International Journal of Analysis and Applications

Some Properties of Generalized (Λ, α) -Closed Sets

Chawalit Boonpok, Montri Thongmoon*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

* Corresponding author: montri.t@msu.ac.th

Abstract. The aim of this paper is to introduce the concept of generalized (Λ, α) -closed sets. Moreover, we investigate some characterizations of Λ_{α} - $\mathcal{T}_{\frac{1}{2}}$ -spaces, (Λ, α) -normal spaces and (Λ, α) -regular spaces by utilizing generalized (Λ, α) -closed sets.

1. Introduction

The concept of generalized closed sets was first introduced by Levine [7]. Moreover, Levine defined a separation axiom called $T_{\frac{1}{2}}$ between T_0 and T_1 . Dontchev and Ganster [3] introduced the notion of $T_{\frac{3}{4}}$ -spaces which are situated between T_1 and $T_{\frac{1}{2}}$ and showed that the digital line or the Khalimsky line [5] (\mathbb{Z}, κ) lies between T_1 and $T_{\frac{3}{4}}$. As a modification of generalized closed sets, Palaniappan and Rao [10] introduced and studied the notion of regular generalized closed sets. As the further modification of regular generalized closed sets, Noiri and Popa [9] introduced and investigated the concept of regular generalized α -closed sets. Park et al. [11] obtained some characterizations of $T_{\frac{3}{4}}$ spaces. Dungthaisong et al. [4] characterized $\mu_{(m,n)}$ - $T_{\frac{1}{2}}$ spaces by utilizing the concept of $\mu_{(m,n)}$ closed sets. Torton et al. [12] introduced and studied the notions of $\mu_{(m,n)}$ -regular spaces and $\mu_{(m,n)}$ normal spaces. Buadong et al. [1] introduced and investigated the notions of T_1 -GTMS spaces and T_2 -GTMS spaces. Caldas et al. [2] by considering the concepts of α -open sets and α -closed sets, introduced and investigated Λ_{α} -sets, (Λ, α)-closed sets, (Λ, α)-open sets. In the present paper, we introduce the concept of generalized (Λ, α)-closed sets. Furthermore, some properties of

Received: Jun. 13, 2023.

²⁰²⁰ Mathematics Subject Classification. 54A05, 54D10.

Key words and phrases. generalized (Λ, α) -closed set; Λ_{α} - $\mathcal{T}_{\frac{1}{2}}$ -space; (Λ, α) -normal space; (Λ, α) -regular space.

generalized (Λ, α) -closed sets are discussed. In particular, several characterizations of Λ_{α} - $\mathcal{T}_{\frac{1}{2}}$ -spaces, (Λ, α) -normal spaces and (Λ, α) -regular spaces are established.

2. Preliminaries

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be α -open [8] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is called α -closed. The family of all α -open sets in a topological space (X, τ) is denoted by $\alpha(X, \tau)$. A subset $\Lambda_{\alpha}(A)$ [2] is defined as follows:

$$\Lambda_{\alpha}(A) = \cap \{ O \in \alpha(X, \tau) | A \subseteq O \}.$$

Lemma 2.1. [2] For subsets A, B and A_i ($i \in I$) of a topological space (X, τ), the following properties hold:

- (1) $A \subseteq \Lambda_{\alpha}(A)$.
- (2) If $A \subseteq B$, then $\Lambda_{\alpha}(A) \subseteq \Lambda_{\alpha}(B)$.
- (3) $\Lambda_{\alpha}(\Lambda_{\alpha}(A)) = \Lambda_{\alpha}(A).$
- (4) $\Lambda_{\alpha}(\cap \{A_i | i \in I\}) \subseteq \cap \{\Lambda_{\alpha}(A_i) | i \in I\}.$
- (5) $\Lambda_{\alpha}(\cup \{A_i | i \in I\}) = \cup \{\Lambda_{\alpha}(A_i) | i \in I\}.$

Recall that a subset A of a topological space (X, τ) is said to be a Λ_{α} -set [2] if $A = \Lambda_{\alpha}(A)$.

Lemma 2.2. [2] For subsets A and $A_i(i \in I)$ of a topological space (X, τ) , the following properties hold:

- (1) $\Lambda_{\alpha}(A)$ is a Λ_{α} -set.
- (2) If A is α -open, then A is a Λ_{α} -set.
- (3) If A_i is a Λ_{α} -set for each $i \in I$, then $\cap_{i \in I} A_i$ is a Λ_{α} -set.
- (4) If A_i is a Λ_{α} -set for each $i \in I$, then $\cup_{i \in I} A_i$ is a Λ_{α} -set.

A subset A of a topological space (X, τ) is called (Λ, α) -closed [2] if $A = T \cap C$, where T is a Λ_{α} -set and C is an α -closed set. The complement of a (Λ, α) -closed set is called (Λ, α) -open. The collection of all (Λ, α) -open (resp. (Λ, α) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_{\alpha}O(X, \tau)$ (resp. $\Lambda_{\alpha}C(X, \tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, α) -cluster point of A [2] if for every (Λ, α) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, α) -cluster points of A is called the (Λ, α) -closure of A and is denoted by $A^{(\Lambda, \alpha)}$.

Lemma 2.3. [2] Let A and B be subsets of a topological space (X, τ) . For the (Λ, α) -closure, the following properties hold:

- (1) $A \subseteq A^{(\Lambda,\alpha)}$ and $[A^{(\Lambda,\alpha)}]^{(\Lambda,\alpha)} = A^{(\Lambda,\alpha)}$.
- (2) $A^{(\Lambda,\alpha)} = \cap \{F | A \subseteq F \text{ and } F \text{ is } (\Lambda, \alpha) \text{-closed} \}.$
- (3) If $A \subseteq B$, then $A^{(\Lambda,\alpha)} \subseteq B^{(\Lambda,\alpha)}$.

- (4) A is (Λ, α) -closed if and only if $A = A^{(\Lambda, \alpha)}$.
- (5) $A^{(\Lambda,\alpha)}$ is (Λ, α) -closed.

Definition 2.1. [6] Let A be a subset of a topological space (X, τ) . The union of all (Λ, α) -open sets of X contained in A is called the (Λ, α) -interior of A and is denoted by $A_{(\Lambda, \alpha)}$.

Lemma 2.4. [6] Let A and B be subsets of a topological space (X, τ) . For the (Λ, α) -interior, the following properties hold:

- (1) $A_{(\Lambda,\alpha)} \subseteq A$ and $[A_{(\Lambda,\alpha)}]_{(\Lambda,\alpha)} = A_{(\Lambda,\alpha)}$.
- (2) If $A \subseteq B$, then $A_{(\Lambda,\alpha)} \subseteq B_{(\Lambda,\alpha)}$.
- (3) A is (Λ, α) -open if and only if $A_{(\Lambda, \alpha)} = A$.
- (4) $A_{(\Lambda,\alpha)}$ is (Λ, α) -open.
- (5) $[X A]^{(\Lambda,\alpha)} = X A_{(\Lambda,\alpha)}$
- (6) $[X A]_{(\Lambda,\alpha)} = X A^{(\Lambda,\alpha)}$.

3. Generalized (Λ, α) -closed sets

In this section, we introduce the notion of generalized (Λ, α)-closed sets. Moreover, some properties of generalized (Λ, α)-closed sets are discussed.

Definition 3.1. A subset A of a topological space (X, τ) is said to be generalized (Λ, α) -closed (briefly g- (Λ, α) -closed) if $A^{(\Lambda, \alpha)} \subseteq U$ and U is (Λ, α) -open in (X, τ) . The complement of a generalized (Λ, α) -closed set is said to be generalized (Λ, α) -open (briefly g- (Λ, α) -open).

Definition 3.2. A topological space (X, τ) is said to be Λ_{α} -symmetric if for x and y in X, $x \in \{y\}^{(\Lambda,\alpha)}$ implies $y \in \{x\}^{(\Lambda,\alpha)}$.

Theorem 3.1. A topological space (X, τ) is Λ_{α} -symmetric if and only if $\{x\}$ is g- (Λ, α) -closed for each $x \in X$.

Proof. Assume that $x \in \{y\}^{(\Lambda,\alpha)}$ but $y \notin \{x\}^{(\Lambda,\alpha)}$. This implies that the complement of $\{x\}^{(\Lambda,\alpha)}$ contains y. Therefore, the set $\{y\}$ is a subset of the complement of $\{x\}^{(\Lambda,\alpha)}$. This implies that $\{y\}^{(\Lambda,\alpha)}$ is a subset of the complement of $\{x\}^{(\Lambda,\alpha)}$. Now the complement of $\{x\}^{(\Lambda,\alpha)}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subseteq V \in \Lambda_{\alpha}O(X, \tau)$, but $\{x\}^{(\Lambda,\alpha)}$ is not a subset of V. This means that $\{x\}^{(\Lambda,\alpha)}$ and the complement of V are not disjoint. Let y belongs to their intersection. Now, we have $x \in \{y\}^{(\Lambda,\alpha)}$ which is a subset of the complement of V and $x \notin V$. This is a contradiction. \Box

Theorem 3.2. A subset A of a topological space (X, τ) is $g(\Lambda, \alpha)$ -closed if and only if $A^{(\Lambda, \alpha)} - A$ contains no nonempty (Λ, α) -closed set.

Proof. Let *F* be a (Λ, α) -closed subset of $A^{(\Lambda, \alpha)} - A$. Now, $A \subseteq X - F$ and since *A* is g- (Λ, α) -closed, we have $A^{(\Lambda, \alpha)} \subseteq X - F$ or $F \subseteq X - A^{(\Lambda, \alpha)}$. Thus, $F \subseteq A^{(\Lambda, \alpha)} \cap [X - A^{(\Lambda, \alpha)}] = \emptyset$ and hence *F* is empty.

Conversely, suppose that $A \subseteq U$ and U is (Λ, α) -open. If $A^{(\Lambda, \alpha)} \nsubseteq U$, then $A^{(\Lambda, \alpha)} \cap (X - U)$ is a nonempty (Λ, α) -closed subset of $A^{(\Lambda, \alpha)} - A$.

Definition 3.3. Let A be a subset of a topological space (X, τ) . The (Λ, α) -frontier of A, $\Lambda_{\alpha}Fr(A)$, is defined as follows: $\Lambda_{\alpha}Fr(A) = A^{(\Lambda,\alpha)} \cap [X - A]^{(\Lambda,\alpha)}$.

Theorem 3.3. Let A be a subset of a topological space (X, τ) . If A is $g_{-}(\Lambda, \alpha)$ -closed and

$$A \subseteq V \in \Lambda_{\alpha}O(X, \tau),$$

then $\Lambda_{\alpha} Fr(V) \subseteq [X - A]_{(\Lambda, \alpha)}$.

Proof. Let *A* be g-(Λ, α)-closed and $A \subseteq V \in \Lambda_{\alpha}O(X, \tau)$. Then, $A^{(\Lambda,\alpha)} \subseteq V$. Suppose that $x \in \Lambda_{\alpha}Fr(V)$. Since $V \in \Lambda_{\alpha}O(X, \tau)$, $\Lambda_{\alpha}Fr(V) = V^{(\Lambda,\alpha)} - V$. Therefore, $x \notin V$ and $x \notin A^{(\Lambda,\alpha)}$. Thus, $x \in [X - A]_{(\Lambda,\alpha)}$ and hence $\Lambda_{\alpha}Fr(V) \subseteq [X - A]_{(\Lambda,\alpha)}$.

Theorem 3.4. Let (X, τ) be a topological space. For each $x \in X$, either $\{x\}$ is (Λ, α) -closed or g- (Λ, α) -open.

Proof. Suppose that $\{x\}$ is not (Λ, α) -closed. Then, $X - \{x\}$ is not (Λ, α) -open and the only (Λ, α) -open set containing $X - \{x\}$ is X itself. Thus, $[X - \{x\}]^{(\Lambda, \alpha)} \subseteq X$ and hence $X - \{x\}$ is $g - (\Lambda, \alpha)$ -closed. Therefore, $\{x\}$ is $g - (\Lambda, \alpha)$ -open.

Theorem 3.5. Let A be a subset of a topological space (X, τ) . Then, A is g- (Λ, α) -open if and only if $F \subseteq A_{(\Lambda,\alpha)}$ whenever $F \subseteq A$ and F is (Λ, α) -closed.

Proof. Suppose that A is g-(Λ , α)-open. Let $F \subseteq A$ and F be (Λ , α)-closed. Then, we have

$$X - A \subseteq X - F \in \Lambda_{\alpha}O(X, \tau)$$

and X - A is g-(Λ, α)-closed. Thus, $X - A_{(\Lambda,\alpha)} = [X - A]^{(\Lambda,\alpha)} \subseteq X - F$ and hence $F \subseteq A_{(\Lambda,\alpha)}$.

Conversely, let $X - A \subseteq U$ and $U \in \Lambda_{\alpha}O(X, \tau)$. Then, $X - U \subseteq A$ and X - U is (Λ, α) -closed. By the hypothesis, $X - U \subseteq A_{(\Lambda,\alpha)}$ and hence $[X - A]^{(\Lambda,\alpha)} = X - A_{(\Lambda,\alpha)} \subseteq U$. This shows that X - A is g- (Λ, α) -closed. Thus, A is g- (Λ, α) -open.

Theorem 3.6. A subset A of a topological space (X, τ) is $g_{-}(\Lambda, \alpha)$ -closed if and only if $A \cap \{x\}^{(\Lambda, \alpha)} \neq \emptyset$ for every $x \in A^{(\Lambda, \alpha)}$.

Proof. Let *A* be a g-(Λ, α)-closed set and suppose that there exists $x \in A^{(\Lambda,\alpha)}$ such that $A \cap \{x\}^{(\Lambda,\alpha)} = \emptyset$. Therefore, $A \subseteq X - \{x\}^{(\Lambda,\alpha)}$ and so $A^{(\Lambda,\alpha)} \subseteq X - \{x\}^{(\Lambda,\alpha)}$. Hence $x \notin A^{(\Lambda,\alpha)}$, which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any (Λ, α) -open set containing A. Let $x \in A^{(\Lambda,\alpha)}$. Then, by the hypothesis $A \cap A^{(\Lambda,\alpha)} \neq \emptyset$, so there exists $y \in A \cap \{x\}^{(\Lambda,\alpha)}$ and so $y \in A \subseteq U$. Thus, $\{x\} \cap U \neq \emptyset$. Hence $x \in U$, which implies that $A^{(\Lambda,\alpha)} \subseteq U$. This shows that A is g- (Λ, α) -closed.

Definition 3.4. A subset A of a topological space (X, τ) is said to be locally (Λ, α) -closed if $A = U \cap F$, where $U \in \Lambda_{\alpha}O(X, \tau)$ and F is a (Λ, α) -closed set.

Theorem 3.7. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is locally (Λ, α) -closed;
- (2) $A = U \cap A^{(\Lambda,\alpha)}$ for some $U \in \Lambda_{\alpha}O(X,\tau)$;
- (3) $A^{(\Lambda,\alpha)} A$ is (Λ, α) -closed;
- (4) $A \cup [X A^{(\Lambda,\alpha)}] \in \Lambda_{\alpha}O(X,\tau);$
- (5) $A \subseteq [A \cup [X A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)}$.

Proof. (1) \Rightarrow (2): Suppose that $A = U \cap F$, where $U \in \Lambda_{\alpha}O(X, \tau)$ and F is a (Λ, α) -closed set. Since $A \subseteq F$, we have $A^{(\Lambda,\alpha)} \subseteq F^{(\Lambda,\alpha)} = F$. Since $A \subseteq U$, $A \subseteq U \cap A^{(\Lambda,\alpha)} \subseteq U \cap F = A$. Thus, $A = U \cap A^{(\Lambda,\alpha)}$ for some $U \in \Lambda_{\alpha}O(X, \tau)$.

(2) \Rightarrow (3): Suppose that $A = U \cap A^{(\Lambda,\alpha)}$ for some $U \in \Lambda_{\alpha}O(X,\tau)$. Then, we have

$$A^{(\Lambda,\alpha)} - A = [X - U \cap A^{(\Lambda,\alpha)}] \cap A^{(\Lambda,\alpha)} = (X - U) \cap A^{(\Lambda,\alpha)}$$

Since $(X - U) \cap A^{(\Lambda,\alpha)}$ is (Λ, α) -closed, $A^{(\Lambda,\alpha)} - A$ is (Λ, α) -closed.

- (3) \Rightarrow (4): Since $X [A^{(\Lambda,\alpha)} A] = [X A^{(\Lambda,\alpha)}] \cup A$ and by (3), $A \cup [X A^{(\Lambda,\alpha)}] \in \Lambda_{\alpha}O(X,\tau)$.
- (4) \Rightarrow (5): By (4), we obtain $A \subseteq A \cup [X A^{(\Lambda,\alpha)}] = [A \cup [X A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)}$.

(5) \Rightarrow (1): We put $U = [A \cup [X - A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)}$. Then, $U \in \Lambda_{\alpha}O(X,\tau)$ and

$$A = A \cap U \subseteq U \cap A^{(\Lambda,\alpha)} \subseteq [A \cup [X - A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)} \cap A^{(\Lambda,\alpha)} = A \cap A^{(\Lambda,\alpha)} = A.$$

Thus, $A = U \cap A^{(\Lambda,\alpha)}$, where $U \in \Lambda_{\alpha}O(X, \tau)$ and $A^{(\Lambda,\alpha)}$ is a (Λ, α) -closed set. This shows that A is locally (Λ, α) -closed.

Theorem 3.8. A subset A of a topological space (X, τ) is (Λ, α) -closed if and only if A is locally (Λ, α) -closed and g- (Λ, α) -closed.

Proof. Let A be (Λ, α) -closed. Then, A is g- (Λ, α) -closed. Since $X \in \Lambda_{\alpha}O(X, \tau)$ and $A = X \cap A$, A is locally (Λ, α) -closed.

Conversely, suppose that A is locally (Λ, α) -closed and g- (Λ, α) -closed. Since A is locally (Λ, α) closed, by Theorem 3.7, $A \subseteq [A \cup [X - A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)}$. Since $[A \cup [X - A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)} \in \Lambda_{\alpha}O(X, \tau)$ and A is g- (Λ, α) -closed, $A^{(\Lambda,\alpha)} \subseteq [A \cup [X - A^{(\Lambda,\alpha)}]]_{(\Lambda,\alpha)} \subseteq A \cup [X - A^{(\Lambda,\alpha)}]$ and hence $A^{(\Lambda,\alpha)} = A$. Thus, by Lemma 2.3, A is (Λ, α) -closed.

4. Applications of generalized (Λ, α) -closed sets

We begin this section by introducing the concept of Λ_{α} - $\mathcal{T}_{\frac{1}{2}}$ -spaces.

Definition 4.1. A topological space (X, τ) is called a Λ_{α} - $\mathcal{T}_{\frac{1}{2}}$ -space if every g- (Λ, α) -closed set of X is (Λ, α) -closed.

Lemma 4.1. Let (X, τ) be a topological space. For each $x \in X$, the singleton $\{x\}$ is (Λ, α) -closed or $X - \{x\}$ is g- (Λ, α) -closed.

Proof. Let $x \in X$ and the singleton $\{x\}$ be not (Λ, α) -closed. Then, $X - \{x\}$ is not (Λ, α) -open and X is the only (Λ, α) -open set which contains $X - \{x\}$ and $X - \{x\}$ is g- (Λ, α) -closed.

Let A be a subset of a topological space (X, τ) . A subset $\Lambda_{(\Lambda, \alpha)}(A)$ [6] is defined as follows:

$$\Lambda_{(\Lambda,\alpha)}(A) = \cap \{U \mid A \subseteq U, U \in \Lambda_{\alpha}O(X,\tau)\}.$$

Lemma 4.2. [6] For subsets A, B of a topological space (X, τ) , the following properties hold:

- (1) $A \subseteq \Lambda_{(\Lambda,\alpha)}(A)$.
- (2) If $A \subseteq B$, then $\Lambda_{(\Lambda,\alpha)}(A) \subseteq \Lambda_{(\Lambda,\alpha)}(B)$.
- (3) $\Lambda_{(\Lambda,\alpha)}[\Lambda_{(\Lambda,\alpha)}(A)] = \Lambda_{(\Lambda,\alpha)}(A).$
- (4) If A is (Λ, α) -open, $\Lambda_{(\Lambda, \alpha)}(A) = A$.

A subset A of a topological space (X, τ) is called a $\Lambda_{(\Lambda,\alpha)}$ -set if $A = \Lambda_{(\Lambda,\alpha)}(A)$. The family of all $\Lambda_{(\Lambda,\alpha)}$ -sets of (X, τ) is denoted by $\Lambda_{(\Lambda,\alpha)}(X, \tau)$ (or simply $\Lambda_{(\Lambda,\alpha)})$.

Definition 4.2. A subset A of a topological space (X, τ) is called a generalized $\Lambda_{(\Lambda,\alpha)}$ -set (briefly $g-\Lambda_{(\Lambda,\alpha)}$ -set) if $\Lambda_{(\Lambda,\alpha)}(A) \subseteq F$ whenever $A \subseteq F$ and F is (Λ, α) -closed.

Lemma 4.3. Let (X, τ) be a topological space. For each $x \in X$, the singleton $\{x\}$ is (Λ, α) -open or $X - \{x\}$ is $g - \Lambda_{(\Lambda, \alpha)}$ -set.

Proof. Let $x \in X$ and the singleton $\{x\}$ be not (Λ, α) -open. Then, $X - \{x\}$ is not (Λ, α) -closed and X is the only (Λ, α) -closed set which contains $X - \{x\}$ and $X - \{x\}$ is $g - \Lambda_{(\Lambda, \alpha)}$ -set.

Theorem 4.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a Λ_{α} - $T_{\frac{1}{2}}$ -space.
- (2) For each $x \in X$, the singleton $\{x\}$ is (Λ, α) -open or (Λ, α) -closed.
- (3) Every $g \Lambda_{(\Lambda,\alpha)}$ -set is a $\Lambda_{(\Lambda,\alpha)}$ -set.

Proof. (1) \Rightarrow (2): By Lemma 4.1, for each $x \in X$, the singleton $\{x\}$ is (Λ, α) -closed or $X - \{x\}$ is $g_{-}(\Lambda, \alpha)$ -closed. Since (X, τ) is a $\Lambda_{\alpha} - \mathcal{T}_{\frac{1}{2}}$ -space, we have $X - \{x\}$ is (Λ, α) -closed and hence $\{x\}$ is (Λ, α) -open in the latter case. Thus, the singleton $\{x\}$ is (Λ, α) -open or (Λ, α) -closed.

(2) \Rightarrow (3): Suppose that there exists a g- $\Lambda_{(\Lambda,\alpha)}$ -set A which is not a $\Lambda_{(\Lambda,\alpha)}$ -set. Then, there exists $x \in \Lambda_{(\Lambda,\alpha)}(A)$ such that $x \notin A$. In case the singleton $\{x\}$ is (Λ, α) -open, $A \subseteq X - \{x\}$ and $X - \{x\}$ is (Λ, α) -closed. Since A is a g- $\Lambda_{(\Lambda,\alpha)}$ -set, $\Lambda_{(\Lambda,\alpha)}(A) \subseteq X - \{x\}$. This is a contradiction. In case the singleton $\{x\}$ is (Λ, α) -closed, $A \subseteq X - \{x\}$ and $X - \{x\}$ is (Λ, α) -closed. By Lemma 4.2,

$$\Lambda_{(\Lambda,\alpha)}(A) \subseteq \Lambda_{(\Lambda,\alpha)}(X - \{x\}) = X - \{x\}.$$

This is a contradiction. Therefore, every $g - \Lambda_{(\Lambda,\alpha)}$ -set is a $\Lambda_{(\Lambda,\alpha)}$ -set.

(3) \Rightarrow (1): Suppose that (X, τ) is not a $\Lambda_{\alpha} - T_{\frac{1}{2}}$ -space. There exists a g- (Λ, α) -closed set A which is not (Λ, α) -closed. Since A is not (Λ, α) -closed, there exists a point $x \in A^{(\Lambda,\alpha)}$ such that $x \notin A$. By Lemma 4.3, the singleton $\{x\}$ is (Λ, α) -open or $X - \{x\}$ is a g- $\Lambda_{(\Lambda,\alpha)}$ -set. (a) In case $\{x\}$ is (Λ, α) -open, since $x \in A^{(\Lambda,\alpha)}$, $\{x\} \cap A \neq \emptyset$ and $x \in A$. This is a contradiction. (b) In case $X - \{x\}$ is a $\Lambda_{(\Lambda,\alpha)}$ -set, if $\{x\}$ is not (Λ, α) -closed, $X - \{x\}$ is not (Λ, α) -open and $\Lambda_{(\Lambda,\alpha)}(X - \{x\}) = X$. Thus, $X - \{x\}$ is not a $\Lambda_{(\Lambda,\alpha)}$ -set. This contradicts (3). If $\{x\}$ is (Λ, α) -closed, $A \subseteq X - \{x\} \in \Lambda_{\alpha}O(X, \tau)$ and A is g- (Λ, α) -closed. Thus, $A^{(\Lambda,\alpha)} \subseteq X - \{x\}$. This contradicts that $x \in A^{(\Lambda,\alpha)}$. Therefore, (X, τ) is a Λ_{α} - $T_{\frac{1}{5}}$ -space.

Definition 4.3. A topological space (X, τ) is said to be (Λ, α) -normal if for any pair of disjoint (Λ, α) closed sets F and H, there exist disjoint (Λ, α) -open sets U and V such that $F \subseteq U$ and $H \subseteq V$.

Lemma 4.4. Let (X, τ) be a topological space. If U is a (Λ, α) -open set, then $U^{(\Lambda,\alpha)} \cap A \subseteq [U \cap A]^{(\Lambda,\alpha)}$ for every subset A of X.

Theorem 4.2. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (Λ, α) -normal.
- (2) For every pair of (Λ, α) -open sets U and V whose union is X, there exist (Λ, α) -closed sets F and H such that $F \subseteq U$, $H \subseteq V$ and $F \cup H = X$.
- (3) For every (Λ, α)-closed set F and every (Λ, α)-open set G containing F, there exists a (Λ, α)-open set U such that F ⊆ U ⊆ U^(Λ,α) ⊆ G.
- (4) For every pair of disjoint (Λ, α)-closed sets F and H, there exist disjoint (Λ, α)-open sets U and V such that F ⊆ U and H ⊆ V and U^(Λ,α) ∩ V^(Λ,α) = Ø.

Proof. (1) \Rightarrow (2): Let *U* and *V* be a pair of (Λ, α) -open sets such that $X = U \cup V$. Then, X - U and X - V are disjoint (Λ, α) -closed sets. Since (X, τ) is (Λ, α) -normal, there exist disjoint (Λ, α) -open sets *G* and *W* such that $X - U \subseteq G$ and $X - V \subseteq W$. Put F = X - G and H = X - W. Then, *F* and *H* are (Λ, α) -closed sets such that $F \subseteq U$, $H \subseteq V$ and $F \cup H = X$.

 $(2) \Rightarrow (3)$: Let *F* be a (Λ, α) -closed set and *G* be a (Λ, α) -open set containing *F*. Then, X - Fand *G* are (Λ, α) -open sets whose union is *X*. Then by (2), there exist (Λ, α) -closed sets *M* and *N* such that $M \subseteq X - F$, $N \subseteq G$ and $M \cup N = X$. Then, $F \subseteq X - M$, $X - G \subseteq X - N$ and $(X - M) \cap (X - N) = \emptyset$. Put U = X - M and V = X - N. Then *U* and *V* are disjoint (Λ, α) -open

sets such that $F \subseteq U \subseteq X - V \subseteq G$. As X - V is a (Λ, α) -closed set, we have $U^{(\Lambda, \alpha)} \subseteq X - V$ and hence $F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G$.

(3) \Rightarrow (4): Let *F* and *H* be two disjoint (Λ, α) -closed sets of *X*. Then, $F \subseteq X - H$ and X - H is (Λ, α) -open and hence there exists a (Λ, α) -open set *U* of *X* such that $F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq X - H$. Put $V = X - U^{(\Lambda, \alpha)}$. Then, *U* and *V* are disjoint (Λ, α) -open sets of *X* such that $F \subseteq U$, $H \subseteq V$ and $U^{(\Lambda, \alpha)} \cap V^{(\Lambda, \alpha)} = \emptyset$.

(4) \Rightarrow (1): The proof is obvious.

Theorem 4.3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (Λ, α) -normal.
- (2) For every pair of disjoint (Λ, α)-closed sets F and H of X, there exist disjoint g-(Λ, α)-open sets U and V of X such that F ⊆ U and H ⊆ V.
- (3) For each (Λ, α)-closed set F and each (Λ, α)-open set G containing F, there exists a g-(Λ, α)open set U such that F ⊆ U ⊆ U^(Λ,α) ⊆ G.
- (4) For each (Λ, α) -closed set F and each g- (Λ, α) -open set G containing F, there exists a (Λ, α) open set U such that $F \subseteq U \subseteq U^{(\Lambda,\alpha)} \subseteq G_{(\Lambda,\alpha)}$.
- (5) For each (Λ, α) -closed set F and each g- (Λ, α) -open set G containing F, there exists a g- (Λ, α) -open set U such that $F \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G_{(\Lambda, \alpha)}$.
- (6) For each g-(Λ, α)-closed set F and each (Λ, α)-open set G containing F, there exists a (Λ, α)-open set U such that F^(Λ,α) ⊆ U ⊆ U^(Λ,α) ⊆ G.
- (7) For each $g_{-}(\Lambda, \alpha)$ -closed set F and each (Λ, α) -open set G containing F, there exists a $g_{-}(\Lambda, \alpha)$ -open set U such that $F^{(\Lambda, \alpha)} \subseteq U \subseteq U^{(\Lambda, \alpha)} \subseteq G$.

Proof. (1) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (3): Let *F* be a (Λ, α)-closed set and *G* be a (Λ, α)-open set containing *F*. Then, we have *F* and *X* - *G* are two disjoint (Λ, α)-closed sets. Hence by (2), there exist disjoint g-(Λ, α)-open sets *U* and *V* of *X* such that *F* \subseteq *U* and *X* - *G* \subseteq *V*. Since *V* is g-(Λ, α)-open and *X* - *G* is (Λ, α)-closed, by Theorem 3.5, *X* - *G* \subseteq *V*(Λ, α). Thus, $[X - V]^{(\Lambda, \alpha)} = X - V_{(\Lambda, \alpha)} \subseteq G$ and hence *F* \subseteq *U* \subseteq *U*(Λ, α) \subseteq *G*.

(3) \Rightarrow (1): Let *F* and *H* be two disjoint (Λ, α) -closed sets of *X*. Then, *F* is a (Λ, α) -closed set and *X* - *H* is a (Λ, α) -open set containing *F*. Thus by (3), there exists a g- (Λ, α) -open set *U* such that $F \subseteq U \subseteq U^{(\Lambda,\alpha)} \subseteq X - H$. By Theorem 3.5, $F \subseteq U_{(\Lambda,\alpha)}$, $H \subseteq X - U^{(\Lambda,\alpha)}$, where $U_{(\Lambda,\alpha)}$ and $X - U^{(\Lambda,\alpha)}$ are two disjoint (Λ, α) -open sets.

- $(4) \Rightarrow (5)$ and $(5) \Rightarrow (2)$: The proofs are obvious.
- $(6) \Rightarrow (7)$ and $(7) \Rightarrow (3)$: The proofs are obvious.

(3) \Rightarrow (5): Let *F* be a (Λ, α)-closed set and *G* be a g-(Λ, α)-open set containing *F*. Since *G* is g-(Λ, α)-open and *F* is (Λ, α)-closed, by Theorem 3.5, *F* \subseteq *G*_(Λ, α) and by (3), there exists a g-(Λ, α)-open set *U* such that *F* \subseteq *U* \subseteq *U*^(Λ, α) \subseteq *G*_(Λ, α).

(5) \Rightarrow (6): Let *F* be a g-(Λ, α)-closed set and *G* be a (Λ, α)-open set containing *F*. Then, $F^{(\Lambda,\alpha)} \subseteq G$. Since *G* is g-(Λ, α)-open, by (6), there exists a g-(Λ, α)-open set *U* such that $F^{(\Lambda,\alpha)} \subseteq U \subseteq U^{(\Lambda,\alpha)} \subseteq G$. Since *U* is g-(Λ, α)-open and $F^{(\Lambda,\alpha)} \subseteq U$, by Theorem 3.5, $F^{(\Lambda,\alpha)} \subseteq U_{(\Lambda,\alpha)}$. Put $V = U_{(\Lambda,\alpha)}$. Then, *V* is (Λ, α)-open and $F^{(\Lambda,\alpha)} \subseteq V \subseteq V^{(\Lambda,\alpha)} = [U_{(\Lambda,\alpha)}]^{(\Lambda,\alpha)} \subseteq U^{(\Lambda,\alpha)} \subseteq G$.

(6) \Rightarrow (4): Let *F* be a (Λ, α) -closed set and *G* be a g- (Λ, α) -open set containing *F*. Then by Theorem 3.5, $F^{(\Lambda,\alpha)} = F \subseteq G_{(\Lambda,\alpha)}$. Since *F* is g- (Λ, α) -closed and $G_{(\Lambda,\alpha)}$ is (Λ, α) -open, by (6), there exists a (Λ, α) -open set *U* such that $F^{(\Lambda,\alpha)} = F \subseteq U \subseteq U^{(\Lambda,\alpha)} \subseteq G_{(\Lambda,\alpha)}$.

Definition 4.4. A topological space (X, τ) is said to be (Λ, α) -regular if for each (Λ, α) -closed set F of X not containing x, there exist disjoint (Λ, α) -open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 4.4. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (Λ, α) -regular.
- (2) For each $x \in X$ and each $U \in \Lambda_{\alpha}O(X, \tau)$ with $x \in U$, there exists $V \in \Lambda_{\alpha}O(X, \tau)$ such that $x \in V \subset V^{(\Lambda,\alpha)} \subset U$.
- (3) For each (Λ, α) -closed set F of X, $\cap \{V^{(\Lambda, \alpha)} \mid F \subseteq V \in \Lambda_{\alpha}O(X, \tau)\} = F$.
- (4) For each subset A of X and each $U \in \Lambda_{\alpha}O(X, \tau)$ with $A \cap U \neq \emptyset$, there exists $V \in \Lambda_{\alpha}O(X, \tau)$ such that $A \cap V \neq \emptyset$ and $V^{(\Lambda, \alpha)} \subseteq U$.
- (5) For each nonempty subset A of X and each (Λ, α) -closed set F of X with $A \cap F = \emptyset$, there exist $V, W \in \Lambda_{\alpha}O(X, \tau)$ such that $A \cap V \neq \emptyset$, $F \subseteq W$ and $V \cap W = \emptyset$.
- (6) For each (Λ, α) -closed set F of X and $x \notin F$, there exist $U \in \Lambda_{\alpha}O(X, \tau)$ and a g- (Λ, α) -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$.
- (7) For each subset A of X and each (Λ, α) -closed set F with $A \cap F = \emptyset$, there exist $U \in \Lambda_{\alpha}O(X, \tau)$ and a g- (Λ, α) -open set V such that $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

Proof. (1) \Rightarrow (2): Let $G \in \Lambda_{\alpha}O(X, \tau)$ and $x \notin X - G$. Then, there exist disjoint $U, V \in \Lambda_{\alpha}O(X, \tau)$ such that $X - G \subseteq U$ and $x \in V$. Thus, $V \subseteq X - U$ and so $x \in V \subseteq V^{(\Lambda,\alpha)} \subseteq X - U \subseteq G$.

(2) \Rightarrow (3): Let $X - F \in \Lambda_{\alpha}O(X, \tau)$ with $x \in X - F$. Then by (2), there exists $U \in \Lambda_{\alpha}O(X, \tau)$ such that $x \in U \subseteq U^{(\Lambda,\alpha)} \subseteq X - F$. Thus, $F \subseteq X - U^{(\Lambda,\alpha)} = V \in \Lambda_{\alpha}O(X, \tau)$ and hence $U \cap V = \emptyset$. Then, we have $x \notin V^{(\Lambda,\alpha)}$. This shows that $F \supseteq \cap \{V^{(\Lambda,\alpha)} \mid F \subseteq V \in \Lambda_{\alpha}O(X, \tau)\}$.

(3) \Rightarrow (4): Let *A* be a subset of *X* and $U \in \Lambda_{\alpha}O(X, \tau)$ such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$. Then, $x \notin X - U$. Hence by (3), there exists $W \in \Lambda_{\alpha}O(X, \tau)$ such that $X - U \subseteq W$ and $x \notin W^{(\Lambda,\alpha)}$. Put $V = X - W^{(\Lambda,b)}$ which is a (Λ, α) -open set containing *x* and $A \cap V \neq \emptyset$. Now, $V \subseteq X - W$ and so $V^{(\Lambda,\alpha)} \subseteq X - W \subseteq U$.

(4) \Rightarrow (5): Let *A* be a nonempty subset of *X* and *F* be a (Λ, α)-closed set such that $A \cap F = \emptyset$. Then, $X - F \in \Lambda_{\alpha}O(X, \tau)$ with $A \cap (X - F) \neq \emptyset$ and hence by (4), there exists $V \in \Lambda_{\alpha}O(X, \tau)$ such that $A \cap V \neq \emptyset$ and $V^{(\Lambda, \alpha)} \subseteq X - F$. If we put $W = X - V^{(\Lambda, \alpha)}$, then $F \subseteq W$ and $W \cap V = \emptyset$. (5) \Rightarrow (1): Let *F* be a (Λ, α)-closed set not containing *x*. Then, $F \cap \{x\} = \emptyset$. Thus by (5), there exist $V, W \in \Lambda_{\alpha}O(X, \tau)$ such that $x \in V, F \subseteq W$ and $V \cap W = \emptyset$.

 $(1) \Rightarrow (6)$: The proof is obvious.

(6) \Rightarrow (7): Let *A* be a subset of *X* and *F* be a (Λ, α)-closed set such that $A \cap F = \emptyset$. Then, for $x \in A, x \notin F$ and by (6), there exist $U \in \Lambda_{\alpha}O(X, \tau)$ and a g-(Λ, α)-open set *V* such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Thus, $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

(7) \Rightarrow (1): Let *F* be a (Λ, α)-closed set such that $x \notin F$. Since $\{x\} \cap F = \emptyset$, by (7), there exist $U \in \Lambda_{\alpha}O(X, \tau)$ and a g-(Λ, α)-open set *W* such that $x \in U$, $F \subseteq W$ and $U \cap W = \emptyset$. Since *W* is g-(Λ, α)-open, by Theorem 3.5, we have $F \subseteq W_{(\Lambda,\alpha)} = V \in \Lambda_{\alpha}O(X, \tau)$ and hence $U \cap V = \emptyset$. This shows that (X, τ) is (Λ, α)-regular.

Acknowledgements: This research project was financially supported by Mahasarakham University. **Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- S. Buadong, C. Viriyapong, C. Boonpok, On Generalized Topology and Minimal Structure Spaces, Int. J. Math. Anal. 5 (2011), 1507–1516.
- M. Caldas, D. N. Georgiou, S. Jafari, Study of (Λ, α)-Closed Sets and the Related Notions in Topological Spaces, Bull. Malays. Math. Sci. Soc. (2), 30 (2007), 23–36.
- [3] J. Dontchev, M. Ganster, On δ -Generalized Closed Sets and $T_{\frac{3}{4}}$ -Spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 15–31.
- [4] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- [5] E. Khalimsky, R. Kopperman, P. R. Meyer, Computer Graphics and Connected Topologies on Finite Ordered Sets, Topol. Appl. 36 (1990), 1–17. https://doi.org/10.1016/0166-8641(90)90031-v.
- [6] J. Khampakdee, C. Boonpok, Some Properties of (Λ, α) -Open Sets, WSEAS Trans. Math. 22 (2023), 13–31.
- [7] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- [8] O. Njåstad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10. 2140/pjm.1965.15.961.
- [9] T. Noiri, V. Popa, A Note on Modifications Of rg-Closed Sets in Topological Spaces, Cubo. 15 (2013), 65–70. https://doi.org/10.4067/s0719-06462013000200006.
- [10] N. Palaniappan, K. C. Rao, Regular Generalized Closed Sets, Kyungpook Math. J. 33 (1993), 211–219.
- J.H. Park, D.S. Song, R. Saadati, On Generalized δ-Semiclosed Sets in Topological Spaces, Chaos Solitons Fractals, 33 (2007), 1329–1338. https://doi.org/10.1016/j.chaos.2006.01.086.
- [12] P. Torton, C. Viriyapong, C. Boonpok, Some Separation Axioms in Bigeneralized Topological Spaces, Int. J. Math. Anal. 6 (2012), 2789–2796.