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APPROXIMATING FIXED POINTS OF GENERALIZED

NONEXPANSIVE MAPPINGS IN BANACH SPACES

BAPURAO C. DHAGE

Abstract. In this paper, we prove a fixed point theorem for the selfmaps of a

closed convex and bounded subset of the Banach space satisfying a generalized

nonexpansive type condition. Some results concerning the approximations
of fixed points with Krasnoselskii and Mann type iterations are also proved

under suitable conditions. Our results include the well-known result of Kannan

(1968) and Bose and Mukherjee (1981) as the special cases with a different and
constructive method.

1. Introduction

Let (X, d) be a metric space. Then Banach contraction principle states that if
X is complete and f : X → X satisfies the condition

(1.1) d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X and 0 ≤ α < 1, then f has a unique fixed point. The mapping
f satisfying the condition (1.1) is called contraction and when α = 1, f is called
nonexpansive. The nonexansive mappings have been studied by Kirk and Goebel [6]
for fixed points. Bogin [1] considered a class of generalized nonexpansive mappings
characterized by the inequality

(1.2) d(fx, fy) ≤ ad(x, y) + b[d(x, fx) + d(y, fy)] + b[d(x, fy) + d(y, fx)]

for all x, y ∈ X, where a, b, c are nonnegative real numbers satisfying

(1.3) a+ 2b+ 2c = 1

for the study of fixed points. Recently Ciric [3] generalized the above class of
mappings (1.2)-(1.3) to a wider class mappings characterized by the inequality

d(fx, fy) ≤ amax

{
d(x, y), d(x, fx), d(y, fy),

1

2
[d(x, fy) + d(y, fx)]

}
+ bmax{d(x, fx), d(y, fy)}
+ c[d(x, fy) + d(y, fx)](1.4)

for all x, y ∈ X, where the real numbers a, b, c ≥ 0 satisfy the condition

(1.5) a+ b+ 2c = 1.
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Similarly, the study of nonexansive mappings in Banach spaces has been made
extensively by several authors. Bose and Mukherjee [2] studied the class of gen-
eralized nonexansive mappings for the study of fixed points characterized by the
inequality

(1.6) ‖fx− fy‖ ≤ a ‖x− y‖+ b [‖x− fx‖+ ‖y − fy‖] + c [‖x− fx‖+ ‖y − fy‖]

for all x, y ∈ X, where a, b, c are nonnegative real numbers, a > 0 satisfying the
condition

(1.7) 3a+ 2b+ 4c = 1.

The aim of the present note is to generalize the above class of mappings (1.6)-
(1.7) and prove a couple of fixed point theorems under a generalized contraction
condition with a different method which in turn generalize fixed point theorems of
Bose and Mukherjee [2] as the special cases.

2. Generalized Nonexpansive Mappings

Given a non-empty, closed, convex and bounded subset C of the Banach space
X, consider the class of nonexpansive type mappings f : C → C characterized by
the inequality

‖fx− fy‖ ≤ a max
{
‖x− y‖, ‖x− fx‖, ‖y − fy‖, 1

2
[‖x− fy‖+ ‖y − fx‖]

}
+ b

[
‖x− fx‖+ ‖y − fy‖

]
+ c max

{
‖x− fy‖, ‖y − fx‖

}
(2.1)

for all x, y ∈ X, where the real numbers a, b, c ≥ 0 satisfy the inequality

(2.2) a+ b+ c ≤ 1

2
.

The generalized nonexpansive mappings characterized by the inequalities (2.1)
and (2.2) have been considered in Dhage [4] in the setting of a metric space for
fixed points and are different from the class of Ciric’s mappings characterized by the
inequalities (1.6) and (1.7). In this section we prove a couple of results concerning
the existence of fixed point for the class of generalized nonexpansive mappings (2.1)
and (2.2) in a Banach space via a scheme of Krasnoselskii type iterations.

Theorem 2.1. Let C be a non-empty, closed, convex and bounded subset of the
normed linear space X and let f : C → C be a mapping satisfying the inequality
(2.1) and (2.2) with a > 0. If the sequence {xn} defined by

(2.3) xn+1 = (1− t)xn + tfxn, n = 0, 1, 2, ...;

for some t ∈ (0, 1) and for some x = x0 ∈ C converges to u, then u is a unique
fixed point of f .
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Proof. By (2.1), one gets

‖xn+1 − fu‖ ≤ (1− t)‖xn − fu‖+ t‖fxn − fu‖

≤ (1− t)‖xn − fu‖+ a
{
‖xn − u‖, ‖xn − fx‖, ‖u− fu‖,

1

2
[‖xn − fu‖+ ‖u− fxn‖]

}
+ b [‖xn − fxn + ‖u− fu‖+ ‖]
+ c max{‖xn − fu‖, ‖u− fxn‖}.(2.4)

Now,

xn+1 = (1− t)xn + tfxn,

and so we have

(xn+1 − xn) = −t(xn − fxn).

This further implies that

‖xn+1 − xn‖ = t‖xn − fxn‖ −→ 0 as n→∞.

Taking the limit as n→∞ in (2.4), we obtain

‖u− fu‖ ≤ (1− t)‖u− fu‖

+ t a max
{

0, 0, ‖u− fu‖, 1

2
‖u− fu‖

}
+ t b [0 + ‖u− fu‖] + t c max{‖u− fu‖, 0}
≤ [(1− t) + ta+ tb+ tc]‖u− fu‖
≤ (1− t+ a+ b+ c)‖u− fu‖.

Since a+ b+ c < 1, we may choose t ∈ (0, 1) such that t > a+ b+ c. Then from
the above inequality, we obtain so u = fu.

To prove uniqueness, let v(6= u) be another fixed point of f . Then by (2.1),

‖u− v‖ = ‖fu− fv‖

≤ a max
{
‖u− v‖, ‖u− fu‖, ‖v − fv‖, 1

2
[‖u− fv‖+ ‖v − fu‖]

}
+ b [‖u− fu‖+ ‖v − fv‖] + c max{‖u− fv‖, ‖v − fu‖}

= (a+ c) ‖u− v)‖

which is a contradiction. Hence u = v and the proof of the theorem is complete. �

Theorem 2.2. Let C be a non-empty, closed, convex and bounded subset of a
Banach space X. If f : C → C satisfies the inequalities (2.1) and (2.2) with a > 0,
b > 0, then f has a unique fixed point.

Proof. Let x = x0 ∈ C be arbitrary and consider the sequence {xn} defined by
(2.3). Then, we have

x1 − x2 = (1− t)(x0 − x1) + t(fx0 − fx2).
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Then, by (2.1), we obtain

‖x1 − x2‖ ≤ (1− t)‖x0 − x1‖+ t‖fx0 − fx1‖
≤ (1− t)‖x0 − x1‖

+ ta max
{
‖x0 − x1‖, ‖x0 − fx0‖, ‖x1 − fx1‖,

1

2
[‖x0 − x1‖+ ‖x1 − x2‖]

}
+ tb [‖x0 − fx0‖+ ‖x1 − fx1‖]
+ tc max{‖x0 − fx1‖, ‖x1 − fx0‖}.(2.5)

Now,

x1 = (1− t)x0 + tfx0,

and so we have

⇒ x1 − x0 = −t(x0 − fx0).

This further implies that

t‖x0 − fx0‖ = ‖x0 − x1‖.

Again,

x2 = (1− t)x1 + tfx1,

and so we have

x2 − x1 = −t(x1 − fx1)

which again implies that

t‖x1 − fx1‖ = ‖x1 − x2‖.

Similarly,

(x0 − fx1) = (x0 − x1) + (x1 − fx1),

implies

t(x0 − fx1) = t(x0 − x1) + t(x1 − x2)),

and

t‖x0 − fx1‖ ≤ t‖x0 − x1‖+ t‖x1 − x2‖.

Again,

x1 − fx0 = x1 − x0 + x0 − fx0 = (x1 − x2) + (x0 − fx0),

which gives

t(x1 − fx0) = t(x1 − x0) + t(x0 − f(x0) = (1− t)(x0 − x1),

or,

t‖x1 − fx0‖ = (1− t)‖x0 − x1‖.
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Substituting the above values in (2.5),

‖x1 − x2‖ ≤ (1− t)‖x0 − x1‖

+ a max
{
‖x0 − x1‖, ‖x0 − x1‖, ‖x1 − x2‖,

1

2
[
[
(1− t)‖x0 − x1‖+ t‖x0 − x1‖+ ‖x1 − x2‖

]}
+ b

[
‖x0 − x1‖+ ‖x1 − x2‖

]
+ c max

{
(1− t)‖x0 − x1‖, t‖x0 − x1‖+ ‖x1 − x2‖

}
= (1− t)‖x0 − x1‖

+ a max
{
‖x0 − x1‖, ‖x1 − x2‖,

1

2
[
[
‖x0 − x1‖+ ‖x1 − x2‖

]}
+ b

[
‖x0 − x1‖+ ‖x1 − x2‖

]
+ c max

{
(1− t)‖x0 − x1‖, t‖x0 − x1‖+ ‖x1 − x2‖

}
.(2.6)

Now there are three cases:

Case I: Suppose that

max
{
‖x0 − x1‖, ‖x1 − x2‖,

1

2

[
‖x0 − x1‖+ ‖x1 − x2‖

]}
= ‖x0 − x1‖

and

max
{

(1− t)‖x0 − x1‖, t‖x0 − x1‖+ ‖x1 − x2‖
}

= ‖x0 − x1‖

for t >
1

2
. Then from (2.6),

(1− b)‖x1 − x2‖ ≤ (1− t)‖x0 − x1‖+ (a+ b)‖x0 − x1‖
+ ct ‖x0 − x1‖+ c‖x1 − x2‖.

Therefore,

‖x1 − x2‖ ≤
(

(1− t) + a+ b+ ct

1− b− c

)
‖x0 − x1‖

≤
(

(1− t) + a+ b+ c

1− b− c

)
‖x0 − x1‖

= α1‖x0 − x1‖

Case II: Suppose that

max
{
‖x0 − x1‖, ‖x1 − x2‖,

1

2

[
‖x0 − x1‖+ ‖x1 − x2‖

]}
= ‖x1 − x2‖.

Then,

‖x1 − x2‖ ≤ (1− t)‖x0 − x1‖+ a ‖x1 − x2‖
+ b ‖x0 − x1‖+ b‖x1 − x2‖
+ ct ‖x0 − x1‖+ c‖x1 − x2‖

≤
(

1− t+ b+ c

1− a− b− c

)
‖x0 − x1‖

≤ α2‖x0 − x1‖ [t > a+ 2b+ 2c]
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Case III: Suppose that

max
{
‖x0− x1‖, ‖x1− x2‖,

1

2

[
‖x0− x1‖+ ‖x1− x2‖

]}
=

1

2
[‖x1− x2‖+ ‖x0− x1‖].

Then,

‖x1 − x2‖ ≤ (1− t)‖x0 − x1‖+
a

2
‖x0 − x1‖+

a

2
‖x1 − x2‖

+ b ‖x0 − x1‖+ b‖x1 − x2‖
+ c ‖x0 − x1‖+ c‖x1 − x2‖

≤
(

1− t+ a
2 + b+ c

1− a
2 − b− c

)
‖x0 − x1‖

≤ α3‖x0 − x1‖ [t > a+ 2b+ 2c].

Let α = max{α1, α2, α3}, then in all above three cases we obtain

‖x1 − x2‖ ≤ α‖x0 − x1‖.

Therefore,

‖xn − xn+1‖ ≤
n+p∑
i=n

‖xi − xi+1‖

≤ αn

1− α
‖x0 − x1‖

−→ 0 as n→∞.

This shows that {xn} is a Cauchy is a sequence in C. Since C is a closed subset
of a complete space, it is complete. Hence {xn} is convergent and converse to a
point u ∈ C. The rest of the proof is similar to Theorem 2.1 and so we omit the
details. �

Corollary 2.1. Let C be a non-empty, closed, convex and bounded subset of the
normed linear space X and let f : C → C. Suppose that there exists a positive
integer r such that f satisfies the contraction condition

‖frx− fry‖ ≤ a max
{
‖x− y‖, ‖x− frx‖, ‖y − fry‖, 1

2
[‖x− fry‖+ ‖y − frx‖]

}
+ b

[
‖x− frx‖+ ‖y − fry‖

]
+ c max

{
‖x− fry‖, ‖y − frx‖

}
(2.7)

for all x, y ∈ C, where the real numbers a, b, c ≥ 0, a > 0, satisfy the inequality

(2.8) a+ b+ c ≤ 1

2
.

If the sequence {xn} defined by

(2.9) xn+1 = (1− t)xn + tfrxn, n = 0, 1, 2, ...;

for some t ∈ (0, 1) and for some x = x0 ∈ C converges to u, then u is a unique
fixed point of f .

Proof. By Theorem 2.1 above, the mapping fr has a unique fixed point, say p ∈ C.
Then we have fr(p) = p. Therefore, fr(fp) = fr+1(p) = f(fr(p)) = fp showing
that fp is again a fixed point of fr. By uniqueness of p, we get fp = p. Thus, f has
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a unique fixed point p in C and the sequence of iterations given by (2.9) converges
to p. The proof of the theorem is complete. �

In the following section we prove that the Mann iterations of the mapping f in
a uniformly convex Banach space satisfying (2.1) and (2.2).

3. Convergence of Mann Iterations

The following definitions is well-known in the literature.

Definition 3.1. A self mapping f of a convex subset C of a Banach space X is
said to be quasi-nonexpansive provided f has a fixed point and if p is a fixed point
of f , then

‖fx− p‖ ≤ ‖x− p‖
for all x ∈ C.

In a uniformly Banach space, Senter and Dotson, Jr., have conditions under
which the sequence of Mann types of iterates of a quasi-nonexpansive mapping
converges to a fixed point of the mapping in question. We denote by F(f) the set
of all fixed points of f in C.

Condition I: Let C be a convex subset of a uniformly convex Banach space
X. A mapping f : C → C is said to satisfy Condition I if there is a nondecreasing
function β : [0,∞) → [0,∞) with β(0) = 0, f(r) > 0 for r ∈ (0,∞) satisfying
‖x − fx‖ > β(d(x,F(f))) for all x ∈ C, where β(d(x,F(f))) = inf{ ‖x − p‖ : p ∈
F(f)}.

Condition I: Let C be a convex subset of a uniformly convex Banach space
X. A mapping f : C → C is said to satisfy Condition I if there is a real number
α > 0 such that ‖x− fx‖ ≥ αd(x,F(f)) for all x ∈ C.

It can be easily shown that a mapping which satisfies Condition II also satisfies
Condition I. Now, we state a key theorem of Senter and Dotson [9] which is used
in what follows. Before going to the theorem we define the Mann iterations of the
mapping f on a subset C of the Banach space X. Let x1 ∈ C be arbitrary and let
M(x1, tn, f) be a sequence {xn} defined by xn+1 = (1 − tn)xn + tnf(xn), where
tn ∈ [β, γ], 0 < β < γ < 1 and n ∈ N.

Theorem 3.1 (Senter and Dotson [9]). Let X be a uniformly convex Banach space,
C a closed, convex and bounded subset of X and let f be a nonexpansive mapping
of C into itself. If f satisfies Condition I, then for arbitrary x1 ∈ C, the sequence
M(x1, tn, f) converges to a member of F(f).

Below we prove a result concerning the convergence of the sequence of Mann
iterations to the fixed point of generalized nonexpansive mappings in a uniformly
Banach space.

Theorem 3.2. let C be a closed, convex and bounded subset of a uniformly Banach
space X and let f : C → C be a generalized nonexpansive mapping satisfying the
inequalities (2.1) and (2.2). Then f has a unique fixed point p and for arbitrary
x1 ∈ C, the sequence M(x1, tn, f) of Mann iterations converges to p.

Proof. By Theorem 2.1, f has a unique fixed point p in C. We show that the
sequence M(x1, tn, f) of Mann iterations converges to p for arbitrary x1 ∈ C. This
will be achieved in the following two steps:
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Step I: f is quasi-nonexpansive on C.

We first show that f is a quasi-nonexpansive mapping on C into itself. Assume
the contrary, that is, ‖fx− p‖ > ‖x− p‖ for some x ∈ C. Then by (2.1), we have

‖fx− p‖ = ‖fx− fp‖

≤ a max{‖x− p‖, ‖x− fx‖, ‖p− fp‖, 1

2

[
‖x− fp‖+ ‖p− fx‖]}

+ b
[
‖x− fx‖+ ‖p− fp‖

]
+ c max{‖x− fp‖, ‖p− fx‖}

= a max{‖x− p‖, ‖x− fx‖, 1

2

[
‖x− p‖+ ‖fx− p‖

]
}

+ b ‖x− fx‖+ c max{‖x− p‖, ‖fx− p‖}
≤ a max{‖x− p‖, ‖x− fx‖, ‖fx− p‖}

+ b ‖x− fx‖+ c ‖fx− p‖
≤ a max{‖x− fx‖, ‖fx− p‖}

+ b ‖x− fx‖+ c ‖fx− p‖.(3.1)

Now there are two cases:

Case I: Suppose that

max{‖x− fx‖, ‖fx− p‖} = ‖x− p‖.

Then from (3.1), we obtain

‖fx− p‖ ≤ (a+ b+ c)‖fx− p‖

which is a contradiction, since a+ b = c ≤ 1
2 .

Case II: Suppose that

max{‖x− fx‖, ‖fx− p‖} = ‖x− p‖.

Then from (3.1), we obtain

‖fx− p‖ ≤ (a+ b+ c)‖x− fx‖
≤ (a+ b+ c)[‖x− p‖+ ‖fx− p‖]
= (a+ b+ c)‖x− p‖+ (a+ b+ c)‖fx− p‖

which further implies that

‖fx− p‖ ≤
[

a+ b+ c

1− (a+ b+ c)

]
‖x− p‖

which is a contradiction, since
a+ b+ c

1− (a+ b+ c)
≤ 1.

Thus, in both the cases, we obtain a contradiction. Therefore, we conclude that
‖fx− p‖ ≤ ‖x− p‖ for all x ∈ C and consequently f is quasi-nonexpansive on C.

Step I: f satisfies Condition II on C.

let x ∈ C be arbitrary. Then,

(3.2) ‖x− p‖ ≤ ‖x− fx‖+ ‖fx− p‖.
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Now, by (2.1),

‖fx− p‖ = ‖fx− fp‖

≤ a max{‖x− p‖, ‖x− fx‖, ‖p− fp‖, 1

2

[
‖x− fp‖+ ‖p− fx‖]}

+ b
[
‖x− fx‖+ ‖p− fp‖

]
+ c max{‖x− fp‖, ‖p− fx‖}

= a max{‖x− p‖, ‖x− fx‖}+ b ‖x− fx‖+ c ‖x− p‖.(3.3)

Now there are two cases:

Case I: Suppose that

max{‖x− fx‖, ‖fx− p‖} = ‖x− p‖.

Then from (3.1), we obtain

‖fx− p‖ ≤ (a+ c)‖x− p‖+ b‖x− fx‖.

Substituting above value in (3.2), we obtain

‖x− fx‖ ≥ 1

3
‖x− p‖ =

1

3
d(x,F(f)).

Case II: Suppose that

max{‖x− fx‖, ‖x− p‖} = ‖x− fx‖.

Then from (3.1), we obtain

‖fx− p‖ ≤ (a+ b)‖x− fx‖+ c‖x− p‖.

Substituting above value in (3.2), we obtain

‖x− fx‖ ≥ 1

3
‖x− p‖ =

1

3
d(x,F(f)).

Thus, f satisfies Condition II with α = 1
3 . Consequently f satisfies Condition I and

by an application of Theorem 3.1, for arbitrary x1 ∈ C, the sequence M(x1, tn, f)
of Mann iterations of f converges to p. This completes the proof. �

Corollary 3.1. let C be a closed, convex and bounded subset of a uniformly Banach
space X and let f : C → C. Suppose that there exists a positive integer r such that
f satisfies the generalized contraction condition (2.7) and (2.8). Then f has a
unique fixed point p and for arbitrary x1 ∈ C, the sequence M(x1, tn, f

r) of Mann
iterations converges to p.

Proof. By Theorem 2.1, the mapping f has a unique fixed point p in C which is
also a unique fixed point of fr. Now the desired conclusion follows by a direct
application of Theorem 3.2. �

As a consequence of Theorem 3.2, we obtain the following fixed point theorem
of Bose and Mukherjee [2] as a corollary.

Corollary 3.2. let C be a closed, convex and bounded subset of a uniformly Banach
space X and let f : C → C be a generalized nonexpansive mapping satisfying the
inequalities (1.6) and (1.7). Then f has a unique fixed point p and for arbitrary
x1 ∈ C, the sequence M(x1, tn, f) of Mann iterations converges to p.
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