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FIXED POINT OF ORDER 2 ON G-METRIC SPACE

ANIMESH GUPTA

Abstract. In this article we introduce a new concept of fixed point that is

fixed point of order 2 on G-metric space and some results are achieved.

1. Introduction and preliminaries

In 2003, Mustafa and Sims [4] introduced a more appropriate and robust notion
of a generalized metric space as follows.

Definition 1.1. [4] Let X be a nonempty set, and let G : X ×X ×X → [0,∞) be
a function satisfying the following axioms:

(1) G(x, y, z) = 0 if and only if x = y = z;
(2) G(x, x, y) > 0, for all x 6= y;
(3) G(x, y, z) ≥ G(x, x, y), for all x, y, z ∈ X;
(4) G(x, y, z) = G(x, z, y) = G(z, y, x) = · · · (symmetric in all three variables);
(5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z), for all x, y, z, w ∈ X.

Then the function G is called a generalized metric, or, more specifically a G-metric
on X, and the pair (X,G) is called a G-metric space.

Definition 1.2. Suppose that (X,G) is a G-metric space, T : X → X is a function
and x0 ∈ X is fixed point of T . We call x0 is a fixed pointof order 2 if it is not
alone point and the following satisfies:

lim
x→x0

G(Tx, Tx, x0)

G(x, x, x0)
= 1(1.1)

We remember the following definitions. We will show that for the case (a) there
is not fixed point of order 2 but in two other cases there is fixed point of order 2.

Definition 1.3. Suppose that (X,G) is a G-metric space, T : X → X is a function.

(a) T is a contraction, if there exist k ∈ [0, 1) such that G(Tx, Ty, Tz) ≤
kG(x, y, z) for all x, y, z ∈ X.

(b) T is a contractive mapping, if G(Tx, Ty, Tz) < G(x, y, z) for all x, y, z ∈ X
which x 6= y 6= z.

(c) T is non-expansive mapping, if G(Tx, Ty, Tz) ≤ G(x, y, z) for all x, y, z ∈
X.

In the following we consider first some properties for fixed point of order 2.
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2. Main Results

Proposition 2.1. If x0 ∈ X is a fixed point of order 2 for T on X. Then T is
continuous at x0.

Proof. limn→∞G(Tx, Tx, x0) = limx→x0

G(Tx,Tx,x0)
G(x,x,x0)

G(x, x, x0)

limx→x0

G(Tx,Tx,x0)
G(x,x,x0)

limx→x0
G(x, x, x0) = 0. �

Proposition 2.2. Let (X,G) be a metric space and T : X → X be a function such
that x0 ∈ X is a fixed point for T , not alone point for X and alone point for T (X).
Then x0 is not fixed point of order 2 for T .

Proof. According to assumption x0 is alone point for T (X). There is a neighbor-
hood of x0, like N(x0) such that N(x0) ∩ T (X) and each x ∈ N(x0) implies that

G(Tx, Tx, x0) = 0. Therefore, limx→x0

G(Tx,Tx,x0)
G(x,x,x0)

= 0, i.e; x0 is not a fixed point

of order 2 for T . �

Proposition 2.3. Suppose that x0 ∈ X be a fixed point for Ti : X → X which

i = 1, 2, ..., n where (n ∈ N) and also limx→x0

G(Tix,Tix,x0)
G(x,x,x0)

= λi. Then x0 is a

fixed point of order 2 for T1T2...Tn if and only if λ1λ2...λn = 1.

Proof. Ti is continuous at x0 for all i = 1, 2, ..., n by a simple change of variable
that

lim
x→x0

G(Tk(Tk+1...Tnx), Tk(Tk+1...Tnx), x0)

G(Tk+1...Tnx, Tk+1...Tnx, x0)
= lim

t→x0

G(Tkt, Tkt, x0)

t, t, x0

and the last limit is equal with λk for k = 1, 2, ..., n. Hence,

lim
x→x0

G(T1T2...Tnx, T1T2...Tnx, x0)

G(x, x, x0)
=

lim
x→x0

G(T1(T2...Tn)x, T1(T2...Tn)x, x0)

G(T2...Tn, T2...Tn, x0)

G(T2(T3...Tn)x, T2(T3...Tn)x, x0)

G(T3...Tn, T3...Tn, x0)
...
G(Tnx, Tnx, x0)

G(x, x, x0)

λ1λ2...λn

�

Proposition 2.4. Letx0 ∈ X be a fixed point for Ti : X → X for i = 1, 2, ..., n and
n ∈ N .

(a) If x0 is fixed point of order 2 for all Ti, then x0 is fixed point for T1T2...Tn.
(b) If x0 is fixed point order 2 for T1T2 and T2 , then x0 is fixed point of order

2 for T1.

Proof. (a) By proposition 2.1.

(b) x0 is fixed point of order 2 for T1T2 and T2. Thus, limx→x0

G(T1T2x,T1T2x,x0)
G(x,x,x0)

=

1, limx→x0

G(T2x,T2x,x0)
G(x,x,x0)

= 1. Since T is continuous at x0 for t = T2x.

1 =
lim

x→x0
G(T1T2x,T1T2x,x0)

G(x,x,x0)

limx→x0

G(T2x,T2x,x0)
G(x,x,x0)

= lim
x→x0

G(T1T2x, T1T2x, x0)

G(T2x, T2x, x0)
= lim

t→x0

G(T1t, T1t, x0)

G(t, t, x0)

�
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Proposition 2.5. Suppose that x0 is not alone point and is a fixed point for Ti :
X → X for i = 1, 2, ..., n and n ∈ N .

(a) If Ti be a contractive mapping or non expansive mapping for i = 1, 2, ..., n

and n ∈ N and limx→x0

G(Tix,Tix,x0)
G(x,x,x0)

= λi. Then x0 ∈ X is a fixed point of

order 2 for T1T2...Tn if and only if x0 is a fixed point of order 2 for all Ti.

(b) If limx→x0

G(T1x,T1x,x0)
G(x,x,x0)

= λ then x0 is a fixed point of order 2 for T1 if and

only if x0 be a fixed point of order 2 for Tn
1 where n is arbitrary positive

integer.
(c) If T1 be a contractive mapping or non-expansive mapping, then x0 is a fixed

point of order 2 for T1 if and only if there exist n ∈ N such that x0 be a
fixed point of order 2 for Tn

1 .

Proof. (a) Let Ti be a contractive mapping for all i = 1, 2, ..., n. If x0 is a fixed
point of order 2 for all Ti then by proposition 2.3, x0 is a fixed point of order 2
for T1T2...Tn. Now assume that x0 is a fixed point of order 2 for T1T2...Tn then

by proposition 2.2, 1 = limx→x0

G(T1T2...Tnx,T1T2...Tnx,x0)
G(x,x,x0)

= λ1λ2...λn. But all Ti

are contractive mappings so G(T1x,T1x,x0)
G(x,x,x0)

< 1 which implies that λi ≤ 1 for all

i = 1, 2, ...n. Hence, λ1 = λ2 = ... = λn = 1. Proof for non expansive is similar.

(b) By proposition 2.2, limx→x0

G(Tn
1 x,,x0)

G(x,x,x0)
= λn. Then λn = 1 if and only if

λ = 1 because λ ≥ 0.
(c) Let T1 be a contractive mapping and there exists n ∈ N such that x0 is a

fixed point of order 2 for Tn
1 .T1 is a contractive mapping. So

G(Tn
1 x, T

n
1 x, x0) < ... < G(T1x, T1x, x0) < G(x, x, x0)

1 = lim
x→x0

G(Tn
1 x, T

n
1 x, x0)

G(x, x, x0
≤ G(T1x, T1x, x0)

G(x, x, x0
≤ 1.

Therefore, limx→x0

G(T1x,T1x,x0)
G(x,x,x0

= 1. �

Proposition 2.6. Suppose that (X,G) is a metric space, T : X → X is a function
and x0 is a fixed point of T . If T is contraction then x0 is not a fixed point of order
2 for T .

Proof. Since T is a contractive mapping so there exists α ∈ [0, 1) such thatG(Tx, Ty, Tz) ≤
αG(x, y, z) for all x, y, z ∈ X. Therefore G(Tx,Tx,x0)

G(x,x,x0)
≤ α < 1 and x0 can not be a

fixed point of order 2 for T. �

Proposition 2.7. Suppose that x0 ∈ X be a fixed point of order 2 for T : X → X
where T is one to one and g is left inverse of T . Then x0 is also a fixed point of
order 2 for g.

Proof. It is clear that x0 is a fixed point for g. On the other hand, since T is
continuous at x0 for t = Tx so
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1 = lim
x→x0

G(Tx, Tx, x0)

G(x, x, x0)
= lim

x→x0

G(g(T (Tx)), g(T (Tx)), x0)

G(gTx, gTx, x0)

= lim
t→x0

G(g(Tt), g(Tt), x0)

G(gt, gt, x0)

= lim
t→x0

G(t, t, x0)

G(gt, gt, x0)
= lim

t→x0

1
G(gt,gt,x0)
G(t,t,x0)

Therefore, limt→x0

G(gt,gt,x0)
G(t,t,x0)

= 1. �

In the following we give another condition for the fixed point of order 2.

Proposition 2.8. Suppose that x0 is not alone point and is a fixed point for T :
x→ X.

(a) If limx→x0

G(Tx,Tx,x)
G(x,x,x0)

= 0 then x0 is a fixed point of order 2 for T .

(b) If limx→x0

G(Tx,Tx,x)
G(Tx,Tx,x0)

= 0 then x0 is a fixed point of order 2 for T .

Proof. (a) From the definition of G-metric space we have

| G(x, x, x0)−G(Tx, Tx, x0) | ≤ G(Tx, Tx, x)

1− G(Tx, Tx, x0)

G(x, x, x0)
≤ G(Tx, Tx, x)

G(x, x, x0)

≤ 1 +
G(Tx, Tx, x0)

G(x, x, x0)

limx→x0

G(Tx,Tx,x0)
G(x,x,x0)

= 1.

(b) Prove of this part is similarly as prove of (a). �

Proposition 2.9. Suppose that x0 is a fixed point for T : X → X and ψ : X → R+

is a real valued function.

(a) If x0 be a fixed point of order 2 for T then limx→x0

G(Tx,Tx,x)
G(x,x,x0)

≤ 2.

(b) If G(Tx, Tx, x) ≤ 2ψ(x) − ψ(Tx) ≤ G(x, x, x0) for all x ∈ X then x0 is a

fixed point of order 2 for T if and only if limx→x0

G(Tx,Tx,x)
G(x,x,x0)

= 0.

Proof. (a) From the inequality

G(Tx, Tx, x) ≤ G(Tx, x0, x0) +G(x0, Tx, x)

≤ G(Tx, Tx, x0) +G(x, x, x0)

G(Tx, Tx, x)

G(x, x, x0)
≤ G(Tx, Tx, x0)

G(x, x, x0)
+ 1.

Therefore, limx→x0

G(Tx,Tx,x)
G(x,x,x0)

≤ 2.

(b) From inequality G(Tx, Tx, x) ≤ 2ψ(x)− ψ(Tx) ≤ G(x, x, x0),

G(x, x, Tx) +G(Tx, Tx, T 2x) + ...+G(Tn−1x, Tn−1x, Tnx) ≤ Σn
i=12ψ(T i−1x)− ψ(T ix)

= 2ψ(x)− ψ(Tnx)
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and

G(Tn−1x, Tn−1x, Tnx

G(x, x, x0)
=

G(Tn−1x, Tn−1x, Tnx)

G(Tn−1x, Tn−1x, Tn−2x)

G(Tn−1x, Tn−1x, Tn−2x)

G(Tn−2x, Tn−2x, Tn−3x)
...

= ...
G(T 2x, T 2x, x0)

G(Tx, Tx, x0)

G(Tx, Tx, x0)

G(x, x, x0
,

since limx→x0

G(Tn−1x,Tn−1x,Tnx)
G(x,x,x0)

= limx→x0

G(Tx,Tx,x)
G(x,x,x0)

and limx→x0

G(Tn−kx,Tn−kx,Tnx)
G(x,x,x0)

=

1 which k = 1, 2, ...n − 1, so limx→x0

G(Tn−1x,Tn−1x,Tnx)
G(x,x,x0)

= limx→x0

G(Tx,Tx,x)
G(x,x,x0)

.

From inequality G(Tx, Tx, x) ≤ 2ψ(x) − ψ(Tx) ≤ G(x, x, x0). It is clear that
ψ(Tnx) is strict decreasing.

n
G(Tx, Tx, x)

G(x, x, x0)
≤ lim

x→x0

2ψ(x)− ψ(Tnx)

G(x, x, x0)

≤ lim
x→x0

2ψ(x)− ψ(Tnx)

2ψ(x)− ψ(Tx)

≤ lim
x→x0

2ψ(x)− ψ(Tnx)

2ψ(x)− ψ(Tnx)

= 1.

Hence, limx→x0

G(Tx,Tx,x)
G(x,x,x0)

= 1
n . Since n is arbitrary positive integer, limx→x0

G(Tx,Tx,x)
G(x,x,x0)

=

0. �
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