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APPLICATION OF Ep-STABILITY TO IMPULSIVE FINANCIAL

MODEL

OYELAMI, BENJAMIN OYEDIRAN AND SAM OLATUNJI ALE

Abstract. In this paper, we consider an impulsive stochastic model for an

investment with production and saving profiles. The conditions for financial
growth for the investment are investigated under impulsive action and results

are obtained using the quantitative and Ep stability methods. The impulsive

stochastic differential equation considered is assumed to be driven by a process
with jump and non-linear gestation properties. One of the results established

shows that, in the long run, it is impossible for a financial investment to grow

or dominates the prescribed average financial investment but has a threshold
value for which the investment cannot grow beyond. It is also established

that an Ep− stable investment vector can be found which allows financial

growth but this vector must be constrained to be in a given invariant set:It
is advisable for the saving and depreciation to satisfy certain growth rates for

proper income and investment growths.

1. Introduction

Impulsive differential equations (IDEs) are systems that are subject to rapid
changes in the variables describing them. Impulses are noted to take place in
different ways e.g. in the form of “shocks”, “jumps”, “mechanical impacts” etc.
([1]) and they take place for short moments during process of evolution ([1], [10], [14-
17]). Many real life processes are impulsive in nature, examples are the biological
bustling rhythms, the change in the states of the economy of some countries, the
population under rapid changes, the outbreaks of earthquakes, eruption of epidemic
in some ecological set-ups and so on ([1] & [16-17]).

In the recent times, financial markets are places where funds are sourced for
investment. Many financial derivatives are traded under organized market system
and trade over the counter. In the stock exchange market financial derivatives like
plain vanillas, bonds and exotics options are traded. The volume of trade increases
everyday and there is the need to analyze the performance of the market using some
models. We need to determine the fair price of an option and payoff for the buyer.
We need to understand the complex cash flow structures in the financial markets
and the risks involve in managing the financial portfolios etc ([4], [6], [9],[13], [18]
and [19]).

Most business organizations and many countries of the world usually set aside
some substantial amount for investment or put in place some machineries to gen-
erate funds for investment. The instrument for raising money for investment often
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take the form of sinking funds, treasury bills, capital stocks, national reserves etc.
The goal of entrepreneurs are to make the investment have appreciable financial
growths.

It must be noted that sometimes, funds so invested experience favourable fi-
nancial growth, if the investment atmosphere allows such growth. Under certain
situations which are often not easily predicted, the business many suffer unexpect-
ed economic recession, in which case, profit is lot in the investment period. Some
countries rely on natural resources such as fossil oil as the major export earner, for
which the prices of crude oil tends to fluctuate every year, hence, the state of the
economy of those countries tend to show impulsive behaviour ([14], [16]).

Furthermore, in the international market today, the price of fossil oil is impul-
sive because of rapid rise and falling of price of the oil within short period of times.
Moreover, profits made on investment on crude oil goes up and down in yo-yo
way. Therefore, the use of impulsive models would be useful for modelling prices
of energy derivatives using different exotic options. The model also have potential
applications for studying several real life problems in several fields of human en-
deavour that can be modeled using ISDEs with gestation function being taken to
be zero.

In view of the above, an investment may also be affected by impulsive phenom-
enon and how can it experience growth under impulsive effect? the search for the
answer to this question is the motivation for the study in this paper. We will con-
sider an impulsive stochastic model in studying the financial investment portfolio
with production and saving profiles. We will use the Ep-stability method, that is,
stability relative to p-moment to the study model. Application of p-moment to
SDEs are found in the literature but for the ISDEs we can say it is relatively new
([7]) if we consider the volume of publications made on SDEs.

It is worthy of note to say, the structure of the solution of ISDEs changes with e-
quilibrium points of the model, hence the investment and national income equilibria
depend on the process driving forces and the volatilities for the model. Therefore,
the stability of the financial model cannot be deduce in the ordinary stochastic
sense. Hence, we will exploit a broader stability concept, that is, stability relative
to invariant sets to study the model. The importance of this approach were em-
phasized in many publications (see for examples [11-12] and [14], and references
therein), however, we will unify this approach with Ep-stability, such kind of ap-
proach had appeared for stochastic processes [17]) but as for impulsive systems the
unified approach seems to be relatively new.

2. Usefulness of Impulsive Phenomenon in the Financial Modeling

In mathematics a variety of models exist for financial investment using applica-
tions of some theories in chaos, control, neural network, ecophysics and so on. Most
models from Economics, the central problem is the concern about the interactions
of many complex variables for which fundamental “scarce” variable is the capita
([2],[4],[6],[9],[13] and [16]).

The model we will consider is one of the simplest impulsive mathematical model
in economics, a “macro-model” with gestation lag and depreciation, it can be used
as a simple model of company (or country) growth process and to demonstrate
some fundamental relationships that exist among variables that quantify a financial
investment using impulsive variables.
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We note that the impulsive system theory offers viable techniques to handle
dwindling effect of the investment, for example, through impulsive system theory,
we can identify factors responsible for rapid and irregular growth of the investment
and also factors responsible for sudden drop in the investment at fixed and non-fixed
investment periods ([10],[14],[16] and [20]). We will consider an impulsive stochastic
model of a financial investment with income, capita stock and depreciation vector
containing gestation lag.

3. Preliminary Treatment

We shall denote by (Ω, ξ, p) a probability space Ω, being the set of points with
events, which is a δ-algebra of subsets of Ω such that Ω ∈ ξ and p denotes the
probability measure.

Let x(t) be a random process at time t with expectation (mean) Ex(t) = x̄(t)
and the variance is δ2x(t) = (x(t) − x̄(t))2. The autocovariant vector R(t, τ) =
E(x(t)x(τ)). We shall say ([5]) the sequence of random process {xn(t)} converges
to x(t) in probability almost surely as n → ∞, if for any ε > 0, δ > 0 there exists
a number N such that

p(|xn(t)− x(t)| > δ) < ε, n > N ;

and {xn(t)} is said to be convergent to x(t) with probability 1 as n→∞ if

lim
n→∞

p(|xn(t)− x(t)| = 0) = 1.

Crucial to our investigation is the following set C([−h, 0],<) which is the space of
continuous random processes on [−h, 0] and taking values on < = (−∞,+∞) and
let <+ = [0,+∞).
PC([−h, 0],<) = {x : [−h, 0]→ < is a piecewise continuous random process for

t ∈ [−h, 0] such that it is left continuous at tk, k = 1, 2, . . . }.
K = {a(r) : a ∈ C([−h, 0],<) are monotonically increasing in r and lim

r→+∞
a(r) =

∞}.

Let V (t, x(t)) be a piecewise continuous random process on <+ × C[−h, 0] and
there exist wi ∈ K, i = 1, 2 such that the following conditions are satisfied:

ω̄1(|ϕ(0)|) ≤ V (t, ϕ) ≤ ω̄2(|ϕ(0)|), ω̄i ∈ K, i = 1, 2

|V (t, ϕ1)− V (t, ϕ2)| ≤ C1(|ϕ1 − ϕ2|), C1 = constant, ϕi ∈ C([−h, 0],<+), i = 1, 2.
Then the Dini derivative D+

(·)V (t, x(t)) of the function V (t, ϕ) along the solution

path (·) for the ISDE in equation (·) is defined as

D+
(·)V (t, x(t)) = lim

δ→0
sup

1

δ
[V (t+ δ, x(t) + δf)− V (t, x(t))].

Consider the following ISDE

dx(t) = f(t, x(t))dt+ g(x(t− h))dw(t), t 6= tk, k = 0, 1, 2, . . . (1)

4x(tk) = I(x(tk))

0 < t0 < t1 < t2 < · · · < tk; lim
k→∞

tk = +∞

where
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f : <+ × Ω → Ω; g : Ω → Ω, I : Ω → ∞. The expectation of V (t, x(t)) is
EV (t, x(t)) and the variance δ2V (t, x(t)) and the p-moment EpV (t, x) about the
origin.

3.1. Comparison system. Consider the following comparison impulsive stochas-
tic differential equations (CISDE) corresponding to the eqn (1)

dx(t) = e(t, u(t))dt+ h(u(t))dw(t), t 6= γk, k = 0, 1, 2, . . . (2)

4u(γk) = I(u(γk))

0 < γ0 < γ1 < γ2 < · · · < γk; lim
k→∞

γk = +∞

where e : <+ × Ω→ Ω; h, I : Ω→ Ω.
Assume that f, e, h and I are smooth enough as to guarantee the existence and

uniqueness of solutions of eqn (1) and eqn (2) (see [10] and [19]).
We will make use of the following definitions:

Definition 1 ([11],[12] & [14])
Let x(t) be the solution of eqn (1) passing through (t0, x(t0 + 0) = x0) then we

say that the solution x(t) = 0 of the eqn (1).

1. Ep-uniformly stable (u.s.) with respect to the invariant A = {x ∈ Ω : |x| ≤
r} if
(a) |x0| = r implies |Exp(t)| = r, t ≥ t0;
(b) ∀ ε > 0 and t0 ∈ <+ there exists a real number δ = δ(ε) > 0 such that

r − δ < |x0| < δ + r implies r − ε|Exp(t)| < r + ε, t ≥ t0;
2. Ep-uniformly asymptotically stable with respect to the invariant A if there

exist real numbers δ0 > 0, and T = T (ε) > 0 such that r − δ0 < |x0| <
r + δ + 0 implies r − ε < |Exp(t)| < r + ε, t ≥ t0 + T

Remark 1
Ep-stability is the unification of invariant stability and stability with respect to

p-moment ([10-11] & [14]).
If Ex(t) = x̄(t) for p = 1 and r = 0, Ep-stability reduces to the usual stability

in the Lyapunov’s sense for the impulsive stochastic equations. If the underlying
variable is deterministic then the system is simply the impulsive ordinary differential
equations.

We will make use of the following auxiliary results.
Let x be a random variable such that

E(x) = µ,E(x− µ)2 = σ2, E|x− µ|r = βr, E(|x− µ|) = 0 and δ̃ = µ/σ.

4. Statement of the Problem

Consider a simple impulsive stochastic differential model (isdm)

dx(t) = δ−1y(t)dt− b+ α1(t)g(x(t− h)) + σ1dw1(t), t 6= tk, k = 0, 1, 2, . . . (3)

dy(t) = δ−1y(t)dt+ α2(t)V (t) + σ2dw2(t), t 6= tk, k = 01, 2, . . . (4)

dz(t) = βdx(t), t 6= tk, k = 0, 1, 2, . . . (5)

4x(tk) = βkx(tk) (6)

Satisfying the initial conditions

x(t0 + 0) = x0, y(t0 + 0) = y0 and z(t0 + 0) = z0 (7)
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0 < t1 < t2 < t3 < · · · < tk, tk = +∞, as k →∞
where

(1) x(t) is the investment variable
(2) y(t) is the national (company’s) income
(3) z(t) is the capital stock
(4) v(t) is the fluctuation variable
(5) wi(t) are assume to be Brownian processes.

It is assumed that x(t) is the random variable representing in totality the amount
of the investment (both liquid and solid asserts) which experience a growth rate of

δβ−1 =
saving

Capita output
δ = saving ratio, δ−1 is the drift, b is given depreciation rate and g(x(t− h)) is

the depreciation function with gestation lag h with the expectation Eg (x(t− h)).
g(x(t − h)) is generally assume to be nonlinear continuous random process. The
expectation of g(x(t − h)) denote by g(x(t − h)) is assumed to exists. αi(t) are
some jump parameters for i = 1, 2. The parameters βk = 1, 2, 3, . . . , account for
the impulses that happen during the investment period. These parameters can be
investment for some period of times.
V (t) is assume to be statistically independent with respect to the investment

variable, hence E(y(t), V (t)) = 0 and δ2(V (t), V (t)) = 1.
We define

f1(t, x(t)) = δ−1x(t)− bα1(t)g(x(t− h)) + σ1dw1(t) and

f2(t, y(t)) = δ−1y(t)− bα2(t)v(t) + σ2dw2(t)

dx(t) = a1(t)dt+ b1(t)dw(t) and dy(t) = a2(t)dt+ b2(t)dw2(t).

Then we define the stochastic differential equation corresponding to (isde) as

df1 = (f1t + a1(t)f1x +
1

2
b21(t)f1xxdt+ b1(t)f1xdw1(t)

df2 = (f2t + a2(t)f2x +
1

2
b22(t)f2xxdt+ b2(t)f2xdw2(t)

4x(tk) = βkx(tk)

4y(tk) = βky(tk)

and integration give

f1(t, x(t) = f1(0, x0) +

∫ t

0

(f1s + a1(s)f1x +
1

2
b21(s)f1xx)ds

+

∫ t

0

b1(s)f1xdw1(s) +
∑

t0<tk<t

βkx(tk)

and

f2(t, y(t) = f2(0, y0) +

∫ t

0

(f2s + a2(s)f2y +
1

2
b22(s)f2yy)ds

+

∫ t

0

b2(s)f2ydw2(s) +
∑

t0<tk<t

βky(tk)
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where f1t =
∂fi
∂t
, fix =

∂fi
∂x

, fitt =
∂2fi
∂t2

and fixx =
∂2fi
∂x2

for i = 1, 2.

If αi(t) = 0, 4x(tk) = 0, the model is the Black Schole’s model for pricing
options where α−1 and σi are the drift and the volatility respectively ([2], [4] &
[9]).

It is worthy of note to say that, it is not easy to obtain the equilibrium points for
the problem. The solution structure of the problem changes with the equilibrium
points. In general, but if g(x(t − h)) = x(t − h) and 4x(tk) = C = constant, this
give rise to the following nonlinear equations

δ−1x(t)− bα1(t)g(x(t− h)) + σ1dw1(t) = 0

δ−1y(t)− bα2(t)v(t) + σ2dw2(t) = 0

We solve for x(t) and y(t) to determine the equilibrium investment and the e-
quilibrium national income.

Remark 2
The investment and national income equilibria change with time and both de-

pend on the saving ratio. The two of them also depend on the jump and volatility
parameters and the stochastic process driven forces as the above non-linear equa-
tions show. The above nonlinear equations can be solved using fixed point iterative
process for stochastic processes. The major problem is the nonlinearity of the
gestation radon variable g(x(t− h)).

Now let us consider the situation where g(x(t − h)) = x(t − h) that is g has a
fixed point. If the volatilities of the investment and national income are zeros, i.e.
σi = 0 for i = 1, 2 then an equilibrium for the system is the point t∗ such that
x(t∗) = bα1(t∗)δx(t∗ − h) and y(t∗) = −α2(t∗)δV (t∗) In order to determine the
values of x(t∗) and y(t∗) set s(t) = λt where λ = constant and t = 0, 1, 2, . . . then
it is easy to show that λ = (bα1(t∗)δ)1/h, thus x(t∗) varies with t∗. Then the set
of the equilibrium points for the model with zero volatilities (σi = 0) or simply

the set E1 is E1 = {t∗ ∈ IR+ : x(t∗) = (bα1(t∗))t
∗/h and y(t∗) = −α2(t∗)δV (t∗),

t∗ ∈ (tk, tk+1); x(tk) = x0 + NC, 4x(tk) = C and N is number of impulse points
present in (tk, tk+1)} where x(t) is the solution of eqn (1) satisfying the initial
condition x(0) = x0 for finite N and C.

If the volatility is not equal to zero, that is, σi 6= 0, then we can obtain the set
of the equilibrium points for the model for non-zero volatilities (σi 6= 0) or simply
the set E2 as

E2 =

{
t∗ ∈ J :

(
x(t) = (bα1(t∗)δ)t

∗/h+σ1dw1(t
∗)

y(t) = bα1(t∗)V (t∗)δ − σ2dw2(t∗)

)
, t ∈ (tk, tk+1);

x(tk) = x0 +NC,4x(tk) = C, y(tk) = y0 +NC, 4y(tk) = C

and N is the number of impulse points present in (tk, tk+1)}.
Thus, the equilibria also depend on the process driving forces wi(t) and the

volatilities σi for the model for i = 1, 2. Since the equilibria for the (isdm) is gen-
erally changing from point to point, the stability of the financial model cannot be
deduce in the ordinary sense. Hence, later on, we will exploit a broader stability
concept, that is, stability relative to invariant sets to study the model. The im-
portance of this approach were emphasized in many publications (see for examples
[11-12] & [14], and reference therein), however, we will unify this approach with Ep

stability, that is, stability relative to p−moment of vectors, such kind of approach
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had appeared for stochastic processes ([17]) but as for impulsive systems the unified
approach seems to be relatively new.

4.1. Discussion of the Variables Involved in the Model. Assume that no
gestation lag or depreciation, i.e., b = 0 or g(x(t− h)) = 0 and the rate of increase
of the capita stock equals investment. Then the introduction of capita output
ratio allows simple estimation of the production function of the business as express
as ratio of the investment to the income. This simply mean that the investment
(assumed equal to saving) shows a fixed ratio, δ to the income.

By Lord Keynes ‘famous work of the general theory of employment interest and
money; saving and investment are always equal’. Therefore, in term of consumption,
the income can be expressed as

(1) income = consumption + saving
(2) income = consumption + investment

Hence, from the above, it is easy to show the ratio of the consumption to the
investment is equal to (α−1 − 1).

In this model we shall assume that the depreciation function g(x(t − h)) is a
nonlinear continuous random process.

4.2. Nature of the Solution to the Investment Model. The solution of equa-
tions (3 and 7) is a stochastic variable q(t) such that

q(t) = q0 +

∫ t

t0

f(s, q(s))ds for t 6= tk, k = 0, 1, 2, . . . (9)

where

f(t, q(t)) =

 δ−1 0 0
δ−1 0 0
0 β 0

 x(t)
y(t)
z(t)

+ h(t, q(t))

h(t, q(t)) :=


−bα1(t)g(x(t− h)) + σ1(t)w1(t)

α2(t)v(t) + σ2(t)w2(t)

0

 ,

q(t) :=

 x(t)
y(t)
z(t)

 .

In eqn (9) the integration is made in the Ito sense. The solution x(t) of eqn
(1) is a continuous random process that satisfies the equation for t 6= tk, but for
t = tk impulses take place and the solution starts to exhibit some kind of impulsive
behaviour whose solution can also be obtained by slight modification of the results
in ([10] & [17]) as follows:

It is a random process whose solution satisfies the equation

dq(t) = f(t, q(t))dt, t 6= tk, k = 0, 1, 2, . . .

such that

q(t+k ) = x(tk) +4x(tk)

where4x(tk) = x(tk+0)−x(tk−0), x(tk+0) and x(tk−0) are the right and the left
limits of x(t) at t = tk, k = 1, 2, 3, . . . respectively. Assume that x(tk) = x(tk − 0).



APPLICATION OF Ep-STABILITY 45

For characterization of the solution of the eqn (1) in terms of non-fixed moments
of some kind of impulsive operator (see [1] & [10]).

The appearance of impulses in this model, give rise to phenomenon such as “dy-
ing effect”, i.e., the solution cannot be continued across some barrier, “beating
effect” i.e., pulses take place wherein the solution hits given hyper-surface sever-
al times and “lost of autonomy”, etc. (see [10] & [17] for detail) which financial
models may likely prone to, such phenomena cannot be handled from the ordinary
stochastic differential equations point of view (see [17]). The complexities in the
behaviour of the solutions of most problems of impulsive family make it an inter-
esting area of research focus of late. Some of the behaviour were communicated in
many publications (see [1] & [8]) and even our recent papers ([14 - 15]).

The equation (3) and (7) can be used to find the solution to the model, since,
the values for y(t) and z(t) can be obtained once x(t) is known. In this direction,
the solution can be found by slight modification of the result in (see [3], [10] & [17])

x(t) =
∏

t0<tk<t

(1 + βk)eδ
−1(t+h)eδ

−1h

x(−h)

+ be−δ
−1h

∫ t−h

0

∏
t0<tk<t

(1 + βk)α1(τ)eδ
−1τg(x(τ))dτ

+ b

∫ t

0

∏
t0<tk<t

(1 + βk)α1(τ)eδ
−1(τ+h)g(x(τ))dτ

+

∫ t

0

σi
∏

t0<tk<t

(1 + βk)eδ(τ+h)dw1(τ), t ≥ 0, τ := t+ s (10)

One crucial question one may ask at this point is: is it possible for the business set-
up to have perpetual financial growth if we assume that the business environment
is favourable? The next proposition affirms that it is impossible for the business to
have indefinite financial growth.

Proposition 1
Let the following conditions be satisfied:
There exist non-negative constants C1, C2, C3 and C4 such that:
H1 : x(t) has a distribution such that Ex(t) = 0 and E|x2(t)| < C4.

H2 : A2E2x(−h) expB2 exp(e−a(t−h)T ) ≤ C1

where

A =
∏

t0<tk<t

(1 + βk)eα
−1(t+h)eα

−1h, B =
∏

t0<tk<t

(1 + βk)eα
−1hb

H3 : A4e−4α
−1he−2α

−1

Ex2(−h) + 2AB2e−2α
−1h|x(−h)| exp

(
1− e−α−1t

α−1

)
≤ C2

H4 : supE|x2(τ)| ≤ max[C1, C2] < C4.
Then

lim
t→∞

1

t2

∫ t

0

P (|x(s)| ≥ kE|x2(s)|)ds = 0

Proof
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Let −h ≤ t ≤ 0 and α10 = max
t∈(−h,0]

α(t), replace x(t) by Ex2(t) in eqn (10) and

majorise the equation, then

Ex2(t) ≤ A2Ex2(−h) + 2ABx(−h)

∫ t−h

0

α1(τ)e−α
−1τEx(τ)dτ

+ b2
∫ t−h

0

e2α
−1τEx2(τ)dτ +

∫ ∞
0

e2α
−1τEx2(τ)dw1(τ).

By the application of the Gronwall-Bellman’s equality, we have

Ex2(t) ≤ A2Ex2(−h) expB2 exp(α10e
−α−1(t−h)T )

× σ1
∫ t

0

e−2α
−1τEx2(τ)dw1(τ) ≤ C1

If t > 0, τ := t+ s.
Then

E|x2(t)| ≤ A4e4α
−1he−2α

−1t|Ex2(−h)|

+ 2α10A
2B2AB2e−2α

−1h|Ex(−h)|σ1
∫ t

0

e−α
−1τEx2(τ)dτ

≤ A4e−4α
−1he−2α

−1τC2 + 2AB2e−2α
−1h|Ex(−h)| exp

(
σ1

1− e−α−1τ

α−1

)
≤ C3.

It follows that

E|x2(t)| ≤ sup
τ∈(−h,0]

E|x2(τ)| ≤ max(C1, C2) < C4

Application of Chebyshev’s inequality yields,

P (|x(t)| ≥ kE|x2(t)|) 1

k2
, k > 0

Then,

lim
t→∞

1

t2

∫ t

0

P (|x(s)| ≥ kE|x2(s)|) ≤ lim
t→∞

1

t2

∫ t

0

1

k2
ds

= lim
t→∞

1

t2
1

k2
t = 0.

The result established above shows that, in the long run, “it is impossible for the
investment to grow or dominates the prescribed average financial investment”.

The behaviour of the financial investment under impulsive action is not neces-
sarily be the same as the ordinary stochastic equations with prescribed probability
distribution function, for example the Markov, Wienie, and Martingale processes
etc. Let us assume that the impulsive processes have gamma distribution because
of the relatively newness of the impulsive stochastic differential process and that
their solutions behave as stated in the section 4.2. Although processes that allow
jump behaviours as Poisson, Levy and Martingale can also be used to analyse the
model.

Theorem 1
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Suppose the random variable x(t) in eqn (1) is a Stochastic process with gamma
distribution with parameter (n+ 1, µ) and define the following constants:

H1 : A =

[ ∏
t0<tk<t

(1 + βk)

]2
e2α

−1hx(−h)

H2 : E1x
2(t) =

µn+1

n(µ− α−1)n+1

[ ∏
t0<tk<t

(1 + βk)

]2
e2α

−1hx(−h)

H3 : E2x(t) = be−α
−1h

∫ ∞
0

∫ 0

−h

∏
t0<tk<t

(1 + βk)e−ατg(x(τ))
µ(µt)n

n!
e−µtdt

H4 : E3x(t) =

∫ ∞
0

∫ 0

−h

∏
t0<tk<t

(1 + βk)e−α
−1t+hg(x(τ))

µ(µt)n

n!
tne−µtdt

Then,

Ex2(t) = E1x
2(t) + E2x

2(t) + E3x
2(t)

Proof
From the eqn (10) and definitions of E1 and E2 we have

E1x
2(t) =

µn+1

n(µ− α1)n+1

[ ∏
t0<tk<t

(1 + βk)

]2
e2α

−1hx(−h)

E2x
2(t) =

−b
n!

e−α
−1h

µn+1

∫ 0

−h

∏
t0<tk<t

(1 + βk)e−α
−1τg(x(τ))dt

∫ ∞
0

βne−βdβ

=
−b
n!

e−α
−1h

µn+1
Γ(n− 1)

∫ 0

−h

∏
t0<tk<t

(1 + βk)e−α
−1τg(x(τ))dτ

Furthermore, we have the estimation

Ex2(t) = b

∫ ∞
0

∫ t

0

∏
(1 + βk)e−α

−1(τ+h)g(x(τ)dτ
µn+1

n!
tneµtdt

=
b

n!
Γ(n)

∫ t

0

∏
(1 + βk)e−α

−1(τ+h)g(x(τ))dτ

=
b

n!
Γ(n)

∏
(1 + βk)

∫ t

0

e−α
−1τg(x(τ))dτ
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But

Ex2(t) = A4e2αtEx2(−h)− 2A2eαt
∫ 0

−h
Be−ατE(x(h))g(x(τ))dτ∫ 0

−h

∫ 0

−h
Be−α(τ1+τ)E(g(x(τ1)))g(x(τ))dτ1dτ

+

∫ t

0

∫ t

0

B2e−α
−1(τ1+τ)E(g(x(τ1)))g(x(τ))dτ1dτ

+

∫ 0

−h

∫ t

0

B2e−α
−1(τ1+τ)E(g(x(τ1)))g(x(τ))dτdτ1

+ σ2
1

∫ t

0

∫ t

0

e−α(τ+τ1)R(τ, τ1)dτdτ1

where R(τ, τ1) is the autocovariant function.
Therefore, Ex2(t) = E1x

2(t) + E2x
2(t) + E3x

2(t).
An analogous result can be established for the model with gamma distribution

with (n+ 1, µ) parameter using the Peek’s inequality as follows:
If Ex2(t) is bounded by a constant C5 such that ζ(t) has asymptotic expansion

and define
Ex2(0)

Ex2(T )
= A+ζ(T ), ζ(T ) := a0 +fraca1T +

a1
T 2

+ · · · , ai, i = 0, 1, 2, . . .

are some constants and A = exp(1 + a0) − a0 then by Peek’s inequality it follows
that

P (x(t) ≥ λEx2(t)) <
1− Ex2(t)

λ2 − 2λEx2(t) + 1

Therefore,

lim
T→∞

1

T

∫ T

0

P (x(s) = λEx2(s))ds < lim
T→∞

1

T

∫ T

0

[
1− Ex2(s)

λ2 − 2λEx2(s) + 1

]
ds

≤ lim
T→∞

1

T

(∫ T

0

1− Ex2(s)ds

−2λEx2(s)

)

=
1

λ

[
lim
T→∞

log e

(
Ex2(0)

Ex2(T )

)
− 1 + ζ(T )

]
=

1

λ
lim
T→∞

[ln(A+ ζ(T ))− 1 + ζ(T )]

=
1

λ
[ln(A+ a0)− 1 + a0] = 0.

Therefore,

Ex2(T ) = Ex2(0) exp−λ(A+ 1) exp(−ζ(T ))

Hence, Ex2(T ) → 0 as T → ∞, a contradiction of 0 < |Ex2(t)| < C5 for
t ∈ [−h, T ] for all T , which also contradicts the fact that |Ex(t)| < C1, therefore
lim
T→∞

P (x(t) ≤ λEx(t)) = 1. If the process has a gamma distribution as against

the arbitrary situation proved in proposition 1, then the financial variable grows
and tends to be bounded by λC5 in the long run. This simply affirms that the
investment has a threshold value scaling factor of λC ′5 for which the investment
cannot grow beyond.
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The question of boundedness of the growth of the investment posses the question
of investigating the problem from qualitative point of view, to be precise the sta-
bility of solution of the model will be investigated in relation to a given invariant
set. In this direction, we will discuss the stability of the problem in relation to
p−moment.

Corollary 1
H1 : Suppose all the conditions in Theorem 1 are satisfied

H2 : Ek :=
∑∑∑

· · ·
∑
θ

EkEθ, θ are permutation over 1, 2, . . . , n.

Then

E2x(t) =

n∑
i=1

n∑
j=1

EiEi−jx(t)

Proof
Straight forward like Theorem 1.
Suppose that the depreciation variable g(x(t)) is such that g(x(t)) = rx(t); or

g(x(t)) = rx(t)x(t− h) ≤ rx2(t).

Then,

E(x(−h)g(x(t)) ≤ rE(x(−h)x(t)) ≤ rC4

and

E(x(−h)h(x(t)) ≤ rx2(t).

Then

E(x(−h))g(x(t)) ≤ rE(x(−h)x(t)) ≤ rC4.

We are now in the position to investigate Ep-stability of the financial model. In
the practical term, this implies given a solution x(t) to the financial investment in
the invariant set, is it possible for the p-moment of the solution about the origin
Epx(t) to be found in the invariant set which satisfies the E-stability properties
in the definition 1. In real life situation, this simply means that if right economic
strategies that needed for the growth of the investment are used, then the invest-
ment can be made to grow so long as it is confined to the invariant set. In practice,
the invariant set is the set in which the investment is constrained to and outside of
it the investment may not be favourable.

Theorem 2
Let x(t) ∈ PC([−h, 0],<) such that V (t, x(t)) is a continuous random process in

[−h, 0] with expectation EV (t, x(t)) such that

(1) H1 : |EV (t, x1(t))− EV (t, x2(t))| ≤ K1|x1(t)− x2(t)|,K1 =constant
(2) There exist β1, β2 ∈ K such that

β2(E|x(t)|p) ≤ EV (t, x(t)) ≤ β1(E|x(t)|p)
(3) dEV (t, x(t)) ≤ g(EV (t, x(t)))dt
(4) EV (tk + 0, x(tk) +4x(tk)) ≤ ϕk(x(tk))
(5) βku = u+ ϕ1(u), ϕ1 ∈ K

The zero solution x(t) = 0 of eqn (1) is E-stable with respect to the invariant
set A.

Proof.
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Suppose that the zero solution x(t) = 0 of eqn (1) is E-stable with respect to the
invariant set A, then ∀ε > 0, ∃δ = δ(x0, ε) such that |Ex(t)| < ε implies that
|x0| < δ0, there is a finite number p > 0 such that r − ε < |Exp(t)| < r + ε for
δ0 + r0 < |x0| < δ0 + r0.

Let

|x0|p < r − δ0, a2(ε− r) > β1(r − 2δ0), for a2 and β0 ∈ K
Let m(t) be the solution of eqn (1) such that

ṁ(t) ≤ g(t,m(t)), t 6= tk, k = 0, 1, 2, . . .

m(t+k ) ≤ m(t) + ϕk(m(t)), t = tk, k = 0, 1, 2, . . .

m(t+k ) ≤ u(t0)

If r(t) = r(t, t0 + 0, u0) is a random process which is the maximal solution of
the impulsive stochastic differential equation in eqn (1) then by standard results,
V (t, x(t)) ≤ r(t) we can show that EV (t, x(t)) ≤ r(t).

From eqn (2)

EV (t, x(t)) ≤ EV (t0 + 0, x0) ≤ r(t) ≤ β1(E|x0|p) = β1(|x0|)p)
≤ β1(r − δ0) < β2(r − ε)

Therefore, E|x(t)|p < ε+ r for t ≥ t0, by similar estimation we have

E|x(t)|p > ε− r for r − δ < |x0 < δ + r.

Therefore the zero solution x(t) = 0 of the eqn (1) is E-stable with respect to
the invariant set Ω.

The general form of distribution function governing an impulsive stochastic mod-
el is unknown, such distribution if exists may be continuous or discrete or even
possess piecewise continuous property. Recently, the theory of Time Scale have
been exploited to study systems which are either continuous or discrete or both
simultaneously ([11-12]).

In the quest for an ideal distribution for impulsive stochastic system and the
correspond p-moments are open problems. Meanwhile, we define the characteristic
function for x(t) taking into consideration impulsive tendency as

Cx(ε) = E[x(t)e−iεt]

From the characteristic function we can obtain the k-moment as

E
{
xk(t)

}
=

1

(iε)k

[
dkCx(ε)

dεk

]
, k = 1, 2, . . .

The construction of the ideal distribution may be made by the formulation of im-
pulsive analogue of the Chapman-Kolmogorov equation if the underlying stochastic
process is a Markov process ([3]). The construction of an ideal distribution function
for impulsive stochastic systems is one of the fundamental problems future research
should focus on. Because of the peculiar nature of the problem of how to deter-
mine Cx(ε) we resort to investigate the behaviour of the solution of the model using
qualitative approach, hence the problem will be studied from stability point of view.

Remark 3
We propose the monkey function which somehow shows the behaviour of a mon-

key in the game and can be used to mimic the dynamics of the financial market.
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We define the monkey process as

M(t1, t) =



fk(t) t ∈ [t1, tk), k = 1, 2, . . .

fs(t) t ∈ [tk, tN ), fs(t) ∈ C∞(Ω)

δ(tN − t) t = tN

fj(t) t ∈ (tk+1, ts) 0 ≤ t1 < tk < tN ≤ ts


fk(t) is uniformly and identically distributed in the given interval
fs(t) is a smooth random function in the given interval, and
fj(t) is a continuous random process in the given interval
δ(t) is the Dirac function of t
The monkey function should be constructed to have the following properties:
H1 : M(t1, t) ≥ 0 for t1 ≥ t

H2 :

∫ t

0

M(t1, s)ds = 1

H3 : M(t1, 0) = δ(−t1)
H4 : dM = M(t1, t+4t)−M(t1, t)

The construction of an ideal distribution for an impulsive stochastic system using
the monkey function and the correspond p-moments are open problems.

5. Application of the E-stability

Without loss of generality if the depreciation variable is chosen in such a way
that g(x(t − h)) ≥ x(t) and the fluctuation variable is selected to be bounded
(V (t) ≤ k = constant) then the comparison equations corresponding to the isdm is

dx(t) ≤ (δ−1 − bα1)x(t)dt+ σ1dw1(t), t 6= γk, k = 0, 1, 2, . . .

dy(t) ≤ δ−1y(t)dt+K + σ2dw2(t), t 6= γk, k = 0, 1, 2, . . .

4x(γk) ≤ βkx(γk).

If m1(t) and m2(t) are the maximal solution to the comparison’s equation above
respectively.
Then

dm1(t) ≤ (δ−1 − bα1)m1(t)dt+ σ1dw1(t), t 6= γk, k = 0, 1, 2, . . .

dm2(t) ≤ δ−1m2(t)dt+K + σ1dw1(t), t 6= γk, k = 0, 1, 2, . . .

4x(tk) ≤ β1
km1(γk)

4y(tk) ≤ β2
km2(γk)

m1(γk + 0) = x0 and m2(γk + 0) = y0
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whose solutions are found to be

m1(t) = rm1
(t) =

∏
t0<tk<t

(1 + β1
k)e−(δ

−1−bα1)(t−t0)x0

+

∫ t

t0

σ1
∏

t0<tk<t

(1 + β1
k)e−(δ

−1−bα1)(s−t0)dw1(s)

m2(t) = rm2
(t) =

∏
t0<tk<t

(1 + β2
k)e−(δ

−1−bα1)(t−t0)y0

+K[δ − (t− t0)]

∫ t

t0

σ2
∏

t0<tk<t

(1 + β2
k)e−(δ

−1−bα1)(s−t0)dw2(s).

If (δ−1 − bα1) > 0, as time t→∞, the investment is bounded above by

lim
t→∞

∫ t

t0

σ1
∏

t0<tk<t

(1 + β1
k)e−(δ

−1−bα1)(s−t0)dw2(s)

while the saving is unbounded below because of the linear term −Kt. It is advisable
to maintain the saving and the depreciation rates such that (δ−1 − bα1) < 0 for
proper income and investment growths. The question we need to ask is: what
conditions would guarantee financial E-stability? We will use the proposition 1 to
investigate the required conditions to answer the question:

Let

V (t, x(t)) =
1

2

∫ t

t0

(s2 + x2(s))ds+
∑

t0<tk<t

pkx
2
k(tk)

Then,

EV (t, x(t)) =

∫ ∞
0

V (t, x(t))dF

where dF is the distribution of the process describing the random process.
Therefore,

EV (t, x(t)) =
1

2

∫ ∞
0

∫ t

0

(s2 + x2(s))dsdF +
∑

t0<tk<t

pk

∫ ∞
0

x2k(s)ds

and

Exp =

∫ ∞
0

xp(s)dF +
∑

t0<tk<t

pkx
2p
k (tk)

It is easy to show that

|EV (t, x1)− EV (t, x2)| ≤ 1

2
L1|x1 − x2||dF |+

1

2
L2|pk||x1 − x2|

=
1

2
(L1|F |+ L2|pk|)|x1 − x2|

Pick β1(r) = r2 and β2(r) = rp for p ≥ 2 and −4x(tk) ≤ x(tk + 0) ≤ 1 −4x(tk)
it is not difficult to show that

β1(E|x(t)|2) ≤ β2(E|x(t)|p) ≤ EV (t, x(t)) ≤ β1(E|x(t)|p).

By Theorem 2, this implies that the investment is E-stable with respect to the
invariant set A. This result simply shows that we can find an E-stable investment
vector which is constrained to a given invariant set in A which is E-stable.
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