GENERALIZATION OF INTEGRAL INEQUALITIES FOR PRODUCT OF CONVEX FUNCTIONS

M. A. LATIF

Abstract

In this paper, generalizations of some inequalities for product of convex functions are given.

1. Introduction

A function $f:[a, b] \rightarrow \mathbb{R}$, with $[a, b] \subset \mathbb{R}$, is said to be convex if whenever, x, $y \in[a, b]$ and $t \in[0,1]$ the following inequality holds:

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

This definition has its origin in Jensen's result from [1] and has opened up a very useful and multi-disciplinary domain of mathematics, namely, convex analysis. A largely applied inequality for convex functions, due to its geometrical significance, is the Hermite-Hadamard's inequality which has generated a wide range of directions for extensions and rich mathematical literature.

Hermite-Hadamrd's inequality is stated as follows:
A convex function satisfies:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

In a recent paper, Pachpatte [2] established the following inequalities for product of convex functions which can be derived from Hermite-Hadamard's inequality:

Theorem 1. [2] Let f and g be real valued, nonnegative and convex functions on $[a, b]$. Then

$$
\begin{array}{rl}
\frac{3}{2} \cdot \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} & f(t x+(1-t) y) g(t x+(1-t) y) d t d x d y \tag{1.2}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{8}\left[\frac{M(a, b)+N(a, b)}{(b-a)^{2}}\right]
\end{array}
$$

[^0]and
\[

$$
\begin{array}{r}
\frac{3}{b-a} \int_{a}^{b} \int_{0}^{1} f\left(t x+(1-t) \frac{a+b}{2}\right) g\left(t x+(1-t) \frac{a+b}{2}\right) d t d x \tag{1.3}\\
\quad \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{4} \cdot \frac{1+b-a}{b-a}[M(a, b)+N(a, b)]
\end{array}
$$
\]

where

$$
\begin{aligned}
M(a, b) & =f(a) g(a)+f(b) g(b) \\
N(a, b) & =f(a) g(b)+f(b) g(a) .
\end{aligned}
$$

The inequalities (1.2) and (1.3) are valid when the length of the interval $[a, b]$ does not exceed 1 . The inequality (1.2) is sharp for linear functions defined on $[0,1]$, while the inequality (1.3) does not have the same property.

In [3], Cristescu improved these inequalities by eliminating the condition $b-a \leq 1$ and derived the inequalities which are sharp for the whole class of linear functions defined on $[0,1]$. The main result from [3] is the following:

Theorem 2. [3] Let f and g be real valued, nonnegative and convex functions on $[a, b]$. Then

$$
\begin{align*}
\frac{3}{2} \cdot \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f & (t x+(1-t) y) g(t x+(1-t) y) d t d x d y \tag{1.4}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{8}[M(a, b)+N(a, b)]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{3}{b-a} \int_{a}^{b} \int_{0}^{1} f\left(t x+(1-t) \frac{a+b}{2}\right) g\left(t x+(1-t) \frac{a+b}{2}\right) d t d x \tag{1.5}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{2}[M(a, b)+N(a, b)]
\end{align*}
$$

where $M(a, b)$ and $N(a, b)$ are defined in Theorem 1.
The main aim of this paper is to generalize the inequalities (1.4) and (1.5).

2. Main Results

Let I be an interval of \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be a convex functions on $I, h:$ $[a, b] \rightarrow \mathbb{R}$ be continuous function such that $h([a, b]) \subset I$ and $p:[a, b] \rightarrow \mathbb{R}$ be a positive integrable function $a, b \in \mathbb{R}$ with $a<b$. Then the Jenesen's inequality

$$
f\left(\frac{\int_{a}^{b} p(x) h(x) d x}{\int_{a}^{b} p(x) d x}\right) \leq \frac{\int_{a}^{b} p(x) f(h(x)) d x}{\int_{a}^{b} p(x) d x}
$$

holds.
Assume that f and p are as above. Let us denote

$$
P=\int_{a}^{b} p(x) d x, \quad \bar{h}=\frac{1}{P} \int_{a}^{b} p(x) h(x) d x
$$

The following is the Hermite-Hdamard type inequality in this case:

$$
\begin{equation*}
f(\bar{h}) \leq \frac{1}{P} \int_{a}^{b} f(h(x)) p(x) d x \leq \frac{f(h(a))+f(h(b))}{2} \tag{2.1}
\end{equation*}
$$

We now state the following lemma which is very useful in this section:
Lemma 1. Let $[a, b] \subset \mathbb{R}$ and $f:[a, b] \rightarrow \mathbb{R}$ be a function and $h:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $h([a, b]) \subset[a, b]$. Then the following statements are equivalent
(1) function f is convex on $[a, b]$
(2) For every $x, y \in[a, b]$, the function $\gamma:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\gamma(t)=f(t h(x)+(1-t) h(y))
$$

is convex on $[0,1]$ for any positive real number λ.
Proof. It is a direct consequence of the convexity of the function f.
Now we state and prove the main result of this section which will generalize the Theorem 2.

Theorem 3. Let f and g be real valued, nonnegative and convex functions on $[a, b]$. Let $h:[a, b] \rightarrow \mathbb{R}$ be continuous function such that $h([a, b]) \subset[a, b]$ and $p:[a, b] \rightarrow \mathbb{R}$ be a positive integrable function. Then

$$
\begin{gather*}
\frac{3}{2 P^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} p(x) p(y) f(t h(x)+(1-t) h(y)) g(t h(x)+(1-t) h(y)) d t d x d y \tag{2.2}\\
\leq \frac{1}{P} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{1}{8}\left[M^{\prime}(a, b)+N^{\prime}(a, b)\right],
\end{gather*}
$$

where

$$
M^{\prime}(a, b)=f(h(a)) g(h(a))+f(h(b)) g(h(b))
$$

and

$$
N^{\prime}(a, b)=f(h(a)) g(h(b))+f(h(b)) g(h(a)) .
$$

Proof. Since both functions f and g are convex, for every two points $x, y \in[a, b]$ and $t \in[0,1]$, the following inequalities are valid

$$
f(t h(x)+(1-t) h(y)) \leq t f(h(x))+(1-t) f(h(y))
$$

and

$$
g(t h(x)+(1-t) h(y)) \leq t g(h(x))+(1-t) g(h(y))
$$

Multiplying these inequalities side by side, we obtain

$$
\begin{align*}
& f(t h(x)+(1-t) h(y)) g(t h(x)+(1-t) h(y)) \tag{2.3}\\
& \leq t^{2} f(h(x)) g(h(x))+(1-t)^{2} f(h(y)) g(h(y)) \\
&+t(1-t)[f(h(x)) g(h(y))+f(h(y)) g(h(x))]
\end{align*}
$$

Due to Lemma 1 and known properties of convex functions, both sides of the inequality (2.3) are integrable. Multiplying both sides of (2.3) by $p(x) p(y)$ and
integrating both sides of the inequality (2.3) with respect to t over $[0,1]$, with respect to x and y over $[a, b]$, we get

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} p(x) p(y) f(t h(x)+(1-t) h(y)) g(t h(x)+(1-t) h(y)) d t d x d y \tag{2.4}\\
& \leq \frac{2}{3} P \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x \\
&+\frac{1}{3}\left(\int_{a}^{b} f(h(x)) p(x) d x\right)\left(\int_{a}^{b} g(h(x)) p(x) d x\right) .
\end{align*}
$$

The convexity property of f and g allow us to use right side of the inequality (2.1) and thus the above inequality (2.4) takes the form:

$$
\begin{align*}
\int_{a}^{b} \int_{a}^{b} \int_{0}^{1} p(x) p(y) f & (t h(x)+(1-t) h(y)) g(t h(x)+(1-t) h(y)) d t d x d y \tag{2.5}\\
\leq & \frac{2}{3} P \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x \\
+\frac{P^{2}}{12} & {[f(h(a))+f(h(b))][g(h(a))+g(h(b))] } \\
& =\frac{2}{3} P \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x \\
& +\frac{P^{2}}{12}\left[M^{\prime}(a, b)+N^{\prime}(a, b)\right]
\end{align*}
$$

Multiplying both sides of the inequality (2.5) by $\frac{3}{2 P^{2}}$, we get the desired result. This completes the proof of the theorem.

Theorem 4. Let f and g be real valued, nonnegative and convex functions on $[a, b]$. Let $h:[a, b] \rightarrow \mathbb{R}$ be continuous function such that $h([a, b]) \subset[a, b]$ and $p:[a, b] \rightarrow \mathbb{R}$ be a positive integrable function. Then

$$
\begin{align*}
\frac{3}{P} \int_{a}^{b} \int_{0}^{1} p(x) f & (t h(x)+(1-t) \bar{h}) g(t h(x)+(1-t) \bar{h}) \tag{2.6}\\
& \leq \frac{1}{P} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{1}{2}\left[M^{\prime}(a, b)+N^{\prime}(a, b)\right]
\end{align*}
$$

where

$$
M^{\prime}(a, b)=f(h(a)) g(h(a))+f(h(b)) g(h(b))
$$

and

$$
N^{\prime}(a, b)=f(h(a)) g(h(b))+f(h(b)) g(h(a))
$$

Proof. Again by the convexity of the functions f and g, we have

$$
f(t h(x)+(1-t) \bar{h}) \leq t f(h(x))+(1-t) f(\bar{h})
$$

and

$$
g(t h(x)+(1-t) \bar{h}) \leq t g(h(x))+(1-t) g(\bar{h})
$$

Multiplying the above two inequalities side by side, we get

$$
\begin{align*}
& f(t h(x)+(1-t) \bar{h}) g(t h(x)+(1-t) \bar{h}) \tag{2.7}\\
& \quad \leq t^{2} f(h(x)) g(h(x))+t(1-t)[f(h(x)) g(\bar{h})+g(h(x)) f(\bar{h})] \\
& +(1-t)^{2} f(\bar{h}) g(\bar{h})
\end{align*}
$$

Multiplying both sides of (2.7), by similar arguments as in obtaining (2.4) and using the Jensen's inequality, we have

$$
\begin{align*}
& \text { (2.8) } \quad \int_{a}^{b} \int_{0}^{1} p(x) f(t h(x)+(1-t) \bar{h}) g(t h(x)+(1-t) \bar{h}) \tag{2.8}\\
& \leq \frac{1}{3} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{1}{6} \int_{a}^{b}[f(h(x)) g(\bar{h})+g(h(x)) f(\bar{h})] p(x) d x \\
& \\
& +\frac{1}{3} \int_{a}^{b} f(\bar{h}) g(\bar{h}) p(x) d x
\end{aligned} \quad \begin{aligned}
& \leq \frac{1}{3} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{2}{3 P}\left(\int_{a}^{b} f(h(x)) p(x) d x\right)\left(\int_{a}^{b} g(h(x)) p(x) d x\right) .
\end{align*}
$$

An application of the inequality (2.1), gives us

$$
\begin{align*}
& \int_{a}^{b} \int_{0}^{1} p(x) f(t h(x)+(1-t) \bar{h}) g(t h(x)+(1-t) \bar{h}) \tag{2.9}\\
\leq & \frac{1}{3} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{P}{6}[f(h(a))+f(h(b))][g(h(a))+g(h(b))] \\
& =\frac{1}{3} \int_{a}^{b} f(h(x)) g(h(x)) p(x) d x+\frac{P}{6}\left[M^{\prime}(a, b)+N^{\prime}(a, b)\right]
\end{align*}
$$

Multiplying both sides of (2.9) by $\frac{3}{P}$, we get the desired inequality and hence the proof of the theorem is complete.

Remark 1. If in Theorem 3 and Theorem 4, $p(x)=1$ and $h(x)=x, x \in[a, b]$, then $P=b-a, \bar{h}=\frac{a+b}{2}, M^{\prime}(a, b)=M(a, b)$ and $N^{\prime}(a, b)=N(a, b)$. Then the inequalities (2.2) and (2.6) reduce to the inequalities (1.4) and (1.5) respectively. This also shows that our results generalize those results proved in Theorem 2.

References

[1] J.L.W.V. Jensen, On Konvexe Funktioner og Uligheder mellem Middlvaerdier, Nyt. Tidsskr. Math. B., 16 (1905), 49-69.
[2] B.G. Pachpatte, On some inequalities for convex functions, RGMIA Research Report Collection, 6(E) (2003), [ONLINE: http://rgmia.vu.edu.au/v6(E).html].
[3] G. Cristescu, Improved integral inequalities for product of convex functions, Journal of Inequalities in Pure and Applied Mathematics, 6(2005), Issue 2, Article 35.
[4] G. Cristescu and L. Lupşa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht / Boston / London, 2002.
[5] Y. J. Cho, M. Matic, J. Pecaric, Two mappings in connections to Jensen's inequality, Panamerican Mathematical Journal, 12(2002), Number 1, 43-50.
[6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [ONLINE: http://rgmia.vu.edu.au/monographs/]
[7] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893), 171-215.
[8] D.S. Mitrinivić, Analytic Inequalities, Springer Verlag, Berlin/New York, 1970.
[9] R. Webster, Convexity, Oxford University Press, Oxford - New York - Tokyo, 1994.
College of Science, Department of Mathematics, University of Hail, Hall 2440, Saudi Arabia

[^0]: 2010 Mathematics Subject Classification. Primary 46C05, 46C99; Secondary 26D15, 26D20.
 Key words and phrases. convex function, Hermite-Hadamard's inequality, Pachpatte's inequalities, Jensen's inequality.

