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Abstract. In an almost distributive lattice (ADL), the idea of E-ideals is introduced, and their properties

are discussed. In terms of a congruence, an equivalence is established between the minimal prime E-

ideals of an ADL and its quotient ADL. Finally, topological investigations are performed on prime

E-ideals and minimal prime E-ideals.

1. Introduction

In the article by Swamy and Rao [9], the concept of an Almost Distributive Lattice (ADL) was

introduced as a generalization of Boolean algebras and distributive lattices. This allowed for the

abstraction of various ring-theoretic generalizations. They also introduced the notion of an ideal in an

ADL, noting that the set of principal ideals in an ADL forms a distributive lattice. This extension of

lattice theory notions to ADLs was significant.

The concept of normal lattices was initially introduced by Cornish [2]. Later, Rao and Ravi Kumar

presented the concept of a minimal prime ideal belonging to an ideal in an ADL [6]. In another

paper by Rao and Ravi Kumar [7], the notion of a normal ADL was defined, providing equivalent
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conditions for an ADL to be considered normal in terms of its annulets. These papers contributed to

the understanding of ADLs and their properties.

The study of D-filters in lattices and their properties was carried out by Kumar et al. [4]. They

investigated the properties of D-filters in lattices, providing valuable insights.

In the same line of research, we investigated the notions of prime E-ideals and E-ideals in an ADL.

The properties of these ideals are thoroughly examined, and it is established that every proper E-ideal

must satisfy a set of equivalent conditions to become a prime E-ideal. It is also proven that every

maximal E-ideal in an ADL is a prime E-ideal.

Furthermore, the paper introduces the concept of OE(M) as the intersection of all minimal prime

E-ideals contained in a prime E-idealM in an ADL R. An ADL is defined as E-normal, characterized in

terms of relative dual annihilators with respect to an ideal E. An equivalence between the minimal prime

E-ideals of an ADL and its quotient ADL is derived with respect to a congruence. The topological

properties of the space of all prime E-ideals and the space of all minimal prime E-ideals in an ADL

are also investigated.

2. Preliminaries

In this section, we recall certain definitions and important results from [5] and [9], those will be

required in the text of the paper.

Definition 2.1. [9] An algebra R = (R,∨,∧, 0) of type (2, 2, 0) is called an Almost Distributive

Lattice (abbreviated as ADL), if it satisfies the following conditions:

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(3) (a ∨ b) ∧ b = b

(4) (a ∨ b) ∧ a = a

(5) a ∨ (a ∧ b) = a

(6) 0 ∧ a = 0

(7) a ∨ 0 = a, for all a, b, c ∈ R.

Example 2.1. Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X. Define the
binary operations ∨,∧ on X by

x ∨ y =

x if x 6= x0

y if x = x0

x ∧ y =

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (R,∨,∧, 0) is an ADL, for any a, b ∈ R, define a ≤ b if and only if a = a ∧ b (or equivalently,

a ∨ b = b), then ≤ is a partial ordering on R.
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Theorem 2.1. [9] If (R,∨,∧, 0) is an ADL, for any a, b, c ∈ R, we have the following:

(1) a ∨ b = a⇔ a ∧ b = b

(2) a ∨ b = b ⇔ a ∧ b = a

(3) ∧ is associative in R

(4) a ∧ b ∧ c = b ∧ a ∧ c
(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(7) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a

(8) a ∧ a = a and a ∨ a = a.

It can be observed that an ADL R satisfies almost all the properties of a distributive lattice except

the right distributivity of ∨ over ∧, commutativity of ∨, commutativity of ∧. Any one of these

properties make an ADL R a distributive lattice.

As usual, an element m ∈ R is called maximal if it is a maximal element in the partially ordered set

(R,≤). That is, for any a ∈ R, m ≤ a ⇒ m = a. The set of all maximal elements of an ADL R is

denoted byM.

As in distributive lattices [1,3], a non-empty subset I of an ADL R is called an ideal of R if a∨b ∈ I
and a ∧ x ∈ I for any a, b ∈ I and x ∈ R. Also, a non-empty subset F of R is said to be a filter of R

if a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ R.
The set I(R) of all ideals of R is a bounded distributive lattice with least element {0} and greatest

element R under set inclusion in which, for any I, J ∈ I(R), I ∩ J is the infimum of I and J while the

supremum is given by I ∨ J := {a ∨ b | a ∈ I, b ∈ J}. A proper ideal(filter) P of R is called a prime

ideal(filter) if, for any x, y ∈ R, x ∧y ∈ P (x ∨y ∈ P )⇒ x ∈ P or y ∈ P . A proper ideal(filter) M of R

is said to be maximal if it is not properly contained in any proper ideal(filter) of R. It can be observed

that every maximal ideal(filter) of R is a prime ideal(filter). Every proper ideal(filter) of R is contained

in a maximal ideal(filter). For any subset S of R the smallest ideal containing S is given by (S] :=

{(
n∨
i=1

si) ∧ x | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write (s] instead of (S] and such an ideal is

called the principal ideal of R. Similarly, for any S ⊆ R, [S) := {x ∨ (
n∧
i=1

si) | si ∈ S, x ∈ R and n ∈ N}.

If S = {s}, we write [s) instead of [S) and such a filter is called the principal filter of R.

For any a, b ∈ R, it can be verified that (a] ∨ (b] = (a ∨ b] and (a] ∧ (b] = (a ∧ b]. Hence the set

(IP I(R),∨,∩) of all principal ideals of R is a sublattice of the distributive lattice (I(R),∨,∩) of all

ideals of R. Also, we have that the set (F(R),∨,∩) of all filters of R is a bounded distributive lattice.

Theorem 2.2. [6] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and only

if R \ P is a prime filter of R.

Definition 2.2. [5] An ADL R is said to be an associate ADL, if the operation ∨ is associative on R.
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Definition 2.3. [8] For any nonempty subset A of an ADL R, define A+ = {x ∈ R | a∨ x is maximal,

for all a ∈ A}. Here A+ is called the dual annihilator of A in R.

For any a ∈ R, we have {a}+ = (a]+, where (a] is the principal filter generated by a. An element

a of an ADL R is called dual dense element if (a]+ =M and the set E of all dual dense elements in

an ADL R is an ideal if E is non-empty.

3. E-ideals of ADLs

In this section, we present the concepts of prime E-ideals and E-ideals in an Abstract Distributive

Lattice (ADL) and explore their properties. We observe that any proper E-ideal in an ADL can be

transformed into a prime E-ideal based on a set of equivalent conditions. Additionally, we establish

that the intersection of all minimal prime E-ideals contained in a prime E-ideal M is denoted as

OE(M). Furthermore, we introduce the notion of E-normal ADLs, which are characterized in relation

to the relative dual annihilators with respect to an ideal E. We establish an equivalence between the

minimal prime E-ideals of an ADL and its quotient ADL with respect to a congruence.

Definition 3.1. An ideal G of R is said to be an E-ideal of R if E ⊆ G.

Now we have the example of an E-ideal of an ADL.

Example 3.1. Let R = {0, a, b, c, d, e, f , g} and define ∨, ∧ on R as follows:

∧ 0 a b c d e f g

0 0 0 0 0 0 0 0 0

a 0 a b c d e f g

b 0 a b c d e f g

c 0 c c c 0 0 c 0

d 0 d e 0 d e g g

e 0 d e 0 d e g g

f 0 f f c g g f g

g 0 g g 0 g g g g

∨ 0 a b c d e f g

0 0 a b c d e f g

a a a a a a a a a

b b b b b b b b b

c c a b c a b f f

d d a a a d d a d

e e b b b e e b e

f f a b f a b f f

g g a b f d e f g

Then (R,∨, ∧) is an ADL. Clearly, we have that E = {0, g} and G = {0, c, f , g} are ideals of R

satisfying E ⊆ G. Therefore G is an E-ideal of R. Consider an ideal H = {0, c} of R, but not an

E-ideal.

It is easy to verify the proof of the following result.

Lemma 3.1. For any non-empty subset A of an ADL R, (A]∨E is the smallest E-ideal of R containing

A.
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We denote (A] ∨ E by AE , i.e., AE = (A] ∨ E. For, A = {a}, we denote simply (a)E for {a}E .
Clearly, we have that (a)E is the smallest E-ideal containing a, which is known as the principal E-ideal

generated by a.

Lemma 3.2. For any two elements x, y of an ADL R with maximal element m, we have the following:

(1) (0)E = E

(2) (m)E = R

(3) x ≤ y implies (x)E ⊆ (y)E

(4) (x ∨ y)E = (x)E ∨ (y)E

(5) (x ∧ y)E = (x)E ∩ (y)E

(6) (x)E = E if and only if x ∈ E.

Proof. (1) Now (0)E = (0] ∨ E = E.

(2) Now (m)E = (m] ∨ E = R ∨ E = R.

(3) Let x ≤ y . Then (x ] ⊆ (y ]. Now (x)E = (x ] ∨ E ⊆ (y ] ∨ E = (y)E . Therefore (x)E ⊆ (y)E .

(4) Clearly, we have that (x ∨ y ] = (x ] ∨ (y ]. Now, (x ∨ y)E = (x ∨ y ] ∨ E = (x ] ∨ (y ] ∨ E =

((x ] ∨ E) ∨ ((y ] ∨ E)) = (x)E ∨ (y)E . Therefore (x ∨ y)E = (x)E ∨ (y)E .

(5) Since x ∧ y ≤ y and y ∧ x ≤ x and hence (x ∧ y ] ⊆ (x ] and (y ∧ x ] ⊆ (y ]. Since (x ∧ y ] = (y ∧ x ],

we get that (x ∧ y ] ⊆ (x ] ∩ (y ]. Let t ∈ (x ] ∩ (y ]. Then t ∈ (x ] and t ∈ (y ]. That implies x ∧ t = t

and y ∧ t = t. Therefore x ∧ y ∧ t = t and hence t ∈ (x ∧ y ]. Thus (x ] ∩ (y ] ⊆ (x ∧ y ], which gives

(x ∧y ] = (x ]∩(y ]. Now (x ∧y)E = (x ∧y ]∨E = [(x ]∩(y ]]∨E = ((x ]∨E)∩((y ]∨E) = (x)E ∩(y)E .

Hence (x ∧ y)E = (x)E ∩ (y)E .

(6) Assume that (x)E = E. Then (x ] ∨ E = E. That implies (x ] ⊆ E and hence x ∈ E. Conversely,
assume that x ∈ E. Then (x ] ⊆ E. This implies that (x ] ∨ E ⊆ E. Since E ⊆ (x ] ∨ E, we get that

E = (x ] ∨ E. Therefore (x)E = E. �

We denote I(R), IE(R)and IPEF (R) as the set of all ideals, E-ideals and principal E-ideals of an

ADL R respectively.

Theorem 3.1. IE(R) forms a distributive lattice contained in I(R), and IPEF (R) forms a sublattice

of IE(R).

Definition 3.2. An E-ideal Q is said to be proper if Q ( R. A proper E-ideal Q is said to be maximal

if it is not properly contained in any proper E-ideal of R. A proper E-ideal Q of an ADL R is said to

be a prime E-ideal if Q is a prime filter of R.
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Example 3.2. Consider a distributive lattice L = {0, a, b, c, 1} and discrete ADL A = {0′, a′}.
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Clearly,

R = A × L = {(0′, 0), (0′, a), (0′, b), (0′, c), (0′, 1), (a′, 0), (a′, a), (a′, b), (a′, c), (a′, 1)} is an ADL

with zero element (0, 0′). Clearly, the dense set E = {(0′, 0), (0′, a)}. Consider the E-ideals:
I1 = {(0′, 0), (0′, a), (0′, b)}
I2 = {(0′, 0), (0′, a), (0′, c)}
I3 = {(0′, 0), (0′, a), (a′, 0), (a′, a)}
I4 = {(0′, 0), (0′, a), (0′, c), (a′, 0), (a′, a)(a′, c)}
I5 = {(0′, 0), (0′, a), (0′, b), (a′, 0), (a′, a), (a′, b)}
I6 = {(0′, 0), (0′, a), (0′, b), (0′, c), (0′, 1)}
Clearly, I4, I5 and I6 are prime E-ideal. But I1 is not a prime E-ideal, because (a′, b)∧(0′, c) = (0′, a) ∈
I1, but (a′, b) /∈ I1. and (0′, c) /∈ I1. And also, I2 is not a prime E-ideal, because (0′, b) ∧ (a′, c) =

(0′, a) ∈ I2, but (0′, b) /∈ I2 and (a′, c) /∈ I2.

Theorem 3.2. For any E-ideal Q of R, the following conditions are equivalent:

(1) Q is a prime E-ideal

(2) for any two E-ideals G,H of R,G ∩H ⊆ Q⇒ G ⊆ Q or H ⊆ Q
(3) for any x, y ∈ R, (x)E ∩ (y)E ⊆ Q⇒ x ∈ Q or y ∈ Q.

Proof. (1)⇒ (2) Assume (1). Let G and H be two E-ideals of R such that G∩H ⊆ Q.We prove that

G ⊆ Q or H ⊆ Q. Suppose G * Q and H * Q. Choose x, y ∈ R such that x ∈ G \Q and y ∈ H \Q.
By our assumption we have that x ∧ y /∈ Q. Since x ∈ G, y ∈ H, which gives x ∧ y ∈ G ∩ H ⊆ Q.

Therefore x ∧ y ∈ Q, we get a contradiction. Thus G ⊆ Q or H ⊆ Q.
(2)⇒ (3) Assume (2). Let x, y ∈ R with (x)E ∩ (y)E ⊆ Q. Since (x)E and (y)E are E-ideals of R,

and by our assumption, we get that (x)E ⊆ Q or (y)E ⊆ Q. Hence x ∈ Q or y ∈ Q.
(3)⇒ (1) Assume (3). Let x, y ∈ R with x∧y ∈ Q. Since Q is an E-ideal, we have that (x)E∩(y)E =

(x ∧ y)E ⊆ Q. By our assumption, we get that x ∈ Q or y ∈ Q. Hence Q is prime. �

Theorem 3.3. Every maximal E-ideal of an ADL R is a prime E-ideal.
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Proof. Let N be a maximal E-ideal of R. Let a, b ∈ R with a /∈ N and b /∈ N. Then N ∨ (a)E = R

and N ∨ (b)E = R. That implies R = N ∨ ((a)E ∩ (b)E) = N ∨ (a ∧ b)E . If a ∧ b ∈ N then N = R,

we get a contradiction. Therefore a ∧ b /∈ N and hence N is prime. �

Corollary 3.1. Let N1, N2, N3, . . . , Nn and N be maximal E-ideals of an ADL R with
n⋂
i=1

Ni ⊆ N, then

Nj ⊆ N, for some j ∈ {1, 2, 3, . . . , n}.

Theorem 3.4. A proper E-ideal Q of an ADL R is a prime E-ideal if and only if R \Q is a prime filter

such that (R \Q) ∩ E = ∅.

Proof. Assume that Q is a prime E-ideal of R. Clearly, R \ Q is a prime filter of R. We prove that

(R \Q)∩E = ∅. If (R \Q)∩E 6= ∅, choose x ∈ (R \Q)∩E. That implies x ∈ E ⊆ Q, which gives a

contradiction. Hence (R \Q)∩E = ∅. Conversely, assume that R \Q is a prime filter of R such that

(R \Q) ∩ E = ∅. Clearly, Q is a prime ideal of R and E ⊆ R \ (R \Q) = Q. Therefore Q is a prime

E-ideal of R. �

Theorem 3.5. Let G be a E-ideal of an ADL R, and K be any non-empty subset of R, which is closed

under the operation ∧ such that G ∩ K = ∅. Then there exists a prime E-ideal Q of R containing G

such that Q ∩K = ∅.

Proof. Let K be a non-empty subset of R, which is closed under the operation ∧ such that G∩K = ∅.
Consider F = {H | H is an E− ideal of R,G ⊆ H and H∩K = ∅}. Clearly, it satisfies the hypothesis of
the Zorn’s lemma and hence F has a maximal element say Q. That is, Q is an E-ideal of R such that

G ⊆ Q and Q∩K = ∅. Let x, y ∈ R be such that x ∧ y ∈ Q. We prove that x ∈ Q or y ∈ Q. Suppose
that x /∈ Q and y /∈ Q. Then clearly Q∨ (x)E and Q∨ (y)E are E-ideals of R such that Q ( Q∨ (x)E

and Q ( Q∨ (y)E . Since Q is maximal in F, we get that (Q∨ (x)E)∩K 6= ∅ and (Q∨ (y)E)∩K 6= ∅.
Choose s ∈ (Q ∨ (x)E) ∩ K and t ∈ (Q ∨ (y)E) ∩ K. Then s ∈ (Q ∨ (x)E), t ∈ (Q ∨ (y)E) and

s, t ∈ K. Since K is closed under ∧, we get s ∧ t ∈ K. Now s ∧ t = {Q ∨ (x)E} ∩ {Q ∨ (y)E} =

Q ∨ {(x)E ∩ (y)E} = Q ∨ (x ∧ y)E . Since x ∧ y ∈ Q, we get that s ∧ t ∈ Q. Since s ∧ t ∈ K, we get

that s ∧ t ∈ Q∩K, which is a contradiction to Q∩K = ∅. Therefore either x ∈ Q or y ∈ Q. Thus Q
is a prime E-ideal of R. �

Corollary 3.2. For any E-ideal G of an ADL R with x /∈ G, there exists a prime E-ideal Q of R such

that G ⊆ Q and x /∈ Q.

Corollary 3.3. For any E-ideal G of an ADL R, G =
⋂
{Q | Q is a prime E− ideal of R and G ⊆ Q}.

Corollary 3.4. E is the intersection of all prime E-ideals of R.

Proof. Let Q be any prime E-ideal of R. Clearly, we have that E ⊆
⋂
Q. Let Q be any prime E-ideal

of an ADL R and x ∈
⋂
Q. Suppose x /∈ E. Then there exists prime filter N such that x ∈ N and
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N ∩ E = ∅. That implies x /∈ R \ N and E ⊆ R \ N. Therefore R \ N is a prime E-ideal of R and

x /∈ R \ N, which is a contradiction. Therefore x ∈ E and hence
⋂
Q ⊆ E. Thus E =

⋂
Q. �

Theorem 3.6. In an ADL the following are equivalent:

(1) Every proper E-ideal is prime

(2) IE(R) is a chain

(3) IPEF (R) is a chain.

Proof. (1)⇒ (2) Assume (1). Clearly (IE(R),⊆) is a poset. Let S and T be two proper E-ideals of

R. By (1), we have that S ∩ T is a prime E-ideal of R. Since S ∩ T ⊆ S ∩ T , we get S ⊆ S ∩ T ⊆ T
or T ⊆ S ∩ T ⊆ S. Hence IE(R) is a chain.

(2)⇒ (3) It is obvious.

(3)⇒ (1) Assume that (3). Let G be a proper E-ideal of R. We prove that G is prime. Let x, y ∈ R
such that (x)E ∩ (y)E ⊆ G. By our assumption, we get that (x)E ⊆ (y)E or (y)E ⊆ (x)E . That

implies x ∈ (x)E = (x)E ∩ (y)E ⊆ G or y ∈ (y)E = (x)E ∩ (y)E ⊆ G. Therefore G is a prime E-ideal

of R. �

Now we introduce the concept of a relative dual annihilator in the following definition.

Definition 3.3. For any nonempty subset S of R, define (S,E) = {a ∈ R | s ∧a ∈ E, f or al l s ∈ S}.
We call this set as relative dual annihilator of S with respect to the ideal E.

For S = {s}, we denote ({s}, E) by (s, E).

Lemma 3.3. If S, T are nonempty subsets of an ADL R, then we have the following:

(1) (R,E) = E = (M, E)

(2) (E,E) = R

(3) E ⊆ (S,E)

(4) (S,E) is a E-ideal of R

(5) S ⊆ E if and only if (S,E) = R

(6) if S ⊆ T , then (T,E) ⊆ (S,E) and ((S,E), E) ⊆ ((T,E), E)

(7) S ⊆ ((S,E), E)

(8) (((S,E), E), E) = (S,E)

(9) (S,E) = ([S), E)

(10)
⋂
i∈4

(Si , E) =
( ⋃
i∈4

Si , E
)

(11) (S,E) ⊆ (S ∩ T, (T,E))

(12) if S ⊆ T , then (S, (T,E)) = (S,E)

(13) (S ∪ T,E) ⊆ (S, (T,E)) ⊆ (S ∩ T,E)

(14) (S, (S,E)) = (S,E).
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Proof. (1) Let x ∈ (R,E). Then a ∧ x ∈ E, for all a ∈ R. That implies x ∧ x ∈ E. So that x ∈ E.
Hence (R,E) ⊆ E. Let x ∈ E. Then a∧ x ∈ E, for all a ∈ R. Thus x ∈ (R,E). Therefore E ⊆ (R,E)

and hence (R,E) = E. Clearly, we have that (M, E) = E.

(2) Let x ∈ E. Then x ∧ a ∈ E, for all a ∈ R. Since x ∧ a ∈ E, for all x ∈ E, we get that

a ∈ (E,E), for all a ∈ R. Therefore R ⊆ (E,E) and hence R = (E,E).

(3) Let x ∈ E. Then y ∧ x ∈ E, for all y ∈ R. Then a ∧ x ∈ E, for all a ∈ S ⊆ R. That implies

x ∈ (S,E). Therefore E ⊆ (S,E).

(4) Let a, b ∈ (S,E). Then s ∧a, s ∧b ∈ E, for all s ∈ S. This implies (s ∧a)∨ (s ∧b) ∈ E. Therefore
s ∧ (a ∨ b) ∈ E. Hence a ∨ b ∈ (S,E). Let a ∈ (S,E) and b ∈ R with b ≤ a. Then s ∧ a ∈ E and

s ∧ b ≤ s ∧ a, for all s ∈ S. Since s ∧ a ∈ E and E is an ideal, we get s ∧ b ∈ E. Hence b ∈ (S,E),

for all s ∈ S. Thus (S,E) is an ideal of R. Since E ⊆ (S,E), we get that (S,E) is an E-ideal of R.

(5) Suppose (S,E) = R. Let m ∈ M. Then m ∈ (S,E). That implies a = m ∧ a ∈ E, for all a ∈ S.
Hence a ∈ E, for all a ∈ S. Therefore S ⊆ E. Conversely, assume that S ⊆ E. Let x ∈ R. Since E is

an ideal, we get a ∧ x ∈ E, for all a ∈ S ⊆ E. Hence x ∈ (S,E). Therefore (S,E) = R.

(6) Suppose S ⊆ T. Let a ∈ (T,E). Then t∧a ∈ E, for all t ∈ T. Since S ⊆ T, we get that s∧a ∈ E,
for all s ∈ S. That implies a ∈ (S,E). Therefore (T,E) ⊆ (S,E) and hence ((S,E), E) ⊆ ((T,E), E).

(7) Let x ∈ (S,E). Then s ∧ x ∈ E, for all s ∈ S. That implies x ∧ s ∈ E, for all x ∈ (S,E). That

implies s ∈ ((S,E), E), for all s ∈ S. Thus S ⊆ ((S,E), E).

(8) By (7), we have that (((S,E), E), E) ⊆ (S,E). Let x /∈ (((S,E), E), E). Then there exists an

element a /∈ ((S,E), E) such that a ∧ x /∈ E. Since S ⊆ ((S,E), E), we have that a /∈ S. So that

a ∧ x /∈ E and s /∈ S. Therefore x /∈ (S,E), it concludes that (S,E) ⊆ (((S,E), E), E). Thus

(((S,E), E), E) = (S,E).

(9) Since S ⊆ (S], we get that ((S], E) ⊆ (S,E). Let x ∈ (S,E). Then a∧x ∈ E, for all a ∈ S ⊆ (S].

That implies x ∈ ((S], E). Therefore (S,E) ⊆ ((S], E). Therefore (S,E) ⊆ ((S], E). Hence (S,E) =

((S], E).

(10) Since Si ⊆
⋃
i∈4

Si , for all i ∈ 4, we get that
( ⋃
i∈4

Si , E
)
⊆ (Si , E), for all i ∈ 4. That implies( ⋃

i∈4
Si , E

)
⊆
⋂
i∈4

(Si , E). Let x ∈
⋂
i∈4

(Si , E). Then x ∈ (Si , E), for all i ∈ 4. That implies a∧x ∈ E,

for all a ∈ Si ⊆
⋃
Si . That implies

⋂
i∈4

(Si , E) ⊆
( ⋃
i∈4

Si , E
)
. Therefore

⋂
i∈4

(Si , E) =
( ⋃
i∈4

Si , E).

(11) Since E is an ideal in R, we have that E ⊆ (T,E) and hence we get that (S,E) ⊆ (S, (T,E)).

Since S ∩ T ⊆ S, we get that (S, (T,E)) ⊆ (S ∩ T, (T,E)). Therefore (S,E) ⊆ (S ∩ T, (T,E)).

(12) Let S, T be two non empty subsets of R such that S ⊆ T . Since E ⊆ (T,E), we have

that (S,E) ⊆ (S, (T,E)). Let x ∈ (S, (T,E)). Then a ∧ x ∈ (T,E), for all a ∈ S. That implies

a ∧ x ∈ (S,E), for all a ∈ S. Since a ∧ x ∈ (S,E), we get that s ∧ (a ∧ x) ∈ E, for all s ∈ S
and hence a ∧ x ∈ E, for all a ∈ S. Therefore x ∈ (S,E) and hence (S, (T,E)) ⊆ (S,E). Thus

(S, (T,E)) = (S,E).

(13) Clearly, we have that (S ∪ T,E) ⊆ (S,E) and E ⊆ (T,E). So that (S,E) ⊆ (S, (T,E)). Also
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S ∩T ⊆ S. It follows that (S, (T,E)) ⊆ (S ∩T,E). Therefore (S ∪T,E) ⊆ (S, (T,E)) ⊆ (S ∩T,E).

(14) It is clear by (12). �

Proposition 3.1. Let S and T be any two ideals of and ADL R. Then we have the following:

(1) (S,E) ∩ ((S,E), E) = E

(2) (S ∨ T,E) = (S,E) ∩ (T,E)

(3) ((S ∩ T,E), E) ⊆ ((S,E), E) ∩ ((T,E), E).

Proof. (1) We have that E ⊆ (S,E)∩ ((S,E), E). Let x ∈ (S,E)∩ ((S,E), E). Then x ∈ (S,E) and

x ∈ ((S,E), E). Since x ∈ ((S,E), E)), we have that a ∧ x ∈ E, for all a ∈ (S,E). Since x ∈ (S,E),

we get that x ∈ E and hence (S,E) ∩ ((S,E), E) ⊆ E. Thus (S,E) ∩ ((S,E), E) = E.

(2) Clearly, S ⊆ S ∨ T and T ⊆ S ∨ T. Then ((S ∨ T ), E) ⊆ (S,E) and ((S ∨ T ), E) ⊆ (T,E). That

implies ((S ∨ T ), E) ⊆ (S,E) ∩ (T,E). Let x ∈ (S,E) ∩ (T,E). Then x ∈ (S,E) and x ∈ (T,E).

That implies s ∧ x ∈ E, for all s ∈ S and t ∧ x ∈ E, for all t ∈ T. That implies (s ∧ x) ∨ (t ∧ x) ∈ E
and have (s ∨ t) ∧ x ∈ E. Since s ∈ S and t ∈ T, we get s ∨ t ∈ S ∨ T. Therefore (s ∨ t) ∧ x ∈ E,
for all s ∨ t ∈ S ∨ T. That implies x ∈ (S ∨ T,E). Therefore (S,E) ∩ (T,E) ⊆ (S ∨ T,E). Hence

(S,E) ∩ (T,E) = (S ∨ T,E).

(3) Since S ∩ T ⊆ S and S ∩ T ⊆ T , we get that (S,E) ⊆ (S ∩ T,E) and (T,E) ⊆ (S ∩ T,E). That

implies ((S ∩ T,E), E) ⊆ ((S,E), E) and ((S ∩ T,E), E) ⊆ ((T,E), E). Hence ((S ∩ T,E), E) ⊆
((S,E), E) ∩ ((T,E), E). �

Theorem 3.7. For any non-empty subset S of an ADL R, (S,E) =
⋂
s∈S

((s], E).

Proof. Let x ∈
⋂
s∈S

((s], E). Then x ∈ ((s], E), for all s ∈ S. That implies t ∧ x ∈ E, for all

t ∈ (s] and for all s ∈ S. It follows that s ∧ x ∈ E for all s ∈ S. Therefore x ∈ (S,E). Hence

x ∈
⋂
s∈S

((s], E) ⊆ (S,E). Let s be any element of S. Take t ∈ (s]. Then s ∧ t = t. Now, x ∈ (S,E).

That implies s ∧ x ∈ E, for all s ∈ S. So that t ∧ x = t ∧ s ∧ x ∈ E, for all t ∈ (s] and for all s ∈ S.
That implies x ∈ ((s], E), for all s ∈ S. Therefore x ∈

⋂
s∈S

((s], E) and hence (S,E) ⊆
⋂
s∈S

((s], E).

Thus (S,E) =
⋂
s∈S

((s], E). �

Corollary 3.5. Let x ∈ R and S be arbitrary subset of R. Then (S, (x ]) =
⋂
a∈S

(a, (x ]).

Corollary 3.6. For any x, y ∈ R we have the following:

(1) ((x ], E) = (x, E)

(2) x ≤ y ⇒ (y , E) ⊆ (x, E)

(3) (x ∨ y , E) = (x, E) ∩ (y , E)

(4) ((x ∧ y , E), E) = ((x, E), E) ∩ ((y , E), E)

(5) (x, E) = R⇔ x ∈ E.
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Theorem 3.8. Let G be an E-ideal of an ADL R. Then

(1) G ∩ (G,E) = E

(2) ((G ∨ (G,E)), E) = E.

Proof. (1) It is clear.

(2) Clearly, ((G∨(G,E)), E) ⊆ (G,E)∩((G,E), E). Let a ∈ (G,E)∩((G,E), E). Let b ∈ G∨(G,E).

Then b = c ∨ d, for some c ∈ G and d ∈ (G,E). That implies a ∧ c ∈ E and a ∧ d ∈ E. Now
a∧b = a∧ (c ∨d) = (a∧c)∨ (a∧d) ∈ E, for all b ∈ G∨ (G,E). Therefore a ∈ ((G∨ (G,E)), E) and

hence (G,E)∩((G,E), E) ⊆ ((G∨(G,E)), E). Thus E = (G,E)∩((G,E), E) = ((G∨(G,E)), E). �

Consider two ADLs R1 and R2 with zero elements 0 and 0′ respectively. LetM andM′ be denotes
the set of all maximal elements of ADLs R1 and R2 respectively.

Lemma 3.4. Let R1 and R2 be two ADLs with m ∈M and m′ ∈M′. Then for any (x, y) ∈ R1×R2,
we have the following:

(1) (x, y)+ = (a)+ × (y)+

(2) (x, y)+ = (m,m′) if and only if (x)+ =M and (y)+ =M′

(3) ((x, y), E) = (a, E)× (y , E).

Let E1 and E2 be dual dense sets of R1 and R2 respectively. From the above result, it can be

concluded that E = E1×E2 is a dual dense set of R1×R2. Further, every dual dense set of R1×R2
is form the form E1 × E2.

Theorem 3.9. Let Mi be a prime Ei−ideals of ADLs Ri , for i = 1, 2. Then M1 × R2 and R1 ×M2
are prime E-ideals of R1 × R2.

Proof. Since E1 ⊆ M1 and E2 ⊆ M2, we get E1 × E2 ⊆ M1 × R2 and E1 × E2 ⊆ R1 × M2.
That implies M1 × R2 and R1 × M2 are E-ideals of R1 × R2. Let (a, b), (c, d) ∈ R1 × R2 with

(a, b) ∧ (c, d) ∈ M1 × R2. Then a ∧ c ∈ M1. Since M1 is a prime E1−ideal of R1, we get a ∈ M1
or c ∈ M1. Thus (a, b) ∈ M1 × R2 or (c, d) ∈ M1 × R2. Therefore M1 × R2 is a prime E-ideal of

R1 × R2. Similarly, we can prove that R1 ×M2 is also a prime E-ideal of R1 × R2. �

Theorem 3.10. Let R1 and R2 be two ADLs with zero elements 0 and 0′ respectively. For any prime

E-ideal P of R1 × R2, P is of the form P1 × R2 or R1 × P2, where Pi is a prime Ei−ideal of Ri , for
i = 1, 2.

Proof. Let P be a prime E-ideal of R1 × R2. Consider P1 = π1(P ) = {x1 ∈ R1 | (x1, x2) ∈
P, for some x2 ∈ R2} and P2 = π2(P ) = {x2 ∈ R2 | (x1, x2) ∈ P, for some x1 ∈ R1}. It is easy

to verify that Pi is Ei−ideals of Ri , for i = 1, 2. We first show that Pi is prime Ei−ideals of Ri , for
i = 1, 2. Suppose P1 = R1 and P2 = R2. Let (a, b) ∈ R1 × R2. Then there exist x ∈ R1 and y ∈ R2
such that (a, y) ∈ P and (x, b) ∈ P. Since (a, 0′)∧(a, y) ∈ P and (0, b)∧(x, b) ∈ P, we get (a, 0′) ∈ P
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and (0, b) ∈ P. Therefore (a, b) = (a, 0′) ∨ (0, b) ∈ P. Hence P = R1 × R2, which is a contradiction

to that P is proper. Next suppose that P1 6= R1 and P2 6= R2. Choose a ∈ R1 \ P1 and b ∈ R2 \ P2.
Then (a, y) /∈ P for all y ∈ R2 and (x, b) /∈ P1 for all x ∈ R1. In particular, (a, 0′) /∈ P and (0, b) /∈ P.
Since P is prime, we get (0, 0′) /∈ P, which is a contradiction. From the above observations, we get

that either P1 = R1 and P2 6= R2 or P1 6= R1 and P2 = R2.

Case (i): Suppose P1 = R1 and P2 6= R2. Let x2, y2 ∈ R2 be such that x2∧ y2 ∈ P2. Then there exists

a ∈ R1 = P1 such that (a, x2∧y2) ∈ P. Therefore (a, x2)∧(a, y2) = (a∧a, (x2∧y2)) = (a, x2∧y2) ∈ P.
Since P is prime, we get (a, x2) ∈ P or (a, y2) ∈ P. Hence x2 ∈ P2 or y2 ∈ P2. Therefore P2 is a prime

E2−ideal of R2. We now show that P = R1 × P2. Clearly P ⊆ R1 × P2. On the other hand, suppose

(a, y) ∈ R1 × P2. Since P1 = R1, there exists b ∈ R2 such that (a, b) ∈ P and there exists x ∈ R1
such that (x, y) ∈ P. Since (a, 0′)∧ (a, b) = (a, 0′) and (0, y)∧ (x, y) = (0, y), we get (a, 0′) ∈ P and

(0, y) ∈ P. Since P is an ideal, it gives (a, y) = (a, 0′) ∨ (0, y) ∈ P. Hence R1 × P2 ⊆ P. Therefore
P = R1 × P2.
Case (ii): Suppose P1 6= R1 and P2 = R2. Similarly, we can prove that P1 is prime E1−ideal of R1
and P = P1 × R2. �

Theorem 3.11. Let S be a sub ADL of an ADL R and P is a prime E-ideal of S. Then there exists

a prime E-ideal Q of R such that Q ∩ S = P.

Proof. Let P be a prime E-ideal of S. Then S \ P is a prime filter of S. Consider I = (P ]. Then

P ⊆ I ∩ S. Suppose I ∩ (S \ P ) 6= ∅. Choose x ∈ I ∩ (S \ P ). Then x ∈ I and x ∈ (S \ P ). Since

x ∈ I = (P ], there exists a1 ∨ a2 ∨ . . . ∨ an ∈ P such that x = y ∧ (a1 ∨ a2 ∨ . . . ∨ an). Since P is an

ideal of S, we get a1 ∨ a2 ∨ . . .∨ an ∈ P and hence x ∈ P. Since x ∈ (S \ P ), we get a contradiction.

Hence I∩ (S \P ) = ∅. Then there exists a prime E-ideal Q of R such that I ⊆ Q and Q∩ (S \P ) = ∅.
Since I ⊆ Q, we get I ∩ S ⊆ Q ∩ S. Since Q ∩ (S \ P ) = ∅, we get Q ⊆ P. Hence, both observations

lead to P ⊆ I ∩ S ⊆ Q ∩ S ⊆ P ∩ S ⊆ P. Therefore P = Q ∩ S. �

Now, we have the following definition.

Definition 3.4. A prime E-ideal M of an ADL R containing an E-ideal G is said to be a minimal prime

E-ideal belonging to G if there exists no prime E-ideal N such that G ⊆ N ⊆ M.

Note that if we take E = G in the above definition then we say that M is a minimal prime E-ideal.

Example 3.3. From the Example 3.2, we have that I6 is a prime E-ideal and I1 is a E-ideal of R.

Clearly I1 ⊆ I6. Clearly there is no E-ideal N of R such that I1 ⊆ N ⊆ I6. Hence I6 is a minimal prime

E-ideal belonging to I1.

Proposition 3.2. Let G be an E-ideal and M, a prime E-ideal of R with G ⊆ M. Then M is a minimal

prime E-ideal belonging to G if and only if R \M is a maximal filter with (R \M) ∩ G = ∅.
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Proof. Clearly, R \M is a proper filter and we have (R \M)∩G = ∅. We prove that R \M is maximal.

Let N be any proper filter of R such that N ∩ G = ∅ and R \M ⊆ N. Then G ⊆ R \ N ⊆ M. By

the minimality of M, we get R \ N = M. Therefore R \ M is a maximal filter with respect to the

property (R \M) ∩ G = ∅. Conversely, assume that R \M be a maximal filter with respect to the

property (R \M) ∩ G = ∅. We prove that M is minimal. If N is any prime E-ideal of R such that

E ⊆ G ⊆ N ⊆ M. Clearly, R \ N is a filter such that R \M ⊆ R \ N and (R \ N) ∩ G = ∅, which is a

contradiction. Therefore M is a minimal prime E-ideal belonging to G. �

Theorem 3.12. Let G be an E-ideal and M, a prime E-ideal of R with G ⊆ M. Then M is a minimal

prime E-ideal belonging to G if and only if for any a ∈ M, there exists b /∈ M such that a ∧ b ∈ G.

Proof. Assume that M is a minimal prime E-ideal belonging to G. Then R \ M is a maximal filter

with respect to the property that (R \ M) ∩ G = ∅. Let a ∈ M. Then a /∈ R \ M. That implies

R \M ⊂ (R \M) ∨ [a). By the maximality of R \M, we get that ((R \M) ∨ [a)) ∩ G 6= ∅. Choose
s ∈ ((R \M) ∨ [a)) ∩ G. Then there exists b ∈ R \M such that s = b ∧ a and s ∈ G. Therefore
b ∧ a ∈ G. Conversely, assume that for any a ∈ M, there exists b /∈ M such that a ∧ b ∈ G. Suppose
M is not a minimal prime E-ideal belonging to G. Then there exists a prime E-ideal N of R such that

E ⊆ G ⊆ N ⊆ M. Choose a ∈ M \ N. Then, by the our assumption, there exists b /∈ M such that

a ∧ b ∈ G ⊆ N. Since a /∈ N, we get that b ∈ N ⊆ M, which is a contradiction. Therefore M is a

minimal prime E-ideal belonging to G. �

Corollary 3.7. A prime E-ideal M of an ADL R is minimal if and only if for any a ∈ M there exists

b /∈ M such that a ∧ b ∈ E.

Definition 3.5. For any prime E-ideal M of R, define the set OE(M) as follows:

OE(M) = {x ∈ R | x ∈ (y , E), for some y /∈ M}.

Clearly, observe that OE(M) =
⋃
y /∈M

(y , E).

Lemma 3.5. Let M be prime E-ideal of an ADL R. Then OE(M) is an E-ideal such that OE(M) is

contained in M.

Proof. Let a, b ∈ OE(M). There exist elements s /∈ M and t /∈ M such that a ∈ (s, E) and b ∈ (t, E).

That implies ((s, E), E) ⊆ (a, E) and ((t, E), E) ⊆ (b, E). So that ((s ∧ t, E), E) = ((s, E), E) ∩
((t, E), E) ⊆ (a, E) ∩ (b, E) = (a ∨ b, E). Hence a ∨ b ∈ ((a ∨ b, E), E) ⊆ (((s ∧ t, E), E), E) =

(s ∧ t, E). Since s ∧ t /∈ M, we get that a ∨ b ∈ OE(M). Let a ∈ OE(M) and b ≤ a. There exists

s /∈ M such that a ∈ (s, E). Since (s, E) is an ideal, we get that b ∈ (s, E). Therefore b ∈ OE(M)

and hence OE(M) is an ideal of R. Clearly, we have that E ⊆ OE(M). Thus OE(M) is an E-ideal

of R. Let a ∈ OE(M). Then there exists s /∈ M such that a ∈ (s, E). That implies a ∧ s ∈ E ⊆ M.
Since M is prime, we get that a ∈ M. Hence OE(M) ⊆ M. �
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Corollary 3.8. For any prime E-ideal M of R, M is minimal if and only if OE(M) = M.

Theorem 3.13. Every minimal prime E-ideal of R belonging to OE(M) is contained in M.

Proof. Let N be any minimal prime E-ideal belonging to OE(M). We prove that N ⊆ M. Suppose

N * M. Choose a ∈ N \M. Then there exists b /∈ N such that a∧ b ∈ OE(M). Hence a∧ b ∈ (s, E),

for some s /∈ M. That implies b ∧ (a ∧ s) ∈ E ⊆ M. Since a /∈ M, s /∈ M, and M is prime, we get

a ∧ s /∈ M. Therefore b ∈ OE(M) ⊆ N, which is a contradiction. Hence N ⊆ M. �

Theorem 3.14. For any prime E-ideal M of an ADL R, OE(M) is the intersection of all minimal

prime E-ideals contained in M.

Proof. Let M be a prime E-ideal of R. By Zorn’s lemma, M contains a minimal prime E-ideal. Let

{Sα}α∈M be the set of all minimal prime E-ideals contained in M. Let x ∈ OE(M). Then x ∈ (a, E),

for some a /∈ M. Since each Sα ⊆ M, we have that a /∈ Sα, for all α ∈M . Since x ∧ a ∈ E ⊆ Sα and

a /∈ Sα, for all α ∈M, we get x ∈ Sα for all α ∈M. Hence x ∈
⋂
α∈M

Sα. Therefore OE(M) ⊆
⋂
α∈M

Sα.

Let x /∈ OE(M). Consider S = (R \M) ∨ [x). Suppose E ∩ S 6= ∅. Choose a ∈ E ∩ S. Since a ∈ S,
we get a = t ∧ x, for some t ∈ R \M. Since a ∈ E, we get that t ∧ x ∈ E. Hence x ∈ (t, E), where

t /∈ M. Thus x ∈ OE(M), which is a contradiction. Therefore S ∩ E = ∅. Let M be a maximal filter

such that S ⊆ M and M ∩ E = ∅. Then R \M is a minimal prime E-ideal such that R \M ⊆ M and

x /∈ R \M, since x ∈ S ⊆ M. Hence x /∈
⋂
α∈M

Sα. Therefore
⋂
α∈M

Sα ⊆ OE(M). �

Proposition 3.3. LetM1 andM2 be two prime E-ideals in an ADL R withM1 ⊆ M2. Then OE(M2) ⊆
OE(M1).

Proof. Let x ∈ OE(M2). Then there exists an element a /∈ M2 such that x ∈ (a, E). That implies

x ∈ (a, E) and a /∈ M1. So that x ∈ OE(M1). Therefore OE(M2) ⊆ OE(M1). �

Proposition 3.4. For any non zero element a ∈ R with a /∈ E, there is a minimal prime E-ideal not

containing a.

Proof. Let a be any non zero element of R with a /∈ E. By Corollary 3.2, there exists a prime E-ideal

P of R such that a /∈ P . Consider F = {Q | Q is a prime E − ideal of R, a /∈ Q and Q ⊆ P}. It
satisfies the hypothesis of Zorn’s Lemma. So that F has a minimal element say M. i.e. M is minimal

and a /∈ M. �

Theorem 3.15. For any prime E-ideal M of an ADL R, the following are equivalent:

(1) M is minimal prime E-ideal

(2) M = OE(M)

(3) for any x ∈ R,M contains precisely one of x or (x, E).
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Proof. (1)⇒ (2) Assume (1). Let x ∈ M. Then there exists y /∈ M such that x ∧ y ∈ E. This implies

that x ∈ OE(M). So that M ⊆ OE(M). Since OE(M) ⊆ M, we get that M = OE(M).

(2) ⇒ (3) Assume (2). Let x ∈ R. Suppose x /∈ M. Let a ∈ (x, E). Then a ∧ x ∈ E. That implies

a ∧ x ∈ M. So that a ∈ M. Since x /∈ M. Therefore (x, E) ⊆ M.
(3)⇒ (1) Let Q be any prime E-ideal of R with Q ( M. Then choose x ∈ M such that x /∈ Q. That
implies (x, E) ⊆ Q ( M. So that (x, E) ( M which is a contradiction. �

Corollary 3.9. Let P be a minimal prime E-ideal of an ADL R and a ∈ R. Then a ∈ P if and only if

((a, E), E) ⊆ P.

Proof. Assume that a ∈ P. Then (a, E) * P. Let t ∈ ((a, E), E). Then (a, E) ⊆ (t, E). Suppose

t /∈ P. Then (a, E) ⊆ (t, E) ⊆ P, which is a contradiction. That implies t ∈ P, which gives

((a, E), E) ⊆ P. The converse follows from the fact that a ∈ ((a, E), E). �

Definition 3.6. An ADL R with maximal elements is called an E- semi complemented if for each non

maximal element x ∈ R, there exists a non zero element y /∈ E such that x ∧ y ∈ E.

Example 3.4. From the Example 3.2, clearly we have that R is an E-semi complemented ADL.

Theorem 3.16. Let R be an ADL with maximal elements. Then R is E-semi complemented if and

only if the intersection of all maximal filters disjoint with E isM.

Proof. Assume that R is E-semi complemented. Consider

K =
⋂{

M | M is a maximal filter of R and M ∩ E = ∅}.

We have to prove that K = M. Let x ∈ K with x is not a maximal element. Then x ∈ M,

for all maximal filter M disjoint with E. Then x /∈ E. Since x is non maximal and R is E- semi

complemented, there exists a non zero element y /∈ E such that x ∧ y ∈ E. Then x ∧ y /∈ M. That
impliesM∨[x∧y) = R. Since y /∈ E, there exists a minimal prime E-ideal N of R such that y /∈ N. That
implies y ∈ R\N and (R\N)∩E = ∅, where R\N is maximal filter of R. So that x, y ∈ R\N.We have

x ∧y ∈ R \N. Therefore (R \N)∩E 6= ∅, which is a contradiction. Therefore x is a maximal element.

Hence K = M. Conversely, assume that
⋂
{M | M is a maximal filter of R and M ∩ E = ∅} = M.

Let x be any non maximal element of R. Then there exists a maximal filter M such that x /∈ M and

M ∩ E = ∅. That implies M ∨ [x) = R. So that a ∧ x = 0, for some a ∈ M. Since a ∈ M and

M ∩ E = ∅, we get a /∈ E. Clearly, a ∧ x ∈ E. That is, for any non maximal element x of R, there

exists a non zero element a /∈ E such that a ∧ x ∈ E. Hence R is E-semi complemented. �

Definition 3.7. An ADL R is said to be E-normal if for any a, b ∈ R such that a∧b ∈ E, there exists
x ∈ (a, E) and y ∈ (b, E) such that x ∨ y is maximal.

From the Example 3.2, clearly we have that R is a D−normal ADL. The following result is a direct

consequence of the above definition.
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Theorem 3.17. R is E-normal if and only if (a, E) ∨ (b, E) = R, for any a, b ∈ R, with a ∧ b ∈ E.

Definition 3.8. Two E-ideals G1 and G2 of R are said to be co-maximal if G1 ∨ G2 = R.

Example 3.5. From the Example 3.2, we have that I2, I3, I4, I5 are E-ideals of R. Clearly, I4∨ I5 = R.

Therefore I4 and I5 are co-maximal. Also, we have I2 ∨ I3 6= R. Therefore I2, I3 are not co-maximal.

Theorem 3.18. In an ADL R, the following are equivalent:

(1) for any a, b ∈ R with a ∧ b ∈ E, (a, E) ∨ (b, E) = R

(2) for any a, b ∈ R, (a, E) ∨ (b, E) = (a ∧ b, E)

(3) any two distinct minimal prime E-ideals are co-maximal

(4) every prime E-ideal contains a unique minimal prime E-ideal

(5) for any prime E-ideal P, OE(P ) is prime.

Proof. (1) ⇒ (2) Assume (1). Let a, b ∈ R with x ∈ (a ∧ b, E). Then x ∧ (a ∧ b) ∈ E and

hence (x ∧ a) ∧ (x ∧ b) ∈ E. By (1), we have that (x ∧ a, E) ∨ (x ∧ b, E) = R. That implies

x ∈ (x ∧ a, E) ∨ (x ∧ b, E). Then there exists r ∈ (x ∧ a, E) and s ∈ (x ∧ b, E) such that x = r ∨ s.
Since r ∈ (x ∧ a, E), s ∈ (x ∧ b, E) we get that r ∧ x ∈ (a, E) and s ∧ x ∈ (b, E). That implies

(x ∧ r) ∨ (x ∧ s) ∈ (a, E) ∨ (b, E) and hence x ∧ (r ∨ s) ∈ (a, E) ∨ (b, E). Since x = r ∨ s, we get

that x ∈ (a, E)∨ (b, E). Therefore (a∧ b, E) ⊆ (a, E)∨ (b, E). Since (a, E)∨ (b, E) ⊆ (a∧ b, E), we

get that (a, E) ∨ (b, E) = (a ∧ b, E), for all a, b ∈ R.
(2)⇒ (3) Assume (2). Let M and N be two distinct minimal prime E-ideals of R. Choose elements

x, y ∈ R such that x ∈ M \N and y ∈ N \M. Since M and N are minimal, x ∧ a ∈ E, y ∧ b ∈ E, for
some a /∈ M, b /∈ N. That implies x ∧ a ∧ y ∧ b ∈ E and hence R = (x ∧ a ∧ y ∧ b, E). By (2), we

get that (x ∧ b, E) ∨ (a ∧ y , E) = R. Since a /∈ M and y /∈ M, we get that a ∧ y /∈ M. That implies

(a ∧ y , E) ⊆ M. Similarly, we have that (x ∧ b, E) ⊆ N. That implies ((x ∧ b) ∧ (a ∧ y), E) ⊆ M ∨ N
and hence R = M ∨ N. Therefore M and N are co-maximal.

(3) ⇒ (4) Assume (3). Let M be a prime E-ideal of R. Suppose M contains two distinct minimal

prime E-ideals, say N1 and N2. By (3), we get that R = N1 ∨ N2 ⊆ M, we get a contradiction.

Therefore every prime E-ideal contains a unique minimal prime E-filter.

(4) ⇒ (5) Assume that every prime E-ideal of R contains a unique minimal prime E-ideal. Then by

Corollary 3.8, we get that OE(P ) is a prime E-ideal.

(5)⇒ (1) Assume (5). Let a, b ∈ R be such that a∧b ∈ E. Suppose (a, E)∨ (b, E) 6= R. Then there

exists a maximal E-ideal M such that (a, E)∨ (b, E) ⊆ M. That implies (a, E) ⊆ M and (b, E) ⊆ M.
That implies a /∈ OE(M) and b /∈ OE(M). Since OE(M) is prime, we get a ∧ b /∈ OE(M). So that

E * OE(M), which is a contradiction. Therefore (a, E) ∨ (b, E) = R. �

Theorem 3.19. In an ADL R with maximal elements, the following conditions are equivalent:

(1) R is E-normal
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(2) for any two distinct maximal filters G1 and G2 of R with G1 ∩ E = ∅, G2 ∩ E = ∅ there exist

a /∈ G1 and b /∈ G2 such that a ∨ b is maximal

(3) for any maximal filter G with G∩E = ∅, G is the unique maximal filter containing R \OE(P ).

Proof. (1)⇒ (2) Assume that R is E-normal.

Let G1 and G2 be two distinct maximal filters of R with G1 ∩ E = ∅, G2 ∩ E = ∅. Then R \ G1 and
R \ G2 are distinct minimal prime E-ideals of R. By our assumption, we get R \ G1 and R \ G2 are
co-maximal. That is, (R \G1)∨ (R \G2) = R. Then, there exist a ∈ R \G1 and b ∈ R \G2 such that

a ∨ b is maximal.

(2)⇒ (3) Assume (2). Let G be any maximal filter of R with G ∩E = ∅ and R \OE(P ) ⊆ G. Let G1
be any maximal filter of R with G1 ∩ E = ∅ and R \ OE(P ) ⊆ G1. We prove that G = G1. Suppose

G 6= G1. By our assumption, there exists a /∈ G and b /∈ G1 such that a ∨ b is maximal. That implies

a, b /∈ R \ OE(P ). So that a, b ∈ OE(P ). This implies that a ∨ b ∈ OE(P ). Therefore OE(P ) = R,

which is a contradiction. We conclude that G = G1.

(3) ⇒ (1) For any maximal filter G with G ∩ E = ∅, G is the unique maximal filter containing

R \ OE(P ). Let P be a prime E-ideal of R. Suppose P contains two minimal prime E-ideals say Q1

and Q2. That is, Q1 ⊆ P and Q2 ⊆ P. That implies OE(P ) ⊆ OE(Q1) and OE(P ) ⊆ OE(Q2).We get

P ⊆ OE(Q1) and P ⊆ OE(Q2). So that Q2 ⊆ Q1 and Q1 ⊆ Q2. This concludes that Q1 = Q2. �

Let F be a filter of R. For any x, y ∈ R, define a binary relation φF on R as φF = {(x, y) ∈
R × R | x ∧ a = y ∧ a, for some a ∈ F}.

Proposition 3.5. For any filter F of an associative ADL R, φF is a congruence relation on R.

For any ADL R, it can be easily verified that the quotient R/φF is also an ADL with respect to

the following operations: [a]φF ∧ [b]φF = [a ∧ b]φF and [a]φF ∨ [b]φF = [a ∨ b]φF where [a]φF is the

congruence class of a modulo φF . It can be routinely verified that the mapping Φ : R → R/φF

defined by Φ(a) = [a]φF is a homomorphism.

Theorem 3.20. In an ADL R, we have the following:

(1) if x is a dual dense element of R, then [x ]φF is a dual dense element of R/φF
(2) if G is a E-ideal of R/φF , then Φ−1(G) is a E-ideal of R

(3) if G is a prime E-ideal of R/φF , then Φ−1(G) is a prime E-ideal of R.

Definition 3.9. Let F be a filter of an ADL R. For any ideal G of R, define G̃ = {[a]φF | a ∈ G}.

The following result can be proved easily.

Lemma 3.6. Let G be an E-ideal of R. Then G̃ is an E-ideal of R/φF .

Proposition 3.6. Let G be a prime E-ideal and F a filter of an ADL R such that G ∩F = ∅. We have

the following:
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(1) x ∈ G if and only if [x ]φF ∈ G̃
(2) G̃ ∩ F̃ = ∅
(3) if G is a prime E-ideal of R, then G̃ is a prime E-ideal of R/φF .

Proof. (1) Assume that x ∈ G. Then we have [x ]φF ∈ G̃. Conversely assume that [x ]φF ∈ G̃. Then
there exists y ∈ G such that [x ]φF = [y ]φF . That implies (x, y) ∈ φF . So there exists a ∈ F such that

x ∧ a = y ∧ a ∈ G. Since G ∩ F = ∅, we get a /∈ G. Since x ∧ a ∈ G and a /∈ G, we get that x ∈ G.
(2) Suppose G̃ ∩ F̃ 6= ∅. Then choose an element x ∈ R such that [x ]φF ∈ G̃ ∩ F̃ . Then [x ]φF ∈ G̃
and [x ]φF ∈ F̃ . Since [x ]φF ∈ G̃ and by (1), we get x ∈ G. Since [x ]φF ∈ F̃ , there exists y ∈ F such

that [x ]φF = [y ]φF . Then (x, y) ∈ φF . So there exist a ∈ F such that x ∧ a = y ∧ a. Since y ∧ a ∈ F,
we get that x ∧ a ∈ F. Since x ∈ G, we have that x ∧ a ∈ G ∩ F. That implies G ∩ F 6= ∅, we get a

contradiction. Hence G̃ ∩ F̃ = ∅.
(3) Clearly, we have that G̃ is a proper ideal of R/φF . Let [x ]φF ∈ Ẽ. Then x ∈ E ⊆ G. That implies

[x ]φF ∈ G and hence G̃ is an E-ideal of R/φF . Let [x ]φF , [y ]φF ∈ R/φF such that [x ]φF ∧ [y ]φF ∈ G̃.
Then [x ∧ y ]φF ∈ G̃. By (1) we have that x ∧ y ∈ G. Since G is prime, we get that x ∈ G or y ∈ G
Again by(1) we get that [x ]φF ∈ G̃ or [y ]φF ∈ G̃. Hence G̃ is a prime E-ideal in R/φF . �

Proposition 3.7. Let F be a filter of an ADL R. Then there is an order isomorphism of the set of all

prime E-ideals of R disjoint from F onto the set of all prime E-ideals of R/φF .

Proof. Let G and H be two prime E-ideals of R such that G ∩ F = ∅ and H ∩ F = ∅. Then by

Proposition 3.6(1), we get that G ⊆ H if and only if G̃ ⊆ H̃. Let G be a prime E-ideal of R with

G ∩ F = ∅. Then by Proposition 3.6(3), we get that G̃ is a prime E-ideal of R/φF . Let Q be a

prime E-ideal of R/φF . Consider G = {a ∈ R|[a]φF ∈ Q}. Since Q is a E-ideal of R/φF , we get that

G is a E-ideal of R. Let a, b ∈ R with a ∧ b ∈ G. Then [a]φF ∧ [b]φF = [a ∧ b]φF ∈ Q. Since Q is

prime, we get [a]φF ∈ Q or [b]φF ∈ Q. Therefore a ∈ G or b ∈ G. Hence G is a prime E-ideal of R.

Clearly G̃ = Q. Suppose G ∩ F 6= ∅. Then choose an element s ∈ G ∩ F. That implies [s]φF ∈ Q
and s ∈ F. Let [b]φF ∈ R/φF . Since s ∈ F and b ∧ s = b ∧ s ∧ s, we get that (b, b ∧ s) ∈ F. That
implies [b]φF = [b ∧ s]φF = [b]φF ∧ [s]φF ∈ Q. Therefore [b]φF ∈ Q. and hence R/φF = Q, which is a

contradiction. Thus G ∩ F = ∅. �

Corollary 3.10. Let R be an ADL. Then the above map induces a one-to-one correspondence between

the set of all minimal prime E-ideals of R which are disjoint from F and the set of all minimal prime

E-ideals of R/φF .

Theorem 3.21. For any filter F of an ADL R, the following are equivalent:

(1) any two distinct minimal prime E-ideals of R are co-maximal

(2) any two distinct minimal prime E-ideals of R/φF are co-maximal.
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Proof. (1) ⇒ (2) Assume (1). Let G1, G2 be two distinct minimal prime E-ideals of R/φF . Then by

the corollary 3.10, there exist two minimal prime E-ideals H1 and H2 of R such that H1 ∩ F = ∅ and
H2 ∩ F = ∅. Also H̃1 = G1 and H̃2 = G2. Since G1 and G2 are distinct, we get that H1 and H2 are

distinct. By the assumption, we have H1∨H2 = R. Let a ∈ R. There exist a1 ∈ H1 and a2 ∈ H2 such
that a = a1 ∨ a2. Since a1 ∈ H1 and a2 ∈ H2 we get [a1]φF ∈ H̃1 = G1 and [a2]φF ∈ H̃2 = G2. Now,

[a]φF = [a1 ∨ a2]φF = [a1]φF ∨ [a2]φF ∈ G1 ∨G2. That implies [a]φF ∈ G1 ∨G2, for all a ∈ R.Therefore
G1 ∨ G2 = R/φF .

(2)⇒ (1) Assume (2). Let P be a prime E-ideal of R. Suppose P contains two distinct minimal prime

E-ideals, say G1 and G2. Consider K = R \ P. Clearly K is a filter of R and G1 ∩ K = ∅ = G2 ∩ K.
By Corollary 3.10, we get that G̃1 and G̃2 are distinct minimal prime E-ideals of R/φF such that

G̃1, G̃2 ⊆ P̃ . That implies P̃ is containing two distinct minimal prime E-ideals of R/φF , which is a

contradiction. Hence P contains a unique minimal prime E-ideal. By Theorem 3.18, any two distinct

minimal prime E-ideals of R are co-maximal. �

4. On the space prime E-ideals

In this section, some topological properties of the space of all prime E-ideals and the space of all

minimal prime E-ideals of an ADL are studied.

Let us denote the set of all prime E-ideals of an ADL R by SpecEI (R). For any A ⊆ R, define

α(A) = {P ∈ SpecEI (R)|A * P} and for any a ∈ R, α(a) = {P ∈ SpecEI (R)|a /∈ P}. Then we have

the following result whose proof is straightforward.

Lemma 4.1. Let R be an ADL and a, b ∈ R. Then the following conditions hold:

(1)
⋃
a∈R

α(a) = SpecEI (R)

(2) α(a) ∩ α(b) = α(a ∧ b)

(3) α(a) ∪ α(b) = α(a ∨ b)

(4) α(a) = ∅ if and only if a ∈ E
(5) α(a) = SpecEI (R) if and only if a ∈M.

From the above result, it can be easily observed that the collection {α(a)|a ∈ R} forms a base for

a topology on SpecEI (R). The topology generated by this base is precisely {α(A | A ⊆ R} and is

called the hull-kernel topology on SpecEI (R). Under this topology, we have the following result.

Theorem 4.1. In an ADL R, we have the following:

(1) for any a ∈ R,α(a) is compact in SpecEI (R)

(2) if C is a compact open subset of SpecEI (R), then C = α(a) for some a ∈ R
(3) SpecEI (R) is a T0-space

(4) the map a 7→ α(a) is an epimorphism from R onto the lattice of all compact open subsets of

SpecEI (R).
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Proof. (1) Let a ∈ R. Let X ⊆ R be such that α(a) ⊆
⋃
x∈X

α(x). Let J be a E-ideal generated by

the set X. Suppose a /∈ J. Then there exists a prime E-ideal P such that J ⊆ P and a /∈ P. Since
X ⊆ J ⊆ P, we get P /∈ α(x) for all x ∈ X. Since a /∈ P, we get P ∈ α(a), which is a contradiction.

Hence a ∈ J. So we can write a = (
n∨
i=1

xi) ∧ a for some x1, x2, . . . , xn ∈ X and n ∈ N. Then, we get

α(a) = α((
n∨
i=1

xi) ∧ a) ⊆ α(
n∨
i=1

xi) =
n⋃
i=1

α(xi) which is finite subcover for α(a). Therefore α(a) is

compact.

(2) Let C be a compact open subset of SpecEI (R). Since C is open, we get C =
⋃
x∈X

α(x) for some

X ⊆ R. Since C is compact, there exist x1, x2, . . . , xn ∈ X such that C =
n⋃
i=1

α(xi) = α(
n∨
i=1

) Therefore

C = α(x) for some x ∈ R.
(3) Let P and Q be two distinct prime E-ideals of R. Without loss of generality, assume that P * Q.
Choose x ∈ R such that x ∈ P and x /∈ Q. Hence P /∈ α(x) and Q ∈ α(x). Therefore SpecEI (R) is a

T0-space.

(4) It can be obtained from (1), (2) and by the above lemma. �

Proposition 4.1. In an ADL R, the following are equivalent:

(1) SpecEI (R) is a Hausdorff space

(2) for each P ∈ SpecEI (R), P is the unique member of SpecEI (R) such that OE(P ) ⊆ P
(3) every prime E-ideal is minimal

(4) every prime E-ideal is maximal.

Proof. (1) ⇒ (2) Assume (1). Let P ∈ SpecEI (R). Clearly OE(P ) ⊆ P. Suppose Q ∈ SpecEI (R)

such that Q 6= P and OE(P ) ⊆ Q. Since Spec IE(R) is Hausdorff, there exists a, b ∈ R such that

P ∈ α(a), Q ∈ α(b) and α(a ∧ b) = α(a) ∩ α(b) = ∅. Hence a /∈ P, b /∈ Q and a ∧ b ∈ E. Therefore
b ∈ OE(P ) ⊆ Q, which is a contradiction to that b /∈ Q. Hence P = Q. Therefore P is the unique

member of SpecEI (R) such that OE(P ) ⊆ P.
(2) ⇒ (3) Assume (2). Let P be a prime E-ideal of R. Let Q be a prime E-ideal in R such that

Q ⊆ P. Hence OE(Q) ⊆ Q ⊆ P. Therefore P is a minimal prime E-ideal of R.

(3)⇒ (4) It is clear.

(4) ⇒ (1) Assume (4). Let P and Q be two distinct elements of SpecEI (R). Hence OE(Q) * P.

Choose a ∈ OE(Q) such that a /∈ P. Since a ∈ OE(Q), there exists b /∈ Q such that a ∈ (b, E). Hence

a∧b ∈ E. Thus it yields, P ∈ α(a), Q ∈ α(b). Since a∧b ∈ E, we get that α(a)∩α(b) = α(a∧b) = ∅.
Therefore SpecEI (R) is Hausdorff. �

Theorem 4.2. For any E-ideal G of an ADL R, (G,E) =
⋂
{P ∈ SpecEI (R) | G * P}.

Proof. Let G be an E-ideal of L. Consider K =
⋂
{P ∈ SpecEI (R) | G * P}. Let P ∈ α(G). Then

G * P. Since G ∩ (G,E) = E ⊆ P and P is prime, we get (G,E) ⊆ P. Hence every prime E-ideal



Int. J. Anal. Appl. (2023), 21:85 21

P of R such that G * P contains (G,E). Therefore (G,E) ⊆ K. Let x /∈ (G,E). Then there exists

y ∈ G such that x ∧ y /∈ E. Let K = {G | G is an E − ideal of L and x ∧ y /∈ G}. Clearly, E ∈ K
and so P = ∅. Clearly, (K,⊆) is a partially ordered set and it satisfies the hypothesis of the Zorn’s

lemma, K has a maximal element, say N. Then N is an E-ideal of R and x ∧ y /∈ N. Therefore x /∈ N
and y /∈ N. Since y ∈ G, we get G * N. We now show that N is prime. Let a, b ∈ R with a /∈ N and

b /∈ N. Then N ( N ∨ (a)E and N ( N ∨ (b)E . By the maximality of N, we get x ∧ y ∈ N ∨ (a)E and

x ∧ y ∈ N ∨ (b)E . Hence, x ∧ y ∈ {N ∨ (a)E} ∩ {N ∨ (b)E} = N ∨ {(a)E ∩ (b)E} = N ∨ (a ∧ b)E . If

a ∧ b ∈ N, then x ∧ y ∈ N which is a contradiction. Thus N is a prime E-ideal of R such that G * N
and x /∈ N. Therefore x /∈ K. Hence K ⊆ (G,E). �

Corollary 4.1. For any ADL R and a ∈ R, (a, E) =
⋂
{P ∈ SpecEI (R) | a /∈ P}.

Let MinEI (R) denote the set of all minimal prime E-ideals of ADL R. For any a ∈ R, write

αm(x) = α(x) ∩MinEI (R).

Theorem 4.3. For any ADL R, the following conditions hold in R :

(1) Every prime E-ideals contains a minimal prime E-ideal

(2)
⋂

P∈MinEI (R)
P = E

(3) for any subset A with E ⊆ A, (A,E) =
⋂

P∈αm(A)
(P ).

Proof. (1) Let P be a prime E-ideal of R. Consider X = {N ∈ SpecEI (R) | N ⊆ P}. Clearly X is a

partially ordered set under set inclusion and hence it satisfies the hypothesis of the Zorn’s lemma, X

has a minimal element say M. Clearly M will be the required minimal prime E-ideal of R.

(2) Since E is contained in every minimal prime E-ideal of R and so contained in the intersection of

all minimal prime E-ideals. Let x /∈ E. Then there exists a prime E-ideal P of L such that x /∈ P. By
(1), there exists a minimal prime E-ideal of R such that M ⊆ P. Since x /∈ P, we get x /∈ M. That
implies M is a minimal prime E-ideal of R such that x /∈ M. Hence x is not in the intersection of all

minimal prime. Thus intersection of all minimal prime E-ideals of R is equal to E.

(3) Let P ∈ MinEI (R) such that A * P. Choose x ∈ A such that x /∈ P. Then (A,E) ⊆ (x, E) ⊆
P. That implies (A,E) is contained in every minimal prime E-ideal of R such that A * P. Hence

(A,E) ⊆
⋂

P∈αm(A)
(P ). Let x /∈ (A,E). Then x ∧ y /∈ E, for some y ∈ A. By the condition (2), there

exists a minimal prime E-ideal P of R such that x ∧ y /∈ P. That implies x /∈ P and y /∈ P. Therefore
x /∈

⋂
P∈αm(A)

P and hence (A,E) =
⋂

P∈αm(A)
P. �

Lemma 4.2. For any a, b ∈ R, we have following:

(1) (a, E) ⊆ (b, E) if and only if αm(b) ⊆ αm(a)

(2) αm(a) = ∅ if and only if a ∈ E
(3) αm(a) = MinEI (R) if and only if (a, E) = E.
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Proof. (1) Let a, b ∈ R. Assume that (a, E) ⊆ (b, E). Let P ∈ αm(b) Then b /∈ P. That implies

(a, E) ⊆ (b, E) ⊆ P. Therefore a /∈ P and hence P ∈ αm(a). Thus αm(b) ⊆ αm(a). Conversely,

assume that αm(b) ⊆ αm(a). Now, (a, E) =
⋂

P∈αm(a)
P ⊆

⋂
P∈αm(b)

P = (b, E). Hence (a, E) ⊆ (b, E).

(2) Suppose MinEI (R) = ∅. Then a ∈ P for all P ∈ MinEI (R). That implies a ∈
⋂

P∈MinEI (R)
P. Since

a ∈
⋂

P∈MinEI (R)
P = E, we get a ∈ E. The converse is clear.

(3) Assume αm(a) = MinEI (R). Then (a, E) =
⋂

P∈αm(a)
P =

⋂
P∈MinEI (R)

P = E. Therefore(a, E) = E.

Conversely, assume (a, E) = E. Then (a, E) = E ⊆ P. That implies a /∈ P, for all P ∈ MinEI (R).

Therefore αm(a) = MinEI (R). �

For any E-ideal G of an ADL R, define βm(G) = {P ∈ MinEI (R) | G ⊆ P}.

Lemma 4.3. Let G be an E-ideal of an ADL R. If βm(G) = ∅, then (G,E) = E.

Proof. Let βm(G) = ∅. Then βm(G) = MinEI (R). That implies (G,E) =
⋂

P∈αm(F )
P ⊆

⋂
P∈MinEI (R)

P =

E. Therefore (G,E) = E. �

For any ADL R, define K = {x ∈ R | (x, E) = E}.

Lemma 4.4. For any ADL R,K is a filter of R.

Proof. Clearly, we have that for anym ∈M, m ∈ K. Let x, y ∈ K. Then ((x∧y , E), E) = ((x, E), E)∩
((y , E), E) = (E,E) ∩ (E,E) = R ∩ R = R. That implies ((x ∧ y), E) = (R,E) = E. Therefore

x∧y ∈ K. Let x ∈ K. Then (x, E) = E. Let y ∈ R. Now, (x∨y , E) = (x, E)∩(y , E) = E∩(y , E) = E.

Therefore x ∨ y ∈ K. Hence K is a filter of R. �

Theorem 4.4. Let G be an E-ideal of an ADL R. Then MinEI (R) is compact if and only if βm(G) = ∅
implies G ∩K 6= ∅.

Proof. Assume that MinEI (R) is compact. Let G be an E-ideal R such that βm(G) = ∅. Then
αm(G) = MinEI (R). Since MinEI (R) is compact, there exists a ∈ G such that αm(a) = MinEI (R).

That implies (a, E) = E. Therefore a ∈ K and hence G ∩ K 6= ∅. Conversely, assume that for any

E-ideal G of R, βm(G) = ∅ implies G ∩ K 6= ∅. Let A ⊆ R be such that MinEI (R) =
⋃
a∈A

αm(A) =

αm(A) = αm(G) where G = AE . Since MinEI (R) = αm(G), we get βm(G) = ∅. By the assumption,

we get G ∩ E 6= ∅. Choose d ∈ G ∩K. Since d ∈ G and G = AE , there exists a1, a2, . . . , an ∈ A such

that d = (a1∨ a2∨ . . .∨ an)∧d. Since d ∈ E, MinEI (R) = αm(d) ⊆ αm
( n∨
i=1

ai

)
=

n⋃
i=1

αm(ai). Hence

MinEI (R) is compact. �

Theorem 4.5. Let R be an ADL. For any Y ⊆ MinEI (R), the closure of Y in MinEI (R) is βm(
⋂
P∈Y

P )

and, in particular, αm(F ) = βm((G,E)), for any E ⊆ G ⊆ R.
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Proof. Let Y ⊆ MinEI (R). Then Y in MinEI (R) = {Y in SpecEI (R)} ∩ MinEI (R) = H(
⋂
P∈Y

P ) ∩

MinEI (R) = βm(
⋂
P∈Y

P ). In particular, for any E ⊆ G ⊆ R, we have αm(G) = βm(
⋂

P∈αm(G)
P ) =

βm(
⋂

I*P, P∈MinEI (R)
P ) = βm((F,E)). �

Proposition 4.2. Let F,G be two E-ideals of an ADL R. Then the following are equivalent:

(1) G ⊆ (F,E)

(2) G ∩ F = E

(3) αm(G) ∩ αm(F ) = ∅.

Proof. (1)⇒ (2) Assume that G ⊆ (F,E). Then G ∩ F ⊆ (F,E) ∩ F = E. Therefore G ∩ F = E.

(2) ⇒ (3) Assume that G ∩ F = E. Let P ∈ αm(G) ∩ αm(F ) = αm(G ∩ F ). Then E = G ∩ F * P,
which is a contradiction. Therefore αm(G) ∩ αm(F ) = ∅.
(3) ⇒ (1) Assume that αm(G) ∩ αm(F ) = ∅. Let x ∈ G. Suppose x /∈ (F,E). Then there exists

y ∈ F such that x ∧ y /∈ E. Then there exists P ∈ MinEI (R) such that x ∧ y /∈ P. That implies

x /∈ P and y /∈ P. Hence G * P and F * P. Therefore P ∈ αm(G) and P ∈ αm(F ). Therefore

P ∈ αm(G) ∩ αm(F ), which is a contradiction. So x ∈ (F,E). Therefore G ⊆ (F,E). �

Corollary 4.2. Let G be an E-ideal of an ADL R and x ∈ R. Then x ∈ (G,E) if and only if

αm(x) ∩ αm(G) = ∅.

Proof. By taking G = {x}, in the above proposition. �

Theorem 4.6. Every open subset of MinEI (R) is closed if and only if for any E-ideal of R, (G,E) = E

implies βm(G) = ∅.

Proof. Assume that every open set of MinEI (R) is closed. Let G be an E-ideal of R. Then βm(G) is

an open set in MinEI (R). Now, βm(G) 6= ∅. Then there exists x ∈ R \ E such that αm(x) ⊆ βm(G).

That implies αm(x) ∩ αm(G) = ∅. Therefore x ∈ (G,E) and x /∈ E. Hence (G,E) 6= E. Thus

(G,E) = E, which gives βm(G) = ∅. Conversely, assume that the condition holds. Let H be an

open subset of MinEI (R). Then H = αm(G), for some E-ideal G of L. By Theorem 4.5, we have

αm(G) = βm((G,E)). It is enough to show that βm((G,E)) = αm(G). Since ((G ∨ (G,E)), E) = E,

by the assumption, we get βm(G ∨ (G,E)) = ∅. Now, for any P ∈ MinEI (R), we have P ∈ αm(G)⇔
G * P ⇔ (G,E) ⊆ P ⇔ P ∈ βm(G). Hence αm(G) = βm(G). Therefore H is closed inMinEI (R). �

Theorem 4.7. In an ADL R, MinEI (R) is a Hausdorff space.

Proof. Let P and Q be distinct elements of MinEI (R). Then there exists a ∈ P such that a /∈ Q.
Since P is minimal, we get (a, E) * P. Then there exists b ∈ (a, E) such that b /∈ P. That implies

a∧ b ∈ E and hence αm(a)∩αm(b) = ∅. Since a /∈ Q and b /∈ P, we get Q ∈ αm(a) and P ∈ αm(b).

Therefore MinEI (R) is a Hausdorff space. �
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