FIXED POINT OF ORDER 2 ON G-METRIC SPACE

ANIMESH GUPTA

Abstract

In this article we introduce a new concept of fixed point that is fixed point of order 2 on G-metric space and some results are achieved.

1. Introduction and preliminaries

In 2003, Mustafa and Sims [4] introduced a more appropriate and robust notion of a generalized metric space as follows.
Definition 1.1. [4] Let X be a nonempty set, and let $G: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following axioms:
(1) $G(x, y, z)=0$ if and only if $x=y=z$;
(2) $G(x, x, y)>0$, for all $x \neq y$;
(3) $G(x, y, z) \geq G(x, x, y)$, for all $x, y, z \in X$;
(4) $G(x, y, z)=G(x, z, y)=G(z, y, x)=\cdots$ (symmetric in all three variables);
(5) $G(x, y, z) \leq G(x, w, w)+G(w, y, z)$, for all $x, y, z, w \in X$.

Then the function G is called a generalized metric, or, more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.
Definition 1.2. Suppose that (X, G) is a G-metric space, $T: X \rightarrow X$ is a function and $x_{0} \in X$ is fixed point of T. We call x_{0} is a fixed pointof order 2 if it is not alone point and the following satisfies:

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=1 \tag{1.1}
\end{equation*}
$$

We remember the following definitions. We will show that for the case (a) there is not fixed point of order 2 but in two other cases there is fixed point of order 2 .

Definition 1.3. Suppose that (X,G) is a G-metric space, $T: X \rightarrow X$ is a function.
(a) T is a contraction, if there exist $k \in[0,1)$ such that $G(T x, T y, T z) \leq$ $k G(x, y, z)$ for all $x, y, z \in X$.
(b) T is a contractive mapping, if $G(T x, T y, T z)<G(x, y, z)$ for all $x, y, z \in X$ which $x \neq y \neq z$.
(c) T is non-expansive mapping, if $G(T x, T y, T z) \leq G(x, y, z)$ for all $x, y, z \in$ X.

In the following we consider first some properties for fixed point of order 2.

[^0]
2. Main Results

Proposition 2.1. If $x_{0} \in X$ is a fixed point of order 2 for T on X. Then T is continuous at x_{0}.
Proof. $\lim _{n \rightarrow \infty} G\left(T x, T x, x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)} G\left(x, x, x_{0}\right)$
$\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)} \lim _{x \rightarrow x_{0}} G\left(x, x, x_{0}\right)=0$.
Proposition 2.2. Let (X, G) be a metric space and $T: X \rightarrow X$ be a function such that $x_{0} \in X$ is a fixed point for T, not alone point for X and alone point for $T(X)$. Then x_{0} is not fixed point of order 2 for T.
Proof. According to assumption x_{0} is alone point for $T(X)$. There is a neighborhood of x_{0}, like $N\left(x_{0}\right)$ such that $N\left(x_{0}\right) \cap T(X)$ and each $x \in N\left(x_{0}\right)$ implies that $G\left(T x, T x, x_{0}\right)=0$. Therefore, $\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=0$, i.e; x_{0} is not a fixed point of order 2 for T.

Proposition 2.3. Suppose that $x_{0} \in X$ be a fixed point for $T_{i}: X \rightarrow X$ which $i=1,2, \ldots, n$ where $(n \in N)$ and also $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{i} x, T_{i} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=\lambda_{i}$. Then x_{0} is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$ if and only if $\lambda_{1} \lambda_{2} \ldots \lambda_{n}=1$.
Proof. T_{i} is continuous at x_{0} for all $i=1,2, \ldots, n$ by a simple change of variable that

$$
\lim _{x \rightarrow x_{0}} \frac{G\left(T_{k}\left(T_{k+1} \ldots T_{n} x\right), T_{k}\left(T_{k+1} \ldots T_{n} x\right), x_{0}\right)}{G\left(T_{k+1} \ldots T_{n} x, T_{k+1} \ldots T_{n} x, x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{G\left(T_{k} t, T_{k} t, x_{0}\right)}{t, t, x_{0}}
$$

and the last limit is equal with λ_{k} for $k=1,2, \ldots, n$. Hence,

$$
\begin{gathered}
\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} T_{2} \ldots T_{n} x, T_{1} T_{2} \ldots T_{n} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}= \\
\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1}\left(T_{2} \ldots T_{n}\right) x, T_{1}\left(T_{2} \ldots T_{n}\right) x, x_{0}\right)}{G\left(T_{2} \ldots T n, T_{2} \ldots T n, x_{0}\right)} \frac{G\left(T_{2}\left(T_{3} \ldots T_{n}\right) x, T_{2}\left(T_{3} \ldots T_{n}\right) x, x_{0}\right)}{G\left(T_{3} \ldots T n, T_{3} \ldots T n, x_{0}\right)} \ldots \frac{G\left(T_{n} x, T_{n} x, x_{0}\right)}{G\left(x, x, x_{0}\right)} \\
\lambda_{1} \lambda_{2} \ldots \lambda_{n}
\end{gathered}
$$

Proposition 2.4. Letx $x_{0} \in X$ be a fixed point for $T_{i}: X \rightarrow X$ for $i=1,2, \ldots, n$ and $n \in N$.
(a) If x_{0} is fixed point of order 2 for all T_{i}, then x_{0} is fixed point for $T_{1} T_{2} \ldots T_{n}$.
(b) If x_{0} is fixed point order 2 for $T_{1} T_{2}$ and T_{2}, then x_{0} is fixed point of order 2 for T_{1}.
Proof. (a) By proposition 2.1.
(b) x_{0} is fixed point of order 2 for $T_{1} T_{2}$ and T_{2}. Thus, $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} T_{2} x, T_{1} T_{2} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=$
$1, \lim _{x \rightarrow x_{0}} \frac{G\left(T_{2} x, T_{2} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=1$. Since T is continuous at x_{0} for $t=T_{2} x$.
$1=\frac{\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} T_{2} x, T_{1} T_{2} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}}{\lim _{x \rightarrow x_{0}} \frac{G\left(T_{2} x, T_{2} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}}=\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} T_{2} x, T_{1} T_{2} x, x_{0}\right)}{G\left(T_{2} x, T_{2} x, x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{G\left(T_{1} t, T_{1} t, x_{0}\right)}{G\left(t, t, x_{0}\right)}$

Proposition 2.5. Suppose that x_{0} is not alone point and is a fixed point for T_{i} : $X \rightarrow X$ for $i=1,2, \ldots, n$ and $n \in N$.
(a) If T_{i} be a contractive mapping or non expansive mapping for $i=1,2, \ldots, n$ and $n \in N$ and $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{i} x, T_{i} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=\lambda_{i}$. Then $x_{0} \in X$ is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$ if and only if x_{0} is a fixed point of order 2 for all T_{i}.
(b) If $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} x, T_{1} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=\lambda$ then x_{0} is a fixed point of order 2 for T_{1} if and only if x_{0} be a fixed point of order 2 for T_{1}^{n} where n is arbitrary positive integer.
(c) If T_{1} be a contractive mapping or non-expansive mapping, then x_{0} is a fixed point of order 2 for T_{1} if and only if there exist $n \in N$ such that x_{0} be a fixed point of order 2 for T_{1}^{n}.

Proof. (a) Let T_{i} be a contractive mapping for all $i=1,2, \ldots, n$. If x_{0} is a fixed point of order 2 for all T_{i} then by proposition $2.3, x_{0}$ is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$. Now assume that x_{0} is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$ then by proposition $2.2,1=\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} T_{2} \ldots T_{n} x, T_{1} T_{2} \ldots T_{n} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=\lambda_{1} \lambda_{2} \ldots \lambda_{n}$. But all T_{i} are contractive mappings so $\frac{G\left(T_{1} x, T_{1} x, x_{0}\right)}{G\left(x, x, x_{0}\right)}<1$ which implies that $\lambda_{i} \leq 1$ for all $i=1,2, \ldots n$. Hence, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=1$. Proof for non expansive is similar.
(b) By proposition 2.2, $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1}^{n} x,, x_{0}\right)}{G\left(x, x, x_{0}\right)}=\lambda^{n}$. Then $\lambda^{n}=1$ if and only if $\lambda=1$ because $\lambda \geq 0$.
(c) Let T_{1} be a contractive mapping and there exists $n \in N$ such that x_{0} is a fixed point of order 2 for $T_{1}^{n} . T_{1}$ is a contractive mapping. So

$$
\begin{gathered}
G\left(T_{1}^{n} x, T_{1}^{n} x, x_{0}\right)<\ldots<G\left(T_{1} x, T_{1} x, x_{0}\right)<G\left(x, x, x_{0}\right) \\
1=\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1}^{n} x, T_{1}^{n} x, x_{0}\right)}{G\left(x, x, x_{0}\right.} \leq \frac{G\left(T_{1} x, T_{1} x, x_{0}\right)}{G\left(x, x, x_{0}\right.} \leq 1
\end{gathered}
$$

Therefore, $\lim _{x \rightarrow x_{0}} \frac{G\left(T_{1} x, T_{1} x, x_{0}\right)}{G\left(x, x, x_{0}\right.}=1$.

Proposition 2.6. Suppose that (X, G) is a metric space, $T: X \rightarrow X$ is a function and x_{0} is a fixed point of T. If T is contraction then x_{0} is not a fixed point of order 2 for T.

Proof. Since T is a contractive mapping so there exists $\alpha \in[0,1)$ such that $G(T x, T y, T z) \leq$ $\alpha G(x, y, z)$ for all $x, y, z \in X$. Therefore $\frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)} \leq \alpha<1$ and x_{0} can not be a fixed point of order 2 for T .

Proposition 2.7. Suppose that $x_{0} \in X$ be a fixed point of order 2 for $T: X \rightarrow X$ where T is one to one and g is left inverse of T. Then x_{0} is also a fixed point of order 2 for g.

Proof. It is clear that x_{0} is a fixed point for g. On the other hand, since T is continuous at x_{0} for $t=T x$ so

$$
\begin{aligned}
1=\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)} & =\lim _{x \rightarrow x_{0}} \frac{G\left(g(T(T x)), g(T(T x)), x_{0}\right)}{G\left(g T x, g T x, x_{0}\right)} \\
& =\lim _{t \rightarrow x_{0}} \frac{G\left(g(T t), g(T t), x_{0}\right)}{G\left(g t, g t, x_{0}\right)} \\
& =\lim _{t \rightarrow x_{0}} \frac{G\left(t, t, x_{0}\right)}{G\left(g t, g t, x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{1}{\frac{G\left(g t, g t, x_{0}\right)}{G\left(t, t, x_{0}\right)}}
\end{aligned}
$$

Therefore, $\lim _{t \rightarrow x_{0}} \frac{G\left(g t, g t, x_{0}\right)}{G\left(t, t, x_{0}\right)}=1$.
In the following we give another condition for the fixed point of order 2.
Proposition 2.8. Suppose that x_{0} is not alone point and is a fixed point for T : $x \rightarrow X$.
(a) If $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}=0$ then x_{0} is a fixed point of order 2 for T.
(b) If $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(T x, T x, x_{0}\right)}=0$ then x_{0} is a fixed point of order 2 for T.

Proof. (a) From the definition of G-metric space we have

$$
\begin{aligned}
\left|G\left(x, x, x_{0}\right)-G\left(T x, T x, x_{0}\right)\right| & \leq G(T x, T x, x) \\
1-\frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)} & \leq \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)} \\
& \leq 1+\frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)}
\end{aligned}
$$

$\lim _{x \rightarrow x_{0}} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)}=1$.
(b) Prove of this part is similarly as prove of (a).

Proposition 2.9. Suppose that x_{0} is a fixed point for $T: X \rightarrow X$ and $\psi: X \rightarrow R^{+}$ is a real valued function.
(a) If x_{0} be a fixed point of order 2 for T then $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)} \leq 2$.
(b) If $G(T x, T x, x) \leq 2 \psi(x)-\psi(T x) \leq G\left(x, x, x_{0}\right)$ for all $x \in X$ then x_{0} is a fixed point of order 2 for T if and only if $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}=0$.

Proof. (a) From the inequality

$$
\begin{aligned}
G(T x, T x, x) & \leq G\left(T x, x_{0}, x_{0}\right)+G\left(x_{0}, T x, x\right) \\
& \leq G\left(T x, T x, x_{0}\right)+G\left(x, x, x_{0}\right) \\
\frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)} & \leq \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right)}+1
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)} \leq 2$.
(b) From inequality $G(T x, T x, x) \leq 2 \psi(x)-\psi(T x) \leq G\left(x, x, x_{0}\right)$,

$$
\begin{aligned}
G(x, x, T x)+G\left(T x, T x, T^{2} x\right)+\ldots+G\left(T^{n-1} x, T^{n-1} x, T^{n} x\right) & \leq \sum_{i=1}^{n} 2 \psi\left(T^{i-1} x\right)-\psi\left(T^{i} x\right) \\
& =2 \psi(x)-\psi\left(T^{n} x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{G\left(T^{n-1} x, T^{n-1} x, T^{n} x\right.}{G\left(x, x, x_{0}\right)} & =\frac{G\left(T^{n-1} x, T^{n-1} x, T^{n} x\right)}{G\left(T^{n-1} x, T^{n-1} x, T^{n-2} x\right)} \frac{G\left(T^{n-1} x, T^{n-1} x, T^{n-2} x\right)}{G\left(T^{n-2} x, T^{n-2} x, T^{n-3} x\right)} \ldots \\
& =\ldots \frac{G\left(T^{2} x, T^{2} x, x_{0}\right)}{G\left(T x, T x, x_{0}\right)} \frac{G\left(T x, T x, x_{0}\right)}{G\left(x, x, x_{0}\right.},
\end{aligned}
$$

since $\lim _{x \rightarrow x_{0}} \frac{G\left(T^{n-1} x, T^{n-1} x, T^{n} x\right)}{G\left(x, x, x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}$ and $\lim _{x \rightarrow x_{0}} \frac{G\left(T^{n-k} x, T^{n-k} x, T^{n} x\right)}{G\left(x, x, x_{0}\right)}=$ 1 which $k=1,2, \ldots n-1$, so $\lim _{x \rightarrow x_{0}} \frac{G\left(T^{n-1} x, T^{n-1} x, T^{n} x\right)}{G\left(x, x, x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}$. From inequality $G(T x, T x, x) \leq 2 \psi(x)-\psi(T x) \leq G\left(x, x, x_{0}\right)$. It is clear that $\psi\left(T^{n} x\right)$ is strict decreasing.

$$
\begin{aligned}
n \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)} & \leq \lim _{x \rightarrow x_{0}} \frac{2 \psi(x)-\psi\left(T^{n} x\right)}{G\left(x, x, x_{0}\right)} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{2 \psi(x)-\psi\left(T^{n} x\right)}{2 \psi(x)-\psi(T x)} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{2 \psi(x)-\psi\left(T^{n} x\right)}{2 \psi(x)-\psi\left(T^{n} x\right)} \\
& =1 .
\end{aligned}
$$

Hence, $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}=\frac{1}{n}$. Since n is arbitrary positive integer, $\lim _{x \rightarrow x_{0}} \frac{G(T x, T x, x)}{G\left(x, x, x_{0}\right)}=$ 0.

References

1. M. Edelstein, An extension of Banach;s contraction principle, Proc. Amer. Math. Soc. 12(1961), 7-10.
2. T. H. Kim, E. S. Kim and S. S. Shin, Minimization thorems relating to fixed point theorems on complete metric spaces, Math. Japon. 45(1997), no. 1, 97-102.
3. Z. Liu, L. Wang, SH. Kang, Y. S. Kim, On nonunique fixed point theorems, Applied Mathematics E-Notes, 8(2008), 231-237.
4. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal. 7 (2006), no. 2, 289-297.
5. C. K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205(1997), no. 1, 239-250.

Department of Applied Mathematics, Sagar Institute of Science, Technology \& Research, Ratibad, Bhopal - 462043

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25, 55M20.
 Key words and phrases. Fixed point, fixed point of order 2, contraction mapping, non expansive mapping.

