xn(k)+1, xm(k)) and d(xn(k), xm(k)−1) tend to δ
as n→∞. Putting x = xn(k), y = xm(k)−1 in (3.3), and using the boundedness of
{cn}, we get that

d(xn(k)+1, xm(k)) ≤ (1− ε)d(xn(k), xm(k)−1) +Kεαψ(ε).

Passing to the limit as k →∞, we get that δ = 0, a contradiction!
Hence, {xn} is a Cauchy sequence, and it converges to some z ∈ X.
5. The proof that fz = z in either of the given cases is the same as for Theorem

3.1.
6. The uniqueness of the the fixed point under one of the assumptions (i) or (ii)

can be proved similarly as in Theorem 3.1.
�

Remark 3.2. Similarly as in the classical situation, treated in [7], it can be proved
that Theorem 3.2 contains as special cases several other Pata-type results in their
order versions. In particular, this includes Kannan, Chatterjea, Reich, Zamfirescu
and Hardy-Rogers results. Since the exact formulations and proofs are obvious, we
omit the details.

4. Tripled fixed point results for monotone and mixed-monotone
mappings

We will use the following terminology.

Definition 4.1. Let F : X 3 → X be a mapping.
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(1) F is called non-decreasing if it is non-decreasing in all three variables.
(2) F is called mixed-monotone if it is non-decreasing in the first and third

variables, and non-increasing in the second variable.
(3) A point Y = (x, y, z) ∈ X 3 is called a tripled fixed point of the first kind (or

Borcut kind [9]) if

(4.1) F (x, y, z) = z, F (y, x, z) = y, F (z, y, x) = z.

(4) A point Y = (x, y, z) ∈ X 3 is called a tripled fixed point of the second kind
(or Berinde-Borcut kind [10]) if

(4.2) F (x, y, z) = z, F (y, x, y) = y, F (z, y, x) = z.

Remark 4.1. In what follows, tripled fixed point results of the first kind will be
proved for monotone mappings, while those of the second type will be connected
with mixed-monotone mappings. It will be clear in the sequel that part (3) of the
previous definition can be modified in several ways. In fact, any three combinations
of elements x, y, z can be taken instead of (x, y, z), (y, x, z) and (z, y, x) in (4.1),
with the only condition that the first entry of each triple matches the right-hand
side. In particular, the “cyclic” case, i.e., the condition

F (x, y, z) = x, F (y, z, x) = and F (z, x, y) = z

can be considered. It will also be clear which modifications should be made to
the results that follows, so we will not state them explicitly. Moreover, the same
treatment can be applied in the case of arbitrary number of variables.

It is important to notice that this considerably differs from the case of “mixed-
monotone situation”. Namely, as was shown in [11], in this case only some particular
combinations are possible (in particular, the cyclic case cannot be treated in this
way).

The following lemma is easy to prove.

Lemma 4.1. (i) If relations v1 and v2 are defined on X 3 by

Y v1 V ⇔ x � u ∧ y � v ∧ z � w, Y = (x, y, z), V = (u, v, w) ∈ X 3

and

Y v2 V ⇔ x � u ∧ y � v ∧ z � w, Y = (x, y, z), V = (u, v, w) ∈ X 3,

and D : X 3 ×X 3 → R+ is given by

D(Y, V ) = d(x, u) + d(y, v) + d(z, w), Y = (x, y, z), V = (u, v, w) ∈ X 3,

then (X 3, D,vi), i = 1, 2 are ordered metric space. The space (X 3, D) is complete
if and only if (X , d) is complete. Moreover, the spaces (X 3, D,vi) are regular if
and only if (X , d,�) is such.

(ii) If F : X 3 → X is non-decreasing (w.r.t. �), then the mapping T 1
F : X 3 → X 3

given by

T 1
FY = (F (x, y, z), F (y, x, z), F (z, y, x)), Y = (x, y, z) ∈ X 3

is non-decreasing w.r.t. v1.
(iii) If F : X 3 → X is mixed-monotone, then the mapping T 2

F : X 3 → X 3 given
by

T 2
FY = (F (x, y, z), F (y, x, y), F (z, y, x)), Y = (x, y, z) ∈ X 3

is non-decreasing w.r.t. v2.
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(iv) The mappings T iF , i = 1, 2 are continuous if and only if F is continuous.
(v) The mapping F has a tripled fixed point of the first (resp. of the second) kind

if and only if the mapping T 1
F (resp. T 2

F ) has a fixed point in X 3.

If what follows, Y0 = (x0, y0, z0) will be a fixed element in X 3 and for Y =
(x, y, z) ∈ X 3, we will denote

‖Y ‖ = ‖x, y, z‖ = D(Y, Y0) = d(x, x0) + d(y, y0) + d(z, z0).

It will be clear that the obtained results do not depend on the particular choice of
the point Y0.

We will prove first some results for monotone mappings and tripled fixed points
of the first (Borcut) kind.

Theorem 4.1. Let F : X 3 → X be a non-decreasing mapping, and suppose that
there exist x0, y0, z0 ∈ X such that x0 � F (x0, y0, z0), y0 � F (y0, x0, z0), z0 �
F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α], the
inequality

d(F (x, y, z), F (u, v, w)) + d(F (y, x, z), F (v, u, w)) + d(F (z, y, x), F (w, v, u))(4.3)

≤ (1− ε)(d(x, u) + d(y, v) + d(z, w)) + Λεαψ(ε)[1 + ‖x, y, z‖+ ‖u, v, w‖] β

holds for all ε ∈ [0, 1] and all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w) or
(x � u, y � v and z � w). Finally, suppose that F is continuous or that the space
is regular. Then F has a tripled fixed point Y ∗ = (x∗, y∗, z∗) ∈ X 3 of the first kind.

Proof. Consider the space (X 3, D,v1) and the mapping T 1
F : X 3 → X 3, as defined

in Lemma 4.1.(i) and (ii). The mapping T 1
F is non-decreasing w.r.t. v1. Let Y =

(x, y, z) and V = (u, v, w) be comparable w.r.t. v1, i.e., let (x � u, y � v and
z � w) or (x � u, y � v and z � w) hold. Then, the condition (4.3) holds, which
can be written as

D(T 1
FY, T

1
FV ) ≤ (1− ε)D(Y, V ) + Λεαψ(ε)[1 +D(Y, Y0) +D(V, Y0)]β .

In other words, T 1
F satisfies condition of the type (3.1) in the space (X 3, D,v1).

Applying Theorem 3.1, we obtain that T 1
F has a fixed point Y ∗ = (x∗, y∗, z∗) ∈ X 3,

which is, by Lemma 4.1.(v), a tripled fixed point of the first kind of mapping F . �

Corollary 4.1. Let F : X 3 → X be a non-decreasing mapping, and suppose that
there exist x0, y0, z0 ∈ X such that x0 � F (x0, y0, z0), y0 � F (y0, x0, z0), z0 �
F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α], the
inequality

d(F (x, y, z), F (u, v, w))(4.4)

≤ 1− ε
3

(d(x, u) + d(y, v) + d(z, w)) + Λεαψ(ε)[1 + ‖x, y, z‖+ ‖u, v, w‖] β

holds for all ε ∈ [0, 1] and all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w) or
(x � u, y � v and z � w). Finally, suppose that F is continuous or that the space
is regular. Then F has a tripled fixed point Y ∗ = (x∗, y∗, z∗) ∈ X 3 of the first kind.

Proof. Suppose that Y = (x, y, z), V = (u, v, w) ∈ X 3 are comparable w.r.t. v1.
Applying (4.4) to the triples (x, y, z) and (u, v, w), we get that

d(F (x, y, z), F (u, v, w))(4.5)

≤ 1− ε
3

D(Y, V ) + Λεαψ(ε)[1 +D(Y, Y0) +D(V, Y0)] β .
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Applying the same inequality to the triples (y, x, z) and (v, u, w), we obtain

d(F (y, x, z), F (v, u, w))(4.6)

≤ 1− ε
3

D(Y, V ) + Λεαψ(ε)[1 + d(y, x0) + d(x, y0) + d(z, z0)

+ d(v, x0) + d(u, y0) + d(w, z0)] β

≤ 1− ε
3

D(Y, V ) + Λεαψ(ε)[1 +D(Y, Y0) +D(V, Y0) + 4d(x0, y0)]β .

Finally, applying (4.4) to the triples (z, y, x) and (w, v, u), we get

d(F (z, y, x), F (w, v, u))(4.7)

≤ 1− ε
3

D(Y, V ) + Λεαψ(ε)[1 + d(z, x0) + d(y, y0) + d(x, z0)

+ d(w, x0) + d(v, y0) + d(u, z0)] β

≤ 1− ε
3

D(Y, V ) + Λεαψ(ε)[1 +D(Y, Y0) +D(V, Y0) + 4d(x0, z0)]β .

Adding up the inequalities (4.5), (4.6) and (4.7), and writing temporarily A =
D(Y, Y0) +D(V, Y0), we get the following estimate:

D(T 1
FY, T

1
FV ) ≤ (1− ε)D(Y, V )

(4.8)

+ Λεαψ(ε){[1 +A]β + [1 +A+ 4d(x0, y0)]β + [1 +A+ 4d(x0, z0)]β}

Now,

[1 +A]β + [1 +A+ 4d(x0, y0)]β + [1 +A+ 4d(x0, z0)]β

= [1 +A]β [1 + (1 +
4d(x0, y0)

1 +A
)β + (1 +

4d(x0, z0)

1 +A
)β ]

≤ [1 +A]β [1 + (1 + 4d(x0, y0))β + (1 + 4d(x0, z0))β ]

= C[1 +A]β ,

where C is a constant (not depending on Y , V and ε). Hence, putting Λ1 = ΛC,
(4.8) can be written as

D(T 1
FY, T

1
FV ) ≤ (1− ε)D(Y, V ) + Λ1ε

αψ(ε)[1 +D(Y, Y0) +D(V, Y0)]β ,

which means that all the conditions of Theorem 4.1 are fulfilled. �

The following example shows that Theorem 4.1 is strictly stronger than Corollary
4.1.
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Example 4.1. Let X = R be equipped with the usual metric and order. The
mapping F : X 3 → X defined by F (x, y, z) = 1

8 (5x + y + z) is obviously non-
decreasing. It is easy to obtain that

d(F (x, y, z), F (u, v, w)) + d(F (y, x, z), F (v, u, w)) + d(F (z, x, y), F (v, u, w))

= |5x+ y + z

8
− 5u+ v + w

8
|+ |5y + x+ z

8
− 5v + u+ w

8
|

+ |5z + y + x

8
− 5w + v + u

8
|

≤ 5

8
|x− u|+ 1

8
|y − v|+ 1

8
|z − w|+ 5

8
|y − v|+ 1

8
|x− u|+ 1

8
|z − w|

+
5

8
|z − w|+ 1

8
|y − v|+ 1

8
|x− u|

=
7

8
[d(x, u) + d(y, v) + d(z, w)],

i.e., D(T 1
FY, T

1
FV ) ≤ λD(Y, V ), where λ = 7

8 . Similarly as in [1, §3], it can be proved
that also (4.3) holds for appropriate Λ, α and β, all ε ∈ [0, 1] and all comparable
Y, V ∈ X 3.

On the other hand, suppose that the condition (4.4) of Corollary 4.1 holds, i.e.,

|5x+ y + z

8
− 5u+ v + w

8
|

≤ 1− ε
2

[|x− u|+ |y − v|+ |z − w|] + Λεαψ(ε)[1 + ‖x, y, z‖+ ‖u, v, w‖]β

is satisfied for each ε ∈ [0, 1] and all comparable Y, V ∈ X 3. Taking ε = 0, y = v
and z = w, we obtain that

5

8
|x− u| ≤ 1

2
|x− u|

which obviously cannot hold (except when x = u).

Consider now mixed-monotone mappings and tripled fixed points of the second
(Berinde-Borcut)) kind.

Theorem 4.2. Let F : X 3 → X be a mixed-monotone mapping, and suppose
that there exist x0, y0, z0 ∈ X such that x0 � F (x0, y0, z0), y0 � F (y0, x0, z0),
z0 � F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α], the
inequality

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

≤ (1− ε)(d(x, u) + d(y, v) + d(z, w)) + Λεαψ(ε)[1 + ‖x, y, z‖+ ‖u, v, w‖] β

holds for all ε ∈ [0, 1] and all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w) or
(x � u, y � v and z � w). Finally, suppose that F is continuous or that the space
is regular. Then F has a tripled fixed point Y ∗ = (x∗, y∗, z∗) ∈ X 3 of the second
kind.

Proof. The proof is similar to the proof of Theorem 4.1, using the mapping T 2
F of

Lemma 4.1.(iii) in the space (X 3, D,v2). �

Corollary 4.2. Let F : X 3 → X be a mixed-monotone mapping, and suppose
that there exist x0, y0, z0 ∈ X such that x0 � F (x0, y0, z0), y0 � F (y0, x0, z0),



122 Z. KADELBURG AND S. RADENOVIĆ

z0 � F (z0, y0, x0). Let, for some fixed constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α], the
inequality

d(F (x, y, z), F (u, v, w))

≤ 1− ε
3

(d(x, u) + d(y, v) + d(z, w)) + Λεαψ(ε)[1 + ‖x, y, z‖+ ‖u, v, w‖] β

holds for all ε ∈ [0, 1] and all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w) or
(x � u, y � v and z � w). Finally, suppose that F is continuous or that the space
is regular. Then F has a tripled fixed point Y ∗ = (x∗, y∗, z∗) ∈ X 3 of the first kind.

A similar example as Example 4.1 can be constructed to show that Theorem 4.2
is strictly stronger than Corollary 4.2.
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