FIXED POINT OF ORDER 2 ON G-METRIC SPACE

ANIMESH GUPTA

ABSTRACT. In this article we introduce a new concept of fixed point that is fixed point of order 2 on G-metric space and some results are achieved.

1. INTRODUCTION AND PRELIMINARIES

In 2003, Mustafa and Sims [4] introduced a more appropriate and robust notion of a generalized metric space as follows.

Definition 1.1. [4] Let X be a nonempty set, and let $G: X \times X \times X \to [0, \infty)$ be a function satisfying the following axioms:

- (1) G(x, y, z) = 0 if and only if x = y = z;
- (2) G(x, x, y) > 0, for all $x \neq y$;
- (3) $G(x, y, z) \ge G(x, x, y)$, for all $x, y, z \in X$;
- (4) $G(x, y, z) = G(x, z, y) = G(z, y, x) = \cdots$ (symmetric in all three variables);
- (5) $G(x, y, z) \le G(x, w, w) + G(w, y, z)$, for all $x, y, z, w \in X$.

Then the function G is called a generalized metric, or, more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 1.2. Suppose that (X,G) is a G-metric space, $T: X \to X$ is a function and $x_0 \in X$ is fixed point of T. We call x_0 is a fixed point of order 2 if it is not alone point and the following satisfies:

(1.1)
$$\lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} = 1$$

We remember the following definitions. We will show that for the case (a) there is not fixed point of order 2 but in two other cases there is fixed point of order 2.

Definition 1.3. Suppose that (X,G) is a G-metric space, $T: X \to X$ is a function.

- (a) T is a contraction, if there exist $k \in [0,1)$ such that $G(Tx,Ty,Tz) \leq kG(x,y,z)$ for all $x, y, z \in X$.
- (b) T is a contractive mapping, if G(Tx, Ty, Tz) < G(x, y, z) for all $x, y, z \in X$ which $x \neq y \neq z$.
- (c) T is non-expansive mapping, if $G(Tx, Ty, Tz) \leq G(x, y, z)$ for all $x, y, z \in X$.

In the following we consider first some properties for fixed point of order 2.

©2013 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25, 55M20.

Key words and phrases. Fixed point, fixed point of order 2, contraction mapping, non expansive mapping.

GUPTA

2. Main Results

Proposition 2.1. If $x_0 \in X$ is a fixed point of order 2 for T on X. Then T is continuous at x_0 .

$$\begin{array}{l} Proof. \ \lim_{n \to \infty} G(Tx, Tx, x_0) = \lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} G(x, x, x_0) \\ \lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} \lim_{x \to x_0} G(x, x, x_0) = 0. \end{array}$$

Proposition 2.2. Let (X,G) be a metric space and $T: X \to X$ be a function such that $x_0 \in X$ is a fixed point for T, not alone point for X and alone point for T(X). Then x_0 is not fixed point of order 2 for T.

Proof. According to assumption x_0 is alone point for T(X). There is a neighborhood of x_0 , like $N(x_0)$ such that $N(x_0) \cap T(X)$ and each $x \in N(x_0)$ implies that $G(Tx, Tx, x_0) = 0$. Therefore, $\lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} = 0$, i.e; x_0 is not a fixed point of order 2 for T.

Proposition 2.3. Suppose that $x_0 \in X$ be a fixed point for $T_i : X \to X$ which i = 1, 2, ..., n where $(n \in N)$ and also $\lim_{x \to x_0} \frac{G(T_i x, T_i x, x_0)}{G(x, x_0)} = \lambda_i$. Then x_0 is a fixed point of order 2 for $T_1T_2...T_n$ if and only if $\lambda_1\lambda_2...\lambda_n = 1$.

Proof. T_i is continuous at x_0 for all i = 1, 2, ..., n by a simple change of variable that

$$\lim_{x \to x_0} \frac{G(T_k(T_{k+1}...T_nx), T_k(T_{k+1}...T_nx), x_0)}{G(T_{k+1}...T_nx, T_{k+1}...T_nx, x_0)} = \lim_{t \to x_0} \frac{G(T_kt, T_kt, x_0)}{t, t, x_0}$$

and the last limit is equal with λ_k for k = 1, 2, ..., n. Hence,

$$\lim_{x \to x_0} \frac{G(T_1 T_2 \dots T_n x, T_1 T_2 \dots T_n x, x_0)}{G(x, x, x_0)} =$$

$$\lim_{x \to x_0} \frac{G(T_1(T_2...T_n)x, T_1(T_2...T_n)x, x_0)}{G(T_2...Tn, T_2...Tn, x_0)} \frac{G(T_2(T_3...T_n)x, T_2(T_3...T_n)x, x_0)}{G(T_3...Tn, T_3...Tn, x_0)} \dots \frac{G(T_nx, T_nx, x_0)}{G(x, x, x_0)}$$
$$\lambda_1 \lambda_2 \dots \lambda_n$$

Proposition 2.4. Let $x_0 \in X$ be a fixed point for $T_i : X \to X$ for i = 1, 2, ..., n and $n \in N$.

- (a) If x_0 is fixed point of order 2 for all T_i , then x_0 is fixed point for $T_1T_2...T_n$.
- (b) If x_0 is fixed point order 2 for T_1T_2 and T_2 , then x_0 is fixed point of order 2 for T_1 .

Proof. (a) By proposition 2.1.

(b) x_0 is fixed point of order 2 for T_1T_2 and T_2 . Thus, $\lim_{x \to x_0} \frac{G(T_1T_2x,T_1T_2x,x_0)}{G(x,x,x_0)} = 1$, $\lim_{x \to x_0} \frac{G(T_2x,T_2x,x_0)}{G(x,x,x_0)} = 1$. Since T is continuous at x_0 for $t = T_2x$. $1 = \frac{\lim_{x \to x_0} \frac{G(T_1T_2x,T_1T_2x,x_0)}{G(x,x,x_0)}}{\frac{G(T_1T_2x,T_1T_2x,x_0)}{G(x,x,x_0)}} = \lim_{x \to x_0} \frac{G(T_1T_2x,T_1T_2x,x_0)}{G(x,x,x_0)} = \lim_{x \to$

$$I = \frac{x \to x_0 - \frac{C}{G(x,x,x_0)}}{\lim_{x \to x_0} \frac{G(T_2x,T_2x,x_0)}{G(x,x,x_0)}} = \lim_{x \to x_0} \frac{G(T_1T_2x,T_1T_2x,x_0)}{G(T_2x,T_2x,x_0)} = \lim_{t \to x_0} \frac{G(T_1t,T_1t,x_0)}{G(t,t,x_0)}$$

174

Proposition 2.5. Suppose that x_0 is not alone point and is a fixed point for T_i : $X \to X$ for i = 1, 2, ..., n and $n \in N$.

- (a) If T_i be a contractive mapping or non expansive mapping for i = 1, 2, ..., nand $n \in N$ and $\lim_{x \to x_0} \frac{G(T_i x, T_i x, x_0)}{G(x, x, x_0)} = \lambda_i$. Then $x_0 \in X$ is a fixed point of order 2 for $T_1 T_2 \dots T_n$ if and only if x_0 is a fixed point of order 2 for all T_i .
- (b) If $\lim_{x \to x_0} \frac{G(T_1x, T_1x, x_0)}{G(x, x, x_0)} = \lambda$ then x_0 is a fixed point of order 2 for T_1 if and only if x_0 be a fixed point of order 2 for T_1^n where n is arbitrary positive integer.
- (c) If T_1 be a contractive mapping or non-expansive mapping, then x_0 is a fixed point of order 2 for T_1 if and only if there exist $n \in N$ such that x_0 be a fixed point of order 2 for T_1^n .

Proof. (a) Let T_i be a contractive mapping for all i = 1, 2, ..., n. If x_0 is a fixed point of order 2 for all T_i then by proposition 2.3, x_0 is a fixed point of order 2 for $T_1T_2...T_n$. Now assume that x_0 is a fixed point of order 2 for $T_1T_2...T_n$ then by proposition 2.2, $1 = \lim_{x \to x_0} \frac{G(T_1T_2...T_nx,T_1T_2...T_nx,x_0)}{G(x,x,x_0)} = \lambda_1\lambda_2...\lambda_n$. But all T_i are contractive mappings so $\frac{G(T_1x,T_1x,x_0)}{G(x,x,x_0)} < 1$ which implies that $\lambda_i \leq 1$ for all i = 1, 2, ...n. Hence, $\lambda_1 = \lambda_2 = ... = \lambda_n = 1$. Proof for non expansive is similar. (b) By proposition 2.2, $\lim_{x \to x_0} \frac{G(T_1^n x, x_0)}{G(x, x, x_0)} = \lambda^n$. Then $\lambda^n = 1$ if and only if

 $\lambda = 1$ because $\lambda \geq 0$.

(c) Let T_1 be a contractive mapping and there exists $n \in N$ such that x_0 is a fixed point of order 2 for $T_1^n.T_1$ is a contractive mapping. So

$$G(T_1^n x, T_1^n x, x_0) < \dots < G(T_1 x, T_1 x, x_0) < G(x, x, x_0)$$

$$1 = \lim_{x \to x_0} \frac{G(T_1^n x, T_1^n x, x_0)}{G(x, x, x_0)} \le \frac{G(T_1 x, T_1 x, x_0)}{G(x, x, x_0)} \le 1.$$

Therefore, $\lim_{x \to x_0} \frac{G(T_1 x, T_1 x, x_0)}{G(x, x, x_0)} = 1.$

Proposition 2.6. Suppose that (X, G) is a metric space, $T : X \to X$ is a function and x_0 is a fixed point of T. If T is contraction then x_0 is not a fixed point of order 2 for T.

Proof. Since T is a contractive mapping so there exists $\alpha \in [0, 1)$ such that $G(Tx, Ty, Tz) \leq 1$ $\alpha G(x, y, z)$ for all $x, y, z \in X$. Therefore $\frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} \leq \alpha < 1$ and x_0 can not be a fixed point of order 2 for T.

Proposition 2.7. Suppose that $x_0 \in X$ be a fixed point of order 2 for $T: X \to X$ where T is one to one and g is left inverse of T. Then x_0 is also a fixed point of order 2 for g.

Proof. It is clear that x_0 is a fixed point for g. On the other hand, since T is continuous at x_0 for t = Tx so

GUPTA

$$1 = \lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} = \lim_{x \to x_0} \frac{G(g(T(Tx)), g(T(Tx)), x_0)}{G(gTx, gTx, x_0)}$$
$$= \lim_{t \to x_0} \frac{G(g(Tt), g(Tt), x_0)}{G(gt, gt, x_0)}$$
$$= \lim_{t \to x_0} \frac{G(t, t, x_0)}{G(gt, gt, x_0)} = \lim_{t \to x_0} \frac{1}{\frac{G(gt, gt, x_0)}{G(t, t, x_0)}}$$
fore, $\lim_{t \to x_0} \frac{G(gt, gt, x_0)}{G(t, t, x_0)} = 1.$

There $G(t,t,x_0)$

In the following we give another condition for the fixed point of order 2.

Proposition 2.8. Suppose that x_0 is not alone point and is a fixed point for T: $x \to X$.

(a) If $\lim_{x\to x_0} \frac{G(Tx,Tx,x)}{G(x,x,x_0)} = 0$ then x_0 is a fixed point of order 2 for T. (b) If $\lim_{x\to x_0} \frac{G(Tx,Tx,x)}{G(Tx,Tx,x_0)} = 0$ then x_0 is a fixed point of order 2 for T.

Proof. (a) From the definition of G-metric space we have

$$| G(x, x, x_0) - G(Tx, Tx, x_0) | \leq G(Tx, Tx, x)$$

$$1 - \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} \leq \frac{G(Tx, Tx, x)}{G(x, x, x_0)}$$

$$\leq 1 + \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)}$$

 $\lim_{x \to x_0} \frac{G(Tx, Tx, x_0)}{G(x, x, x_0)} = 1.$

(b) Prove of this part is similarly as prove of (a).

Proposition 2.9. Suppose that x_0 is a fixed point for $T: X \to X$ and $\psi: X \to R^+$ is a real valued function.

- (a) If x_0 be a fixed point of order 2 for T then $\lim_{x\to x_0} \frac{G(Tx,Tx,x)}{G(x,x,x_0)} \leq 2$.
- (b) If $G(Tx, Tx, x) \leq 2\psi(x) \psi(Tx) \leq G(x, x, x_0)$ for all $x \in X$ then x_0 is a fixed point of order 2 for T if and only if $\lim_{x\to x_0} \frac{G(Tx,Tx,x)}{G(x,x,x_0)} = 0.$

Proof. (a) From the inequality

$$\begin{array}{rcl} G(Tx,Tx,x) &\leq & G(Tx,x_0,x_0) + G(x_0,Tx,x) \\ &\leq & G(Tx,Tx,x_0) + G(x,x,x_0) \\ \\ \frac{G(Tx,Tx,x)}{G(x,x,x_0)} &\leq & \frac{G(Tx,Tx,x_0)}{G(x,x,x_0)} + 1. \end{array}$$

Therefore, $\lim_{x\to x_0} \frac{G(Tx,Tx,x)}{G(x,x,x_0)} \leq 2$. (b) From inequality $G(Tx,Tx,x) \leq 2\psi(x) - \psi(Tx) \leq G(x,x,x_0)$,

$$\begin{array}{rcl} G(x,x,Tx) + G(Tx,Tx,T^{2}x) + \ldots + G(T^{n-1}x,T^{n-1}x,T^{n}x) & \leq & \Sigma_{i=1}^{n} 2\psi(T^{i-1}x) - \psi(T^{i}x) \\ & = & 2\psi(x) - \psi(T^{n}x) \end{array}$$

176

$$\begin{array}{lll} \begin{array}{lll} \text{and} \\ \\ \hline G(T^{n-1}x,T^{n-1}x,T^nx) \\ \hline G(x,x,x_0) \end{array} & = & \frac{G(T^{n-1}x,T^{n-1}x,T^nx)}{G(T^{n-1}x,T^{n-1}x,T^{n-2}x)} \frac{G(T^{n-1}x,T^{n-1}x,T^{n-2}x)}{G(T^{n-2}x,T^{n-2}x,T^{n-3}x)} \cdots \\ \\ & = & \cdots \frac{G(T^2x,T^2x,x_0)}{G(Tx,Tx,x_0)} \frac{G(Tx,Tx,x_0)}{G(x,x,x_0)}, \end{array}$$

since $\lim_{x \to x_0} \frac{G(T^{n-1}x, T^{n-1}x, T^nx)}{G(x, x, x_0)} = \lim_{x \to x_0} \frac{G(Tx, Tx, x)}{G(x, x, x_0)}$ and $\lim_{x \to x_0} \frac{G(T^{n-k}x, T^{n-k}x, T^nx)}{G(x, x, x_0)} = 1$ which k = 1, 2, ..., n - 1, so $\lim_{x \to x_0} \frac{G(T^{n-1}x, T^{n-1}x, T^nx)}{G(x, x, x_0)} = \lim_{x \to x_0} \frac{G(Tx, Tx, x)}{G(x, x, x_0)}$. From inequality $G(Tx, Tx, x) \leq 2\psi(x) - \psi(Tx) \leq G(x, x, x_0)$. It is clear that $\psi(T^nx)$ is strict decreasing.

$$n\frac{G(Tx, Tx, x)}{G(x, x, x_0)} \leq \lim_{x \to x_0} \frac{2\psi(x) - \psi(T^n x)}{G(x, x, x_0)}$$
$$\leq \lim_{x \to x_0} \frac{2\psi(x) - \psi(T^n x)}{2\psi(x) - \psi(Tx)}$$
$$\leq \lim_{x \to x_0} \frac{2\psi(x) - \psi(T^n x)}{2\psi(x) - \psi(T^n x)}$$
$$= 1.$$

Hence, $\lim_{x \to x_0} \frac{G(Tx, Tx, x)}{G(x, x, x_0)} = \frac{1}{n}$. Since n is arbitrary positive integer, $\lim_{x \to x_0} \frac{G(Tx, Tx, x)}{G(x, x, x_0)} = 0$.

References

- M. Edelstein, An extension of Banach;s contraction principle, Proc. Amer. Math. Soc. 12(1961), 7-10.
- T. H. Kim, E. S. Kim and S. S. Shin, Minimization theorems relating to fixed point theorems on complete metric spaces, Math. Japon. 45(1997), no. 1, 97-102.
- Z. Liu, L. Wang, SH. Kang, Y. S. Kim, On nonunique fixed point theorems, Applied Mathematics E-Notes, 8(2008), 231-237.
- Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal. 7 (2006), no. 2, 289–297.
- C. K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205(1997), no. 1, 239-250.

DEPARTMENT OF APPLIED MATHEMATICS, SAGAR INSTITUTE OF SCIENCE, TECHNOLOGY & RESEARCH, RATIBAD, BHOPAL - 462043